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Abstract 
This paper presents a practical representation containing a parameter of rational cubic conic 

sections and research’s deeply the inner properties. Firstly, the parameter how to affect the control points, 
inner weights and shoulder point is discussed. Secondly, the inner relation between the parameter and the 
weights of the nonstandard-form quadratic rational conic sections is analyzed in detail. Change in the 
parameter value actually corresponds to a rational linear parameter transformation. Finally, we discuss the 
inverse calculation of the cubic rational conic sections and obtain the inverse calculation methods suitable 
for engineering applications. 
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1. Introduction 

Non-uniform rational B-splines provide an exact representation for the family of conic 
or quadric curves (ellipse, parabol and hyperbola) [1]-[4]. As a form of NURBS methods, the 
rational Bezier methods play a very important role in practical applications. Designers often 
need to reparametrize the curves without changing the shape of the curves. The non-standard 
rational Bezier curves can generally be achieved by following ways[5,6]: to maintain the same 
control points and change the weights by projective transformation of the parameter space,�to 
add the control points and change the weights by increasing the curves degree and re-
parameterizing the curves, to add the control points and change the weights by improperly 
parameterizing the curve through a non-linear parameters transformation. However, for the 
standard rational Bezier curves, some basic problems (in particular the case of infinite 
representation methods of the standard rational cubic Bezier curves) have not yet been 
resolved. Guojin Wang [7],Kaihuai Qin [8] and Qiang Li[9] pointed out that a circular arcs has 
infinite representation methods in standard rational cubic Bezier form. Houjun Hang and 
Wanggen Li[10,11] discussed deeply the practical methods and inner properties of representing 
circular arcs with standard rational cubic Bezier curves. 

On the basis of the paper[11], we research deeply the practical representation and inner 
properties of the conic section to present a series of important results and point out a conic 
section has infinite representation methods in(standard) rational cubic Bezier form. The different 
(standard) rational cubic Bezier representations of a conic section correspond actually to 
rational linear parameter transformation. Finally,we discuss several inverse calculation problems 
and obtain the inverse calculation methods suitable for engineering applications. 
 
 
2. Practical representation of the rational cubic conic sections 

Theorem 1 Let 210 b,b,b  are control points of standard rational quadratic Bezier representa-

tion of the conic section  .The inner weight is  (> 2/1 and 0 ).Then the conic section   
can be represented by the following rational cubic Bezier equation with a parameter. 
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where 2300 bb,bb  ， i (i=0,1,2,3) are weights, and 0,0 30   . 
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It is easily checked that 
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20 1
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 .So equation (1) represents the conic section  . 

Theorem 2 Let 20 b,b  are control points of standard rational quadratic Bezier representation of 

the semi- ellipse  .Vector 


b is parallel to the conjugate diameter of 20 bb  and has the half 
length of the conjugate diameter. Then the semi-ellipse   can be represented by the following 
rational cubic Bezier equation with a parameter.  
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where 2300 bb,bb  , i (i=0,1,2,3) are weights, and 0,0 30   . 
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here 01  .So equation (5) represents the semi-ellipse  . 
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For 130   , (1) is standard rational cubic Bezier representation with a parameter 

of the conic section. 
Because 
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So it is clear that 0,0 21   . 

Figure 1 shows the inner weights 21,  curves of  .Where (a) for 1,1 30    

(b) for 0,130    (c) for 4/1,130  
 

 
 

 
 

Figure 1 Inner weights curve of  

(a)for 1,1 30   (b)for 0,130   (c)for 4/1,130    
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u is the parameter for 1  andu is the parameter for 2  .Moreover,(8) is right when 

0 . 

Now, we associate with the rational linear parameter transformation. By adjusting 

the value of the ,we can not only change the inner control points and weights,but also the 
location of the shoulder point.Actually the corresponding relations between the points on the 
curve and the points in parameter field are changed.That is to say, the rational cubic conic 
sections is re-parametrized. 

 
 

4. Te inverse calculation methods suitable for engineering applications 
4.1 Calculating inversely parameter value of a point on rational cubic conic sections 

Given a rational cubic Bezier representation of the conic section ( *  ) 
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Figure 2. Calculating inversely parameter value 
of P on rational cubic conic sections )( *   

 

 
 
 

Figure 3. Calculating inversely parameter 
value of P on quadratic rational Bezier curve 
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5. Examples Analyzing 
Example 1 Given a quadratic elliptical arc defined by control points 

)0,2(),3,2/31(),0,0( 210 bbb   and weights 
4

1
,1 120   . 

Using theorem 1,We can get the control points and weights of the rational cubic 
elliptical arc. 
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Figure 4 shows the correspondence control points and weights with our choice  =-

3,0,0.7,1.1 for 130  .Table 1 gives the coordinates of correspondence shoulder point 

and the value of inner weights. 
 
 

 
 

Figure 4.  affecting the control points and shoulder point 
 
 

Table 1 Correspondence inner weights and shoulder point for 3,0,7.0,1.1   

  Control points weights Shoulder point 

1.1 b0,b11,b12,b2 
1 =0.3159 

2 =0.0472 
A(0.5068, -0.5678) 

0.7 b0,b21,b22,b2 
1 =0.2368 

2 =0.1039 
B(0.6069, -0.5749) 

0 b0,b31,b32,b2 
1 =0.1667 

2 =0.1667 
C(0.7113, -0.5774) 

-3 b0,b41,b42,b2 
1 =0.0751 

2 =0.2748 
D(0.8714, -0.5720) 
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Example 2 Given a semi-ellipse defined by control points )0,2(),0,0( 20 bb and direction vector 
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(see Figure 5). 
 
 

 
 

Figure 5. Inverse calculation of semi-ellipse represented 
in standard cubic rational Bezier form 

 
 

Suppose the intersection point of 20 bb  and the line passing 9972)(1.4244,0.*p and 

being parallel to }1,
2

1
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

b is *m .We can get coordinates (0.9258,0) of *m .So 
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Substitution of 8618507.0 , 3.0*   and 130    into (10) gives the 

parameter value of 9972)(1.4244,0.*p  5111429.0u . 
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6.  Conclusion 
A conic section has infinite representation methods in(standard) rational cubic Bezier 

form. The (standard) rational cubic Bezier representation with a parameter of conic sections 
shows the inner relation between the parameter and the inner control points and the weights. By 
adjusting the parameter value,we can not only change the inner control points and weights,but 
also the location of the shoulder point.Actually the corresponding relations between the points 
on the curve and the points in parameter field are changed. That is to say, the rational cubic 
conic sections are reparametrized. We obtain the inverse calculation methods suitable for 
engineering applications.It is clear that the rational high degree Bezier representation of the 
conic section has been solved by the ascending degree algorithm of Bezie curves. Generally, 
do the standard rational nth-degree Bezier curves have the similar conclusions ?etc.All these 
will be our next major work. 
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