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Abstract 
Shearlet as a new multidirectional and multiscale transform is optimally efficient in representing 

images containing edges. In this paper, a total variation based multivariate shearlet adaptive shrinkage is 
proposed for discontinuity-preserving image denoising. The multivariate adaptive threshold is employed to 
reduce the noise. Projected total variation diffusion is used to suppress the pseudo-Gibbs and shearlet-like 
artifacts. Numerical experiments from piecewise-smooth to textured images demonstrate that the proposed 
method can effectively suppress noise and nonsmooth artifacts caused by shearlet transform. 
Furthermore, it outperforms several existing techniques in terms of structural similarity (SSIM) index, peak 
signal-to-noise ratio (PSNR) and visual quality. 
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1. Introduction 

Images are often corrupted by noise during acquisition and transmission, which will lead 
to significant degradation of image quality for human interpretation and post-processing tasks. 
The main goal of image denoising is to reduce the noise, while preserving the image features. 
Partial differential equations and computational harmonic analysis are two widely used classes 
of methods to achieve this goal.  

Wavelet transform as one of the computational harmonic analysis methods has been 
successfully used in image denoising field. Since Donoho and his coworker pioneered a wavelet 
denoising scheme by using thresholding [1], there have been hundreds of papers presented to 
apply or modify the original algorithm. However, when wavelet is used to image denoising, it will 
lead to oscillatory artifacts along the edges. That is why wavelet fails to capture the geometric 
regularity along the singularities of surfaces.  

In order to overcome this limitation of traditional wavelet, several image representations 
have been proposed to capture the geometric regularity of a given image. They include curvelet 
[2], contourlet [3] and bandelet [4]. Recently, Wang and Labate developed a new geometric 
multiscale transform, named shearlet [5,6] transform which yields nearly optimal approximation 
properties. Shearlet transform is based on a simple and rigorous mathematical framework which 
not only provides a more flexible theoretical tool for the geometric representation of 
multidimensional data, but is also more natural for implementation. In addition, the shearlet can 
be associated to a multiresolution analysis. Those features ensure that is superior to other 
transforms in the field of image processing.  

Computational harmonic analysis based image denoising always suffer from some 
oscillations near discontinuities, like nonsmooth edges or pseudo-Gibbs phenomena. Partial 
differential equations such as total variation (TV) and diffusion-based method are other powerful 
tools for denoising and can greatly reduce these ringing effects. But cost-heavy computational 
burden of these methods are not suitable for time-critical application. The TV-synthesized 
computational harmonic analysis can effectively overcome these problems. Recently, TV 
minimization combined wavelet [7], complex wavelet [8], ridgelet [9], wave atoms [10], curvelet 
[11], and shearlet [12] shrinkage have been considered. The hybrid methods show good 
performance for real application denoising of engineering surfaces and image with complex 
textures and geometries. However, in those methods the shrinkage thresholds are fixed at first. 
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The fixed thresholds only consider the individual coefficient magnitudes, but do not take account 
of the influence of the coefficient distributions.  

In this paper, we propose a TV-synthesized multivariate shearlet adaptive shrinkage 
technique in order to shrink image noise and, at the same time, suppress unwanted nonsmooth 
artifacts as well. The large shearlet coefficients are adaptively thresholded by the proposed 
threshold. And the small ones are modified by TV minimization. Section 2 presents the 
proposed method. Then, in the next section some experimental results are given, which are 
compared with results of some existing techniques in both SSIM values and visual qualities. 
Finally, conclusions are drawn . 
 
 
2. Proposed Method 

Supposing we observe noisy image g f n= +  where n  is independent, zero-mean 

Gaussian noise. The aim of denoising is to estimate the noise-free coefficient f  as accurately 

as possible according to some criteria. For threshold  , define the shrinkage function 

 xS to be   xxsign  if x  and zero otherwise. A denoised estimate f̂  from the shearlet 

transform can be expressed as  
 

( )
1 2

, , , , , , , ,
ˆ , ,j k j k j k j kM M
f g S gty y y y= +å ål l l l

 (1) 

 
Where 1M and 2M represent the indices of the low-frequency coefficients and shearlet 

coefficients, respectively. Traditional shearlet hard thresholding, which simply sets the small 
coefficients as zeros, usually bring nonsmooth shearlet-like artifacts. To overcome this 
drawback, we combined multivariate shearlet adaptive shrinkage and total variation method to 
improve the performance for image denoising. 
 
2.1. Multivariate adaptive shrinkage 

Traditionally, the threshold function is defined as nc  , where n  denotes the 

standard deviation of white noise, c is a constant and often 3c  or 4c  for different scales. 
The traditional threshold function only considers the individual shearlet coefficient magnitudes, 
but dose not take account of the influence of the coefficient models, which is not optimal. In this 
paper, the models of shearlet coefficient are considered, and the threshold function is adaptively 
determined by the maximum a posteriori (MAP) estimator.  

After shearlet transform, the observed noisy image can be formulated as y = x + n . After 

shearlet transform, the problem can be formulated as y = x + n  where y  is the noisy shearlet 

coefficients, x  is the noise-free shearlet coefficient and n  is noise, which is yet independent, 
white, zero-mean Gaussian. Using Bayes rule, the maximum a posterior estimator for x given 
the noisy observation y can be easily derived as being 

 

         |ˆ arg max arg maxp p px y n x
x x

x y = x | y y x x   (2) 

 
where  pn y x and  px x are the probability density functions of the noise coefficient n and the 

noise-free shearlet coefficient x . The Eq.(2) is also equivalent to  
 

      ˆ arg max log logp pn x
x

x y = y x x       
 

(3) 

 
From the equation (3), in order to estimate x , the probability distribution of noise 

coefficient n and the prior distribution of noise-free shearlet coefficient x  must be supposed. In 
this paper, the noise is assumed as additive white Gaussian noise with zero-mean and variance 

2
ns . The probability distribution of noise coefficient can be expressed by  
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where d is the dimension of the noise coefficients vector. 

Substituting Eq. (4) into Eq. (3) yields 
 

     
2
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2

ˆ arg max log 2 log
2 2n

n

d
px

x

y - x
x y = x
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        
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 (5) 

 
Assuming ( ) ( )log pz é ù= - ë ûxx x  to be strictly convex and differentiable, the following first-order 

approximation of MAP estimator is always possible  
 

( )2ˆ nps z ¢= -x y y  (6) 

 
where the problem with the estimator in (6) is that the sign of x̂  is often different from the sign 
of y  even for symmetrical zero-mean densities. Such counterintuitive estimates are possible 

because    is often discontinuous or even singular at 0, which implies that the first-order 

approximation is quite inaccurate near 0. To alleviate this problem of “overshrinkage”, we use 
the following modification as the MAP estimator (2) of a nongaussian random variable corrupted 
by Gaussian noise: 
 

( )( )
ˆ

0

signìï >ïï= íï £ïïî

y y - τ y τ
x

y τ
 (7) 

 
where shrinkage threshold ( )2

np s z ¢=τ y . 

From the equation (7), in order to estimate x̂ , the probability distribution of the prior 
distribution of shearlet coefficient x  must be supposed. It is well known that the statistical 
models of shearlet coefficients exhibit a sharp peak at zero and heavy tails to both sides of the 
peak. And due to the multiresolution and multidirection features of shearlet transform, the 
distribution of its coefficients is a wide range of processes, from heavy-tailed to less heavy-tailed 
processes. The normal inverse Gaussian (NIG) model is a flexible, four parameter distribution 
that can describe a wide range shapes. In this paper, we use the following multivariate normal 
inverse gaussian probability density function to model the noise-free shearlet coefficients. The 
multivariate normal inverse gaussian distribution of x is given by  

 

( ) ( ) ( )

( )

( ) ( ) ( )
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1 21 2
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d

dd
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d a
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 (8) 

 

with ( ) ( )2 T Tp x xd a b b b m= - G + -
 

and ( ) ( ) ( )2 1T
q x x xd m m-é ù= + - G -ê úë û

. Where ( )1 2dK +  

denotes the modified Bessel function of second kind with order   21d , dd denotes the 

correlation matrix. In this letter, we assume the distribution of noise-free shearlet coefficient x is 
symmetrical with zero mean this means that 0m = and 0b = . Then, from Eq. (8), we have 
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(9) 

 
Using [9], we get the adaptive shrinkage threshold τ . 
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where ()dK ×  is the modified Bessel function of the second kind with index d . 

 
2.2. TV combined multivariate adaptive shrinkage 

TV minimization is adopted to shrink the shearlet coefficients which have been set to 

zero by the multivariate adaptive shrinkage procedure (7). For a function   2:xf  

with    21  Lxf , the TV function is defined as 

 

     dxxffTV  (11) 

 
To circumvent computational difficulties arising from the non-differentiability of the modulus at 
zero, the TV function is often replaced by 
 
 

     dxxff 22
TV   (12) 

 

where   is a small positive parameter. In this paper, the   is set to be 410 . The discrete 

version of the TV function for    2,,
nIjijiff


 is given by  

 

      
ji

jiji fff
,

22

,2

2

,1TV   (13) 

 
where   jijiji fff ,,1,1   ,   jijiji fff ,1,,2   . Then our proposed model can be formulated 

as follows. 
 

( ){ }
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 (14) 

 
where BV  denotes bounded variation. 1M  denotes the indices of the low-frequency shearlet 

coefficients. cM 2  denotes the indices of shearlet coefficients which are greater than the 

proposed shrinkage threshold  . Since the function (13) is convex, problem (14) has a solution.  
In this paper, a projected gradient descent scheme is adopted to diminish the TV norm. Define 

 fgTV  to be the subgradient of  fTV , and then, a solution of (14) can be computed by 

following.  
 

  


 fgtff TVV
1 P  (15) 

 
where VP  denotes the orthogonal projection onto the subspace where shearlet coefficients are 

smaller than the proposed shrinkage threshold τ . 
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2.3. Implementation of proposed method 

Inputting noisy image f , 410 , and time step size t . The detailed procedure to 

perform the total variation based shearlet adaptive shrinkage for image denoising is described 
as follows.  
1. Perform discrete shearlet transform to obtain low-frequency coefficients  fC kj ,,0

 and 

shearlet coefficients  fd kj ,,  

2. Apply the proposed multivariate adaptive threshold (10) and the threshold function (7) to 
shrink the shearlet coefficients. 

3. Compute initial reconstruction 0f by inverse shearlet transform of the shrinkage shearlet 

coefficients. 

4. Minimize the TV norm of f  by the following steps for ,...2,1 : 

4.1. Compute the subgradient  fgTV  of f . 

4.2. Compute the discrete shearlet coefficients   
 fgC kj TV,,0

,   
 fgd kj TV,, . 

4.3 Compute the orthogonal projection   fgTVVP and set   


 fgtff TVV
1 P . 

 
 
3. Results and Analysis 

In this section, we present results of our proposed algorithm and compare them with 
some of the recent existing techniques, namely BLS-GSM [13] with non-decimated wavelet 
transform, Shearlet hard shrinkage (SH-H), and total variation based shearlet hard shrinkage 
(TV-SH-H) [12]. Extensive experiments are conducted on three standard grayscale test images 
with distinctly different features, corrupted by simulated additive Gaussian white noise at 
different power levels. And we use 20 iterations and 0.2 step size for the computation of TV 
minimization in all experiments.  

In this paper, we chose SSIM and PSNR as the objective evaluation criterion. Although 
PSNR can measure the difference between two images, it is well-known that it may fail to 
describe the visual perception quality of an image. The PSNR is not the best choice for image 
quality assessment (IQA). Among the recently proposed IQA approaches, the structural 
similarity (SSIM) index [14] has emerged as a promising measure for image visual quality 
assessment. Compared with PSNR, SSIM can better reflect the structure similarity between 
target image and the reference image. The SSIM and PSNR values for implementations using 
different images and different noise levels are list in Table 1. From Table 1, it is seen that the 
proposed method consistently gives a larger value of SSIM and PSNR compared to the other 
methods, which indicating a better preservation of structure in the denoised images,especially to 
the textured images (such as Barbara). 

 
 

Table 1. SSIM and PSNR comparison of some grayscale image denoising results 
Image Lena (512×512) Barbara (512×512) Boat (512×512) 

Noise std 10 20 30 10 20 30 10 20 30 
 SSIM comparison 

BLS-GSM 0.896 0.836 0.790 0.916 0.834 0.759 0.867 0.781 0.716 
SH-H 0.906 0.865 0.826 0.929 0.869 0.808 0.871 0.803 0.746 

TV-SH-H 0.906 0.867 0.833 0.929 0.870 0.810 0.871 0.804 0.749 
Proposed 0.907 0.871 0.839 0.933 0.878 0.821 0.879 0.812 0.753 

 PSNR comparison (in dB) 

BLS-GSM 34.64 31.42 29.52 33.13 29.03 26.89 32.84 29.42 27.52 
SH-H 35.09 32.36 30.63 33.75 30.09 27.87 32.76 30.01 28.26 

TV-SH-H 35.18 32.42 30.69 34.06 30.23 27.95 32.99 30.07 28.31 
Proposed 35.27 32.47 30.71 34.47 30.64 28.35 33.28 30.23 28.36 

 
 
For visual evaluation, one example using the standard “Lena” and “Barbara” image with 

noise level 40 is given. Figure 1 and figure 2 show denoising results on a cropped subregion of 
Barbara and Lena. Form the figures we can seen that nonsmoothness oscillations along the 



TELKOMNIKA  ISSN: 2302-4046  
 

Total Variation based Multivariate Shearlet Shrinkage for Image Reconstruction (Chengzhi D) 

45

edges can be seen obviously in wavelet domain (BLS-GSM) due to the poor ability of wavelet at 
presenting curve singularities. Due to the sparse representation of shearlet transform for curve 
singularities, the denoising methods in shearlet domain show good performance for the edge 
preserving denoising. From Figure 1(d) and 2(d), we can see that noise is removed more 
effectively than methods in wavelet domain. However, it suffers from the shearlet-like artifacts. 
That is why SH-H method simply sets the small shearlet coefficients to be zero. TV minimization 
is also a noise shrinkage way. It can greatly reduce ringing effects. But too many details will be 
smoothed out. TV-SH-H method use TV minimization to adjust the small shearlet coefficients 
and fix the significant coefficients unchanged. The results are shown in Figure 1(e) and 2(e), 
where the shearlet-like artifacts are reduced. But there are still some noise left, particularly 
around discontinuities. In this paper, adaptively thresholding the significant coeffieients and 
adjusting the small shearlet coefficients by TV minimization are effective in denoising and 
recovering edges while the shearlet-like artifacts are greatly suppressed. The results are shown 
in Figure 1(f) and 2(f). 

 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
Figure 1. Denoising of corrupted image Barbara ( 40n ). (a) The original image. (b) Noisy 

image. (c) Output from BLS-GSM. (d) Output from SH-H. (e) Output from TV-SH-H. (f) Output 
from proposed method 

 
 

The differences between the noisy and denoised Lena images obtained by the four 
denoising schemes are shown in Figure 3. Figures 4(a)-(d) present suppressed components by 
BLS-GSM, SH-H, TV-SH-H and the proposed method. From Figures 4(a), it is clear that BLS-
GSM method remove the noise, meanwhile the image features are lost. Compared with wavelet 
method (BLS-GSM), methods based shearlet (SH-H, TV-SH-H) can reduce noise more 
efficiently. But there still have image features losted. From Figure 4(d), it is shown that the 
proposed scheme removes mostly noise with less image features, thus indicating a better 
suppression of noise and retention of image features in the denoisied image. 
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(a) 

 
(b) 
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(d) 

 
(e) 

 
(f) 

 
Figure 2. Denoising of corrupted image Lena ( 40n ). (a) The original image. (b) Noisy 

image. (c) Output from BLS-GSM. (d) Output from SH-H. (e) Output from TV-SH-H. (f) Output 
from proposed method 

 
 

    
 

Figure 3. Removed components of Lena ( 40n ) by different schemes. (a) BLS-GSM. (b) SH-

H. (c) TV-SH-H. (d) the proposed scheme 
 
 
4. Conclusion 

In this paper, an efficient algorithm is proposed for removing noise from corrupted 
image by incorporating a total variation based multivariate shearlet adaptive shrinkage. A 
multivariate adaptive threshold is firstly used to reduce the noise. And then, TV minimization is 
employed to modify thresholded shearlet coefficients in order to suppress nonsmooth artifacts 
near the edges and the shearlet-like artifacts. To demonstrate the superior performance of the 
proposed method, extensive experiments have been conducted on several standard test 
images. Experimental results show that the proposed method achieves state-of-the-art 
performance both visually and in terms of SSIM and PSNR. 
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