Coordination of directional overcurrent and distance relays based on nonlinear multivariable optimization

Tahseen Ali Abd Almuhsen¹, Ahmed Jasim Sultan²

^{1,2}Electrical Engineering Technical Collage, Middle Technical University, Iraq ^{1,2}Department of Electrical Power Engineering Techninques, Middle Technical University, Iraq

Article Info	ABSTRACT
Article history: Received Apr 7, 2019 Revised Jul 28, 2019 Accepted Sep 4, 2019	To ensure stability, security, and protection of electrical equipment from the damage the suitable coordination must be made in interconnected networks. In this paper, the nonlinear multivariable optimization techniques have been used with different performance indexes: Sequential quadratic programming (SQP), Sequential quadratic programming legacy (SQP-Legacy), Interior-Point and Active-Set for IEEE- 8 bus test system. This system consists of twenty-eight
<i>Keywords:</i> Directional overcurrent relay Distane relay Nonlinear multivariable optimization Pilot protection PUTT	protective relays divided into fourteen directional overcurrent relays (DOCR) and fourteen distance relays (DR). It has been tested in the ETAP environment to obtain three-phase short circuit current at the near and far end faults and operating time for all DOC relays for near-end fault as well as test the second zone time for distance relays (TZ2) with pilot signal (WP)and without pilot signal (WOP) of the proposed algorithm was used to reduce overall operating time of DOC relays and obtain optimal values for time multiplier setting (TMS) and TZ2 with the different coordination time interval (CTI) between main and backup relays. The simulation results were validated in ETAP program prove that the effectiveness of the Active-Set to minimize the TMS
	Copyright © 2020 Institute of Advanced Engineering and Science. All rights reserved.
Corresponding Author:	
Tahseen Ali Abd Almuhsen	

Tanseen Ali Abd Almunsen, Department of Electrical Power Engineering Techninques, Middle Technical University, Baghdad, Iraq. Email: tahseenengineer@gmail.com

1. INTRODUCTION

Protective devices are the watchful eye on the protection of electrical equipment in case of any sudden fault occurred whereby isolated as fast as possible. Commonly distance protection relays are applied as the main protection in high and extra high voltage systems. While directional overcurrent relays are applied as the main protection in medium and low voltage systems and as a backup in high and extra high voltage systems.

Protection relays should be capable to isolate any fault in the network as early as possible so that to reach these goals, coordination between protection relays should be executed [1]. When taking into consideration main and backup relays together are distance protection relays, should be calculated as impedance for three zones as well as take all thing considered of interconnected grids such as the generators and transmission lines in service or out of service [2, 3]. There are three sets of coordination problems between DR and DOCR should be determined. These parameter sets are starting current setting (I_{set}), time setting multiple (TSM set) in DOCR and timer of the second zone (TZ2 set) of DR [4, 5].

To get a reliability in the power system should have a suitable setting to each relay, so protection relays should have respective specifications such as speed, selectivity and the sensitivity [6-9]. Conventionally, the protection devices engineers spend more time carry out calculation and employ graphics to coordinate between protection relays with technical constraints. The problem is appearing more difficult with large interrelated transmission grids [10].

Presently, the optimization techniques have been used to coordinate between main and backup DOCR as well as between DR and DOCR. Also, it can be resolve constraints after identifying them between main and backup protective relays [10-16]. However, pilot protection has been used to decrease the tripping time of a transmission line [17]. Therefore, the total tripping time reduce from 0.4 sec to 0.04 sec, due to communication signal which sends between distance relays that be placed on the same transmission line from both sides [18].

In this paper, a nonlinear multivariable optimization technique with four performance indexes (SQP, SQP-legacy, interior-point, and active-set) for IEEE eight bus system was used to obtain optimal value of (TMS) of DOCR and (TZ2) of DR with and without pilot protection.

2. PROBLEM FORMULATION

Any transmission line in power system contains a distance relay as the main protection and directional overcurrent relay as local backup protection as shown in Figure 1. There are three scenarios can be done to achieve coordination between protective relays: main DR with backup DR, main DOCR with backup DOCR, and DOC relay with DR.

Figure 1. DR with DOCR

Figure 2 shows coordination between main R1 and backup R2 DOCR protective relays for near-end and far-end fault with the following constraints:

$$TR2(F1) - TR1(F1) \ge CTI1$$
(1)

$$TR2(F2) - TR1(F2) \ge CTI1$$
⁽²⁾

Where:

TR1(F1) - operating time of main DOCR in near-end fault.

TR1(F1) - operating time of main DOC in far-end fault.

TR2(F1) – operating time of backup DOCR in near-end fault.

Coordination of directional overcurrent and distance relay based on ... (Tahseen Ali Abd Almuhsen)

TR2(F2) - operating time of backup DOCR in far-end fault.

CTI1 - coordination time interval between R1 and R2 relays.

Figure 3 shows coordination between main R3 DR with backup R2 DOCR as well as coordination between main R1 DOCR with backup R4 DR with the following constraints:

$$TR4(F3) - TR1(F3) \ge CTI2$$
(3)

$$TR2(F4) - TR3(F4) \ge CTI2$$
(4)

Where:

TR3(F4) – operating time for second zone of main DR at far-end fault. TR4(F3) – operating time for second zone of backup DR at near-end fault. CTI2 - coordination time interval between R4 and R1 relays as well as R2 and R3 relays.

Figure 2. Coordination between main and backup DOCR

Figure 3. Coordination between DR and DOCRs.

2.1. Fitness Function for DR and Main DOCR

The fitness function formula as:

$$MIN \ FF = \sum_{i=1}^{M} T_i + \sum_{i=1}^{N} TZ2_i$$

Where:

FF – fitness function. Ti - operating time for jth DOC relays for near-end fault.

M - total number of DOC relays.

TZ2i – operating time for second zone i^{th} distance relays.

N – total number of Distance Relays.

2.2. TMS and Pickup Current Setting of DOCR

Time multiplier setting (TSM) is bounded between two value lower and upper bound to each relay, as well as pickup current setting (I_{ps}) to each one depends on lower minimum fault current and max load current.

$$TMS_j\ Min \leq TMS_j \leq TMS_j\ Max$$

Where:

TMS_j Min is minimum bound of TMS for j^{th} relays. TMS_j max is maximum bound of TMS for j^{th} relays.

$$IPS_i Max-load \le IPS_i \le IPS_i Min-fault$$

Where:

 IPS_{j} Max-load – pickup current setting for max load. IPS_{j} Min-fault – pickup current setting for min fault. (4)

(5)

(7)

According to the bounded value for TMS in equation (6) will be obtain the operating time in equation (1) and (2).in this study according to IEC standard, normal inverse characteristic curve have been used with the following equation [4]:

$$\mathbf{T} = \begin{bmatrix} \frac{0.14}{(\frac{lsc}{lps})^{0.02} - 1} \end{bmatrix} \mathbf{TMS}$$
(8)

ISSN: 2502-4752

T – operating time for each DOCR.

 I_{sc} – secondary value for short circuit current, passing during relay coil.

 $I_{\text{ps}}-\text{pickup}$ current setting for each DOC relay.

3. PILOT PROTECTION

The role of pilot protection is to accelerate the tripping time between two DR relays at same line and that leads to decrease the total operating time as well as operating time for second zone of DR. The permissive under reach transfer trip (PUTT) signal used to accelerate the tripping time [19]. The PUTT philosophy can be shown in Figure 4.

Figure 4. PUTT philosophy

The transmission line would be divided into three zons: first zone have 80% of protected line length with instantaneous operating time, second zone has imp but the second zone setting 120% of line length impedance at operating time equal to 0.4, so use PUTT to accelerate trip when one of DR see the fault at the second zone(80% - 100%) will start the second zone and receive signal from the remote distance relay and collect in (AND GATE), send trip to local circuit breaker and Reduces trip time from 40 to 2-4 millisecond. Figure 3 will be as shown in Figure 5 the second zone for the main distance relay time will reduce to 0.04 second.

Figure 5. Coordination between distance and DOC relays with pilot protection

Coordination of directional overcurrent and distance relay based on ... (Tahseen Ali Abd Almuhsen)

4. NONLINEAR MULTIVARIABLE ALGORITHM

Figure 6 shows the flow chart for the nonlinear multivariable optimization for solve coordination problem between main and back up relays.

Figure 6. Flowchart for proposed algorithm

5. RESULTS AND DISCUSSION

The IEEE- eight bus system consists of seven transmission lines, two generators, two step-up transformers and extension network at bus four with 400 MVA short circuit [20]. Therefore, we have fourteen distance relays and fourteen DOC relays according to the number of transmission lines. The pick-up current setting and current transformer ratio data presented in Table 1.

ISSN: 2502-4752

	Table 1. Pick Up Current and Current Transformer Rano									
No of relay	Pick up setting(A)	Current transformer ratio	No of relay	Pick up setting(A)	Current transformer ratio					
R1	1	240	R8	2.5	240					
R2	2.5	240	R9	2	160					
R3	2.5	160	R10	2.5	240					
R4	2.5	240	R11	2.5	240					
R5	1.5	240	R12	2.5	240					
R6	2.5	240	R13	1.5	240					
R7	0.5	160	R14	0.5	160					

Table 1. Pick Up Current and Current Transformer Ratio

In Table 2 used the ETAP program to obtain three-phase short circuit current for near and far-end faults and Figure 7 shows the test system.

Three phase	close-in end fault		Three phase far end fault				
Primary	Fault current	Back upRelay	Fault current	Primary Relay	Fault	Back up	Fault current
Relay	(A)	(A)	(A)		current (A)	Relay (A)	(A)
R1	3069	R6	3069	R1	935	R6	935
R2	5459	R1	935	R2	3364	R1	380
R2	5459	R7	1775	R2	3364	R7	721
R3	3364	R2	3364	R3	2120	R2	2120
R4	3659	R3	2120	R4	2337	R3	969
R5	2337	R4	2337	R5	1176	R4	1176
R6	5682	R5	1176	R6	3069	R5	646
R6	5682	R14	1758	R6	3069	R14	74*
R7	4851	R5	1176	R7	1775	R5	221*
R7	4851	R13	927	R7	1775	R13	935#
R8	5667	R7	1775	R8	2838	R7	74#
R8	5667	R9	1144	R8	2838	R9	575
R9	2418	R10	2418	R9	1144	R10	1144
R10	3756	R11	2217	R10	2418	R11	1056
R11	3501	R12	3501	R11	2217	R12	2217
R12	5434	R13	927	R12	3501	R13	417
R12	5434	R14	1758	R12	3501	R14	792
R13	2838	R8	2838	R13	927	R8	927
R14	4828	R1	935	R14	1758	R1	927#
R14	4828	R9	1144	R14	1758	R9	192*

Table 2. Three Phase Short Circuit Current for Near and Far End Faults

Symbol * shown the current which not reach to pick up current setting during passing in DOC relays. Symbol # shows the current which passing during DOC relays but in reverse directional.

Figure 7. The test system

Coordination of directional overcurrent and distance relay based on ... (Tahseen Ali Abd Almuhsen)

D 1199

In [20-25] the range of coordination time interval is (0.2 - 0.5) second. So the CTI1 and CTI2 in equation from 1 to 4 will be chosen equal to 0.2 seconds in case (1) and in case (2) CTI =0.3 in equation 1 and 2 and CTI2= 0.2 in equation 3 and 4 and the TMS has been bounded from 0.1 to 1.1 continuous for lower and upper bounds respectively to each relay. Choosing the zones timer setting for each distance relay is TZ1=0, TZ2=0.4, and TZ3=0.8.

The test for the system has been done with four performance indexes for nonlinear multivariable optimization technique is sequential quadratic programming (SQP), sequential quadratic programming legacy (SQP-legacy), interior - point and active - set with pilot protection(WP) and without pilot protection (WOP). There are sixty-eight linear inequality constraints and twenty- eight variable, all these constraints during the test in MATLAB simulation have achieved. Table 3 shows the number of iterations and elapsed time to find the solution for the four algorithms which used with and without pilot protection for two cases 1 & 2.

			Case(1)		Case(2)				
A 1	No of	fiteration	The solving	The solving time in (sec)		No of iteration		The solving time in (sec)	
Aigonuins	WP	WOP	WP	WOP	WP	WOP	WP	WOP	
SQP	3	3	2.6684	2.2103	3	3	2.3007	2.2707	
SQP-legacy	3	3	2.3874	2.3574	3	3	2.3285	2.5367	
Interior-point	13	13	4.2236	3.5995	14	15	4.2596	4.1416	
Active-set	2	2	2.1552	0.7059	2	2	2.2788	2.2292	

Table 3. The Nonlinear Multivariable Optimization with Different Performance Indexes for All Cases

According to results, the active-set performance index was the least time and least iterations to obtain optimal value of TMS for all DOC relays and TZ2 for all distance relays with and without pilot signal protection in all cases.

All algorithms with and without pilot signal the results of TMS for DOC relays from relay 1 to relay 14 and the second zone timer for distance relays from relay 15 to relay 28 as identical results for all cases. all these results for case 1 and 2 show in Table 4 and Table 5 with total minimum fitness function of near-end faults for DOC relays as well as the fitness function for distance relays at second zone respectively. The overall time for DOC relays reduced about 3.18 MS in case 1 and 4.77 MS in case 2 when tested with and without pilot protection.

	Table 4. TMS for DOC Relays with All Performance Indexes								
	TMS for all p		TMS for all performance indexes						
(se	qp, sqp-legacy, ac	tive-set and interior	r point).	(sqp,	sqp-legacy, activ	ve-set and inter	rior point).		
At CT	I = 0.2 between (main and backup D	OC relays)	At CTI =	= 0.3 between (m	ain and backup	DOC relays)		
	C	ASE (1)	•		CA	SE (2)	•		
No of	With pilot	Without pilot	Only with near	No of	With pilot	Without	Only with near		
Relay	_	_	end fault	Relay	-	pilot	end fault		
R1	0.1562	0.1562	0.1562	R1	0.2343	0.2343	0.2343		
R2	0.1913	0.1913	0.1913	R2	0.287	0.287	0.287		
R3	0.1751	0.1751	0.1751	R3	0.2627	0.2627	0.2627		
R4	0.1375	0.1375	0.1375	R4	0.2063	0.2063	0.2063		
R5	0.1357	0.1357	0.1357	R5	0.2035	0.2035	0.2035		
R6	0.1465	0.1465	0.1465	R6	0.2198	0.2198	0.2198		
R7	0.3623	0.3623	0.3623	R7	0.5435	0.5435	0.5435		
R8	0.1261	0.1261	0.1261	R8	0.1891	0.1891	0.1891		
R9	0.1447	0.1447	0.1447	R9	0.217	0.217	0.217		
R10	0.131	0.131	0.1395	R10	0.1965	0.1965	0.2092		
R11	0.1367	0.1367	0.1367	R11	0.205	0.205	0.205		
R12	0.188	0.188	0.188	R12	0.282	0.282	0.282		
R13	0.1081	0.1081	0.1081	R13	0.1622	0.1622	0.1622		
R14	03570	03570	03570	R14	0.5355	0.5355	0.5355		
$\sum_{j=1}^{M} Tj$	7.0615	7.0615	7.0933	$\sum_{j=1}^{M} Tj$	10.5923	10.5923	10.640		

	Table 5. 122 for Distance Relays with All renormance indexes									
	TZ2 for all pe	rformance indexes		TZ2 for all performance indexes						
(Sqp	, sqp-legacy, act	ive-set and interior	point).	(Sqp, sqp-legacy, active-set and interior point).						
At CTI	= 0.2 between (n	nain and backup D	OC relays)	At CTI =	= 0.2 between (1	nain and backup I	OOC relays)			
	CA	ASE (1)	•		C.	ASE (2)	•			
No of	With pilot	Without pilot	Without using	No of	With pilot	Without pilot	Without using			
Relay	-	-	far end fault,	Relay	-	-	far end fault,			
			with and	-			with and			
			without pilot.				without pilot.			
R15	0.7932	0.7932	0.7932	R15	1.0898	1.0898	1.0898			
R16	0.9228	0.9228	0.9228	R16	1.2842	1.2842	1.2842			
R17	0.7228	0.7228	0.7228	R17	0.9842	0.9842	0.9842			
R18	0.6983	0.6983	0.6983	R18	0.9474	0.9474	0.9474			
R19	0.7928	0.7928	0.7928	R19	1.0893	1.0893	1.0893			
R20	0.6182	0.6182	0.6182	R20	0.8273	0.8273	0.8273			
R21	0.7932	0.7932	0.7932	R21	1.0898	1.0898	1.0898			
R22	0.5591	0.5591	0.5591	R22	0.7387	0.7387	0.7387			
R23	0.7849	0.7849	0.7849	R23	1.0773	1.0773	1.0773			
R24	0.6907	0.6907	0.6907	R24	0.9361	0.9361	0.9361			
R25	0.7225	0.7225	0.7225	R25	0.9838	0.9838	0.9838			
R26	0.7329	0.7329	0.7329	R26	0.9994	0.9994	0.9994			
R27	0.7928	0.7928	0.7928	R27	1.0893	1.0893	1.0893			
R28	0.7841	0.7841	0.7841	R28	1.0762	1.0762	1.0762			
$\sum_{i=1}^{N} TZ 2i$	10.4084	10.4084	10.4084	$\sum_{i=1}^{N} TZ 2i$	14.2126	14.2126	14.2126			
Average TZ2	0.7435	0.7435	0.7435	Average TZ2	1.0152	1.0152	1.0152			

Table 5, TZ2 for Distance Relays with All Performance Indexes

The operating time for DOC relays in Matlab and ETAP simulation as well as the second zone timing and the timing of third zone will be (TZ2 + 0.4) shown in Table 6 and represent as a bar chart in Figure 8 for case 1 and Table 7 and Figure 9 for case (2).

				0		~			/	
NO of Main relay	Time main DOCR in matlab (sec)	Time main DOCR in ETAP (sec)	NO of backup relay	Time backup DOCR in matlab (sec)	Time main DOCR in ETAP (sec)	NO of relay	TZ2 distance Relay(sec)	TZ3 distance relay(sec)	CTI between Main and backup DOC relay	CTI between Main DOC relay and distance relay
R1	0.4182	0.418	R6	0.6182	0.616	R20	0.6182	1.0182	0.2	0.2
D 2	0.5022	0.502	R1	0.7932	0.792	R15	0.7932	1.1932	0.2	0.2
K2	0.5932	0.592	R7	0.7932	0.792	R21	0.7932	1.1932	0.2	0.2
R3	0.5634	0.563	R2	0.7634	0.762	R16	0.9228	1.3228	0.2	0.3594
R4	0.5228	0.525	R3	0.7228	0.722	R17	0.7228	1.1228	0.2	0.2
R5	0.4983	0.500	R4	0.6983	0.701	R18	0.6983	1.0983	0.2	0.2
D.C	0 4461	0.444	R5	0.7928	0.795	R19	0.7928	1.1928	0.3467	0.3467
ко	0.4401		R14	0.7841	0.784	R28	0.7841	1.1841	0.338	0.338
D7	0 5029	8 0.592	R5	0.7928	0.795	R19	0.7928	1.1928	0.2	0.2
K /	0.5928		R13	0.7928	0.792	R27	0.7928	1.1924	0.2	0.2
DO	0 2842	2042 0.204	R7	0.7932	0.792	R21	0.7932	1.1932	0.409	0.409
Kð	0.3842	0.384	R9	0.7849	0.787	R23	0.7849	1.1849	0.4007	0.4007
R9	0.4907	0.492	R10	0.6486	0.649	R24	0.6907	1.0907	0.1579	0.2
R10	0.4907	0.491	R11	0.7225	0.724	R25	0.7225	1.1225	0.2318	0.2318
R11	0.5329	0.534	R12	0.7329	0.733	R26	0.7329	1.1329	0.2	0.2
D12	0 5941	0.594	R13	0.7928	0.792	R27	0.7928	1.1924	0.2087	0.2087
K12	0.3841	0.384	R14	0.7841	0.784	R28	0.7841	1.1841	0.2	0.2
R13	0.3591	0.359	R8	0.5591	0.559	R22	0.5591	0.9591	0.2	0.2
D14	0.5940	0.595	R1	0.7932	0.792	R15	0.7932	1.1932	0.2083	0.2083
K14	0.5849	0.585	R9	0.7849	0.787	R23	0.7849	1.1849	0.2	0.2

Table 6. The Operating Time for DOC Relays and Distance Relays (Case1)

	Table 7. The Operating Time for DOC Relays and Distance Relays (Case2)										
NO of Main relay	Time main DOCR in Matlab (sec)	Time main DOCR in ETAP (sec)	NO of backup relay	Time backup DOCR in Matlab (sec)	Time main DOCR in ETAP (sec)	NO of relay	TZ2 distance Relay(sec)	TZ3 distance relay(sec)	CTI between Main and backup DOC relay	CTI between Main DOC relay and distance relay	
R1	0.6273	0.627	R6	0.9273	0.928	R20	0.8273	1.2273	0.3	0.2	
DЭ	0 0000	0.800	R1	1.1898	1.188	R15	1.0898	1.4898	0.3	0.2	
K2	0.0090	0.890	R7	1.1898	1.189	R21	1.0898	1.4898	0.3	0.2	
R3	0.8452	0.846	R2	1.1452	1.145	R16	1.2842	1.6842	0.3	0.439	
R4	0.7842	0.783	R3	1.0842	1.085	R17	0.9842	1.3842	0.3	0.2	
R5	0.7474	0.746	R4	1.0474	1.046	R18	0.9474	1.3474	0.3	0.2	
R6	0.6691	0.670	R5 R14	1.1893 1.1762	1.186 1.175	R19 R28	1.0893 1.0762	1.4893 1.4762	0.5202 0.5071	0.4202 0.4071	
R7	0.8893	0.889	R5 R13	1.1893 1.1893	$1.186 \\ 1.188$	R19 R27	1.0893 1.0893	1.4893 1.4893	0.3 0.3	0.2 0.2	
R8	0.5764	0.576	R7 R9	1.1898 1.1773	1.189 1.177	R21 R23	1.0898 1.0773	1.4898 1.4773	0.6134 0.6009	0.5134 0.5009	
R9	0.7361	0.736	R10	0.973	0.976	R24	0.9361	1.3361	0.2369	0.2	
R10	0.7361	0.738	R11	1.0838	1.084	R25	0.9838	1.3838	0.3477	0.2477	
R11	0.7994	0.799	R12	1.0994	1.099	R26	0.9994	1.3994	0.3	0.2	
R12	0.8762	0.876	R13 R14	1.1893 1.1762	1.188 1.175	R27 R28	1.0893 1.0762	1.4893 1.4762	0.3131 0.3	0.2131 0.2	
R13	0.5387	0.538	R8	0.8387	0.838	R22	0.7387	1.1387	0.3	0.2	
R14	0.8773	0.877	R1 R9	1.1898 1.1773	1.188 1.177	R15 R23	1.0898 1.0773	1.4898 1.4773	0.3125 0.3	0.2125 0.2	

Figure 8. The operating time for DOC relays

Figure 9. The operating time for DOC relays and distance relays (case1) distance relays (case2)

The system has been tested in ETAP environment for all DOC relays during near-end fault to obtain the real operating time according to TMS curve for each relay. All relays chose same type Siemens type 7SJ64 numerical relay except R7 and R14 chose ABB relay type REF630, because of the operating time which obtained was wrong with Siemens relay the reason was the pick up current for Siemens type start from 0.5 A secondary current and the pick-up current for R7 and R14 is 0.5A that is lead to wrong results during test, while the ABB relay, the pick-up current start from 0.05A secondary current and this type more sensitive with pick up current for the R7 and R14 relays. One of these tests was at the transmission line (1-2) near from R1 for case 1 and 2 and the results of operating time for R1 and back up relays which had been sensitive by fault, shown in Figure 10 and Figure 11 respectively.

In case 1 the operating time for back up DOC relays and the second zone time for distance relays often will be trip in same time during fault, if the main zone 1 of distance relay and main DOC relay will failure and in case 2, if the main zone 1 and main DOC relay fails to clear faults the priority will be for second zone time for distance relay to clear fault before back up DOC relay.

Figure 10. The fault at the transmission line (1-2)

Figure 11. The fault at the transmission line (1-2) close-in of relay 1 (R1) (case 1) close-in of relay 1 (R1) (case 2)

6. CONCLUSION

In this paper, the operating time for the second zone of each distance relay set as independent value and the main aim was to obtain suitable coordination. Also, ETAP program has been used to obtain operating time for all DOC relays to validate it with the time which obtained from MATLAB simulation all operating times was identical and accurate in two cases 1 and 2.

So the independent setting for second zone operating time to each distance protection relay in the power systems is a better setting than a constant setting for all relays to ensure suitably coordination between DOC and distance relays. A nonlinear multivariable optimization technique was used with linear inequality constraints to obtain that with different performance indexes with and without pilot signal. So the active-set performance index in all cases with pilot signal was the best than other performance indexes to obtain optimal values at less time and less number of iterations.

REFERENCES

[1] C. Russell Mason, "The art and science of protective relaying", John Wiley & Sons, 2015.

- [2] Abdullah Hamed Ahmed, Ahmed Jasim Sultan, "A new approach of Mho distance relay for Transmission line protection" IOP Conference Series: Materials Science and Engineering, No.518, 2019.
- [3] Salah K. El-Sayed, Hassan S. Mohamed, "Enhancing the performance of distance protection relays using interactive control system", *Indonesian Journal of Electrical Engineering and Computer Science*, Vol. 13, No. 1, January 2019.

- [4] S. Karupiah, M.H. Hussain, I. Musirin, S.R.A. Rahim, "Prediction of overcurrent relay miscoordination time using urtificial neural network", *Indonesian Journal of Electrical Engineering and Computer Science*, Vol. 14, No. 1, April 2019.
- [5] Y. a. S. J. a. M. H. R. Damchi, "Optimal coordination of distance and directional overcurrent relays considering different network topologies," *Iranian Journal of Electrical & Electronic Engineering*, vol. 11, pp. 231--240, 2015.
- [6] Elmahdi Khoudry, Abdelaziz Belfqih, Tayeb Ouaderhman, Jamal Boukherouaa, Faissal Elmariami, "Multi-scale morphological gradient algorithm based ultra-high-speed directional transmission line protection for internal and external fault discrimination", *International Journal of Electrical and Computer Engineering*, Vol. 9, No. 5, October 2019
- [7] Dazahra, M. N.; Elmariami, F.; Belfqih, A.; Boukherouaa, J, "Smart Local Backup Protection for Smart Substation", *International Journal of Electrical and Computer Engineering*, Vol. 7, No. 5, pp.2321-2328, October 2019.
- [8] H. A. Abyaneh, S. S. H. Kamangar, F. Razavi and R. M. Chabanloo, "A new genetic algorithm method for optimal coordination of overcurrent relays in a mixed protection scheme with distance relays," 2008 43rd International Universities Power Engineering Conference, Padova, 2008, pp.1-5.
- [9] Y. a. S. J. a. R. M. H. Damchi, "Preprocessing of distance and directional overcurrent relays coordination problem considering changes in network topology," *International Transactions on Electrical Energy Systems*, vol. 26, no. 2, pp. 32--48, 2016.
- [10] M. Khederzadeh, "Back-up protection of distance relay second zone by directional overcurrent relays with combined curves," 2006 IEEE Power Engineering Society General Meeting, Montreal, Que., 2006, pp. 6 pp.-
- [11] Y. a. S. J. a. M. H. R. Damchi, "Considering pilot protection in the optimal coordination of distance and directional overcurrent relays," *Iran. J. Electr. Electron. Eng*, vol. 11, pp. 154--164, 2015.
- [12] S. a. N. F. a. S. N. a. B. M. Samadinasab, "Optimal Coordination of Overcurrent and Distance Relays Using Hybrid Differential Evolutionary and Genetic algorithms (DE-GA)," *International Electrical Engineering Journal (IEEJ)*, vol. 6, pp. 1999-2008, 2015.
- [13] J. Sadeh, V. Amintojjar and M. Bashir, "Coordination of overcurrent and distance relays using hybrid Particle Swarm Optimization," 2011 International Conference on Advanced Power System Automation and Protection, Beijing, 2011, pp. 1130-1134.
- [14] S. S. H. a. A. H. A. a. R. F. a. C. R. M. Kamangar, "Optimal combined overcurrent and distance relays coordination using a new genetic algorithm method," *Int. J. Innov. Energy Syst. Power*, vol. 5, pp. 17–21, 2010.
- [15] P. A. Bangar and A. A. Kalage, "Optimum coordination of overcurrent and distance relays using JAYA optimization algorithm," 2017 International Conference on Nascent Technologies in Engineering (ICNTE), Navi Mumbai, 2017, pp. 1-5.
- [16] Ali Abbasi, Hossein Kazemi Karegar, Tohid Soleymani Aghdam, "Inter-trip links incorporate optimal protection coordination," *International Journal of Electrical and Computer Engineering*, Vol. 10. No. 1, pp. 72-79, Feberury 2020.
- [17] S. Jamali and M. Pourtandorost, "New approach to coordination of distance relay zone-2 with overcurrent protection using linear programming methods," *39th International Universities Power Engineering Conference, 2004. UPEC* 2004., Bristol, UK, 2004, pp. 827-831 vol. 1.
- [18] M. a. K. F. a. K. A. Ghanbarian, "Setting Directional Over Current Relays as the Local Backup of Distance Relays in Power Network," in Fifteenth National Power Systems Conference (NPSC), 2008.
- [19] G. Kobet et al., "Justifying pilot protection on transmission lines," 2010 63rd Annual Conference for Protective Relay Engineers, College Station, TX, 2010, pp. 1-31
- [20] A. K. Pandey and S. Kirmani, "Implementation of genetic algorithm to find the optimal timing of overcurrent relays," 2016 IEEE International Power Electronics and Motion Control Conference (PEMC), Varna, 2016, pp. 400-405.
- [21] M.-T. Yang and J.-C. Gu, "Optimal coordination of automatic line switches for distribution systems," *Energies*, vol. 5, no. 4, pp. 1150-1174, 2012.
- [22] G. Darji, A. Patel and R. P. Mehta, "Optimal Coordination of Directional Overcurrent Relays Using AI Algorithms and Comparison," in *ICRISET2017. International Conference on Research and Innovations in Science, Engineering and Technology. Selected Papers in Engineering*, EasyChair, 2017, pp. 81-89.
- [23] M. F. Kotb, M. El-Saadawi and E. H. El-Desouky, "Protection Coordination Optimization for FREEDM (Future Renewable Electric Energy Delivery and Management) System," *Journal of Electrical Engineering*, vol. 6, pp. 161-176, 2018.
- [24] P. Sookrod and P. Wirasanti, "Overcurrent relay coordination tool for radial distribution systems with distributed generation," in 2018 5th International Conference on Electrical and Electronic Engineering (ICEEE), IEEE, 2018, pp. 13-17.
- [25] A. a. G. S. a. N. D. Yazdaninejadi, S. Teimourzadeh and F. Aminifar, "Dual-setting directional overcurrent relays for protecting automated distribution networks," *IEEE Transactions on Industrial Informatics*, vol. 15, no. 2, pp. 730-740, 2018.