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Abstract 
Multiple-Input Multiple-Output (MIMO) technique is a key technology to strengthen and achieve 

high-speed and high-throughput wireless communications. In recent years, it was observed that frequent 
detecting techniques could improve the performance (e.g., symbol error rate ‘SER’) of different modern 
digital communication systems. But these systems faced a problem of high complexity for the practical 
implementation. To solve the problem of high complexity, this work proposed Frequent Improve K-best 
Sphere Decoding (FIKSD) algorithm with stopping rule depending on the Manhattan metric. Manhattan 
metric is proposed to use with FIKSD in order to achieve the lowest complexity. FIKSD is a powerful tool to 
achieve a high performance close to the maximum likelihood (ML), with less complexity. The simulation 
results show a good reduction in computation complexity with a cost of slight performance degradation 
within 1dB; the proposed FIKSD requires 0% to 94% and 82% to 97% less complexity than Improved K-
best Sphere Decoder (IKSD) and K-best Sphere Decoder (KSD) respectively. This makes the algorithm 
more suitable for implementation in wireless communication systems. 
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1. Introduction 
Nowadays, all research works are interested for high-quality and more throughput of 

communication systems to ensure the demand for high-quality communication devices. The 
spatial multiplexed MIMO wireless communication systems allow devices to achieve near 
Shannon’s channel capacity and they are promising for high data rates [1-5]. MIMO detector 
employs the Maximum Likelihood Detection (MLD) techniques to restore the transmit data; MLD 
is optimal in terms of SER performance, However its complexity exponential growth with the 
number of symbols detectedespecially when the number of employed antennas and/or 
modulation order is increased [6, 7]. Various MIMO detection algorithms have been proposed 
that can approach the statistically optimal performance of MLD [8, 9]. But the high calculative 
complexity of these algorithms has made them inconsistentfor widespread adoption in practical 
MIMO receiver designs when higher-order constellations, and a large number of antennas are 
used [10].  

There are many detection techniques have been proposed in previous research works 
that achieved close to Maximum likelihood (ML) SER performance with low computational 
complexity [11, 12], and these techniques can be classified into two categories; The first is 
Depth First Tree Search (DFTS) algorithms [13] such as Sphere Decoder (SD) [14], and the 
second are Breadth First Tree Search (BFTS) algorithms [13] such as K-best detection [15]. In 
K-best algorithms, the computational complexity increases with the value of K where K is the 
number of paths retained by this algorithm. To achieve SER performance near- ML the K-best 
algorithm needs a high value of K, but this leads to more computational complexity. Improved K-
best sphere decoder (IKSD) [16] has been latterly proposed to make the complexity of K-best 
lower, and it showed to be efficient in terms of computational complexity. The concept of 
complexity, defined as the number of floating point operations (additions, multiplications etc.) 
which are required to compute the estimated transmit vectors or the running time of the 
detection algorithm when implemented on some specific programs [17]. 

In the literature, there are several channels ordering schemes to detect symbols in 
different sequences [18], the SER performance of K-best SD algorithms is known to be sensitive 
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to the sequence in which symbols are detected [19]. In this work, a frequent detection manner is 
proposed in order to find the minimum Manhattan metric vector. Anyway, this manner will be 
useful when the redundant repetitions are reduced in frequent detection. Modification the work 
of [20] with the use of Manhattan metric instead of Euclidean metric [21] to cut down the 
redundant frequents when we can know whether the solution it was received at any iteration is 
near- ML or not. A stopping rule based on Manhattan metric is proposed in our work, this yields 
a near-ML performance with a lower computational complexity. In this paper, we are proposed 
to use Manhattan metric to calculate the weight of each candidate node and reduce the number 
calculation performed. The use of Manhattan metric will be led to eliminate the arithmetic 
multiplications at the receiver, with a cost of a slight performance degradation. 

The remainder of this paper is organized as follows; Section 2 describes the proposed 
system and channel model. Section 3 gives a description about the proposed frequent detection 
algorithm has been elucidation by explaining the idea of FIKSD algorithm, stopping rule, and 
use of Manhattan metric instead of Euclidean metric. At section 4, the frequent detection 
algorithm with stopping rule was simulated and showed that the use of Manhattan metric is 
better than Euclidean metric in terms ofreducing complexity. Finally, the conclusions are drawn 
in section 5. 
 
 
2. System and Channel Modeling 

In this work, the system considering is L-QAM 4×4 MIMO system, with a flat Rayleigh-
faded channel. We assume that the transmitter and the receiver are equipped with M and N 
antennas respectively (N ≥ M). The received discrete-time complex baseband signal vector 

                can be written as mathematical model as 
 

               (1) 
 

where H is the channel matrix with      coefficient of (i, j) component of the N M , represent the 

j-th transmit antenna to the i-th receive antenna which is modeled as an independent and 
identically-distribution (i.i.d.) complex Gaussian variable with zero mean and unit variance. The 

transmitter sends symbols   
 

√ 
            chosen from a constellation      , which is 

defined by symbols in an L-QAM modulation, W: is (   ) i.i.d. (AWGN) vector with zero mean 

and    variance, the signal to noise ratio (SNR) is given by  
 

   . The receiver is assumed to 

have perfect knowledge of the channel state information (CSI). 
The performance of existing sequential detection techniques depends mainly on the 

sequence in which symbols are detected, so we consider a particular sequence like 
                         for              . By shifting the columns of channel matrix H, 
the received symbol vector can be written as 
 

                 (2) 
 
where 
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                        ]

 
 
 
     (3) 

 

By decomposed the shifted channel matrix     using the standard QR decomposition, 
so it can be expressed as 

 

                (4) 
 

where    is an (   ) unitary matrix and    is an (   ) upper triangular matrix. By 

premultiplying both sides of (2) by    , we can write (2) as 
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                    (5) 
 

where         and       . 
The complex valued in (1) is often described by the equivalent real-valued 

representation, by decomposing the QAM-modulated signal model of the N-dimensional 
complex-valued into a 2N-dimensional real-valued, which can be written as 
 

[
    

    
]  [

         

        
] [

    

    
]  [

    

    
]     (6) 

 
where      and      denote the real and imaginary parts of [·] respectively [22, 23]. 

For a specified i such as i=0, the brute-force MLD can be converted into a full tree 
structure search by using Manhattan metric as  
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(7) 

 

where       
  ∑     

   
  

     is the branch metric for the p-th (p=1, 2,…, M) data layer,     
  is 

the (p, q) component of R
i
, and |·| denotes the absolute value. The vector                        

depends on the constellation size of modulated signal and the number of transmit antennas. 
The partial Manhattan distance (PMD), i.e., the accumulated branch metric is∑  . If the all path 

solution candidates reach the other level, the path with the minimum PMD will be the eventual 
detection result. 

In MIMO systems, the MLD scheme offers an excellent performance, with unacceptable 
complexity [24]. So we use a sequential detection algorithm like K-best [15] or IKSD [16] 
frequently from i=0 to i=M-1, and the vector corresponding to the minimum metric over all the 
repetitions is considered to be the detected vector. Clearly such repetitions can help to improve 
the SER performance. Nonetheless, the redundant repetitions may lead to a huge computation 
complexity. Thus, in this paper we suggest to use a stopping rule to get rid of the redundant 
repetitions by calculating a positive threshold β, and use Manhattan metric (norm-1) instead of 
Euclidean metric (norm-2), to reduce the number of mathematical calculations performed. 
 
 
3. Frequent Detection Algorithm 

The frequent detection scheme has been proposed in this work to achieve a good SER 
performance, this can be achieved by a frequent detection process to seek to find the minimum 
Manhattan metric vector. With used of stopping rule to reduce the redundant iterations in 
frequent detection. 
 
3.1. Frequent IKSD (FIKSD) 

In this section, we will describe our proposed detection algorithm, which it is used the 
IKSD frequently, so we called it Frequent IKSD (FIKSD). The main principle of the FIKSD 
algorithm comes from the tree search process and the traditional KSD algorithm which sorts all 
the child nodes depending on their partial Manhattan distance (PMD) and selects the K nodes. 
The IKSD algorithm retains the additional nodes whose costs are close to the cost of K-th node. 
In FIKSD algorithm, the goal of using the detection process frequent to the symbols is to get 
more accurate results and using the Manhattan metric to reduce the complexity. The complete 

algorithm is described in Algorithm-1. It can be seen that the repetition stop until           is 
greater than the threshold β. So the SER performance and computational complexity of the 
proposed FIKSD algorithm depend on the choice of β which in turn depends on Manhattan 
metric. 
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Algorithm-1: The FIKSD Algorithm 

Input:Y, H, K, A, ∆, d, T=∞ 
Output:X 
Initialization i=0, T=0 (the branch metric) and X0 the root(level p=M); 
while i ˂ N  do 

                   ; 
                     ; 

       ; 

   ; 
while k ≥ 1  do 
               for k=1to length (T) do 

Extend the kth node, generate all its successors for all      ∑   ; 

end 

sort all the components of      in an ascending order; 
if # elements ˂ K 

Keep all the candidates with        to obtain τ; 
else 

                 Only keep the elements whose cost indexes satisfy            in τ 
end 

               Replace the         to be the adjusted     
end 

Return     the 1
st
 element on the tree 

           if (           ) then 

                      and     
           else if  

            
                     

           end 

     ; 
end 

 
 
3.2. Stopping Rule 

This section show that our suggestion way to choose β properly so that redundant 
repetitions can be reduced without a loss in SER performance. Our proposed way is depending 
on a known mathematical optimization technique called Hill Climbing, which can produce a 
better result than other algorithms when the amount of time available to perform a search is 
limited, as simulated to the real-time systems. Now we can consider    as any probably transmit 

vector with a given channel matrix H, and let    is an observation vector from which MLD is  . 

The cost analogical to this MLD is given by using Manhattan metric as         . Let    be the 
neighbor of transmitting vector    and there is only one element (i-th element) different between 

   and   . When the    goes farther from    , the cost will be increased and the farthest point 

for    which continues to be the MLD will be the mid-point of     and     with cost equal to 

 
 

 
          . To cut down the redundant repetitions and get a reasonable SER performance, 

we choose the stopping criteria as the cost  
 

 
           not greater than it. Since all elements 

of vector    and    are a same except thei-th element, so the cost will be 
    

 √ 
     where    is 

the i-th column of H. To minimize the cost we propose the stopping rule as  
 

  
    

 √ 
   

 
     (8) 

 
3.3. Comparison between Manhattan and Euclidean Metrics   

In this section, we explain the difference of using Manhattan metric and Euclidean 
metric in our proposed FIKSD algorithm. The use of Manhattan metric or Euclidean metric to 
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calculate the weights of each candidate node [25]. In Euclidean metric, the brute-force MLD can 
be converted into a full tree structure search by using Euclidean metric such as. 

 

                             
    

                  
    

∑ |  
  ∑     

   
 

 

   

|

 
 

   

 (9) 

 

From (9) the MIMO-MLD searches a candidate    that minimizes the squared Euclidean 

metric between    and      that is referred to as theEuclidean metric                       . 

The hardware implementation is infeasible due to a logic resource limitation of the 
target device because there are 4NL

M
= 1,048,576 real multiplications (for 16-QAM) are required 

to compute all the Euclidean metric. According to (7) this type of detection algorithm is 
practically impossible to implement in MIMO systems that utilize high order modulation such as 
(16-QAM, 64-QAM). So we adopted a practical metric like Manhattan metric to avoid the use of 

arithmetic multiplications, the Manhattan metric is computed by adding absolute values of    

and     , as in (7). 
 

 
4. Simulation Results 

Through our work simulation, we compare the SER performance and the computational 
complexity of FIKSD proposed with the traditional KSD [15] and IKSD [16]. This simulation 
considered 4×4 MIMO system with 16-QAM modulation and the proposed stopping rule is 
based mainly on the Manhattan metric as well on mathematical optimization techniques such as 
Hill Climbing. The proposed system model assumed the channel with flat Rayleigh faded during 
each frame and using the equivalent real system model. To get the close ML performance, the 
simulation parameters will be taken as K=16 for KSD algorithm, K=2, ∆=0.25 for IKSD and for 
FIKSD (K=1, ∆=0.2).  

Figure 1 shows that the SER performance comparison among our proposed algorithm 
FIKSD with IKSD and KSD, so we can note that the performance of FIKSD (K=1, ∆=0.2) is close 
to the ML curve with slight performance degradation within 1dB; while the IKSD (∆=0.25) need 
to set k=2 and traditional KSD need to set K=16 to make the similar SER performance. 

 

 
 

Figure 1. The SER performance of detected symbols for 4×4 MIMO system with 16- QAM 
modulation 
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Figure 2 shows the comparison of the visited nodes FIKSD, IKSD and KSD. We can 
see that the complexity of the proposed FIKSD is lower than that of IKSD and KSD when 
achieving the close ML performance. We can observe that the difference between the 
complexities of three algorithms (KSD, IKSD, and FIKSD) is variable. For example; the 
comparison between proposed FIKSD and IKSD at minimum SNR=0.6 dB and maximum 
SNR=25 dB, IKSD (K=2) searches about (66 and 185) nodes, and the FIKSD (K=1) needs (66 
and 10) nodes visited respectively. So the proposed FIKSD needs 0% to 97% less complexities 
than IKSD. The comparison between proposed FIKSD and KSD at minimum SNR=0 dB and 
maximum SNR=25 dB, the traditional KSD (K=16) searches about (400 and 400) nodes, and 
the FIKSD (K=1) needs (70 and 10) nodes visited respectively. So the proposed FIKSD needs 
82% to 97% less complexities than KSD. Additionally Figure.2 can be shows that the number of 
visited nodes (10 nodes) represent the lower bound in FIKSD at high SNR. 

 

 
 

Figure 2. The average number of nodes visited of detected symbols for 4×4 MIMO system with 
16- QAM modulation 

 
 

Figure 3 shows that the cost of using Manhattan metric instead of Euclidean metric as a 
slight SER performance degradation within 1dB, but this cost can compensate by reducing the 
complexity.  
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Figure 3. The SER performance of detected symbols for 4×4 MIMO system with 16- QAM 
modulation by FIKSD (K=1, ∆=0.2) using Euclidean metric and Manhattan metric 

 
 

Figure 4 shows the difference between the complexities of FIKSD algorithm in case of 
use Euclidean metric and Manhattan metric; we can see that the difference is not constant, and 
it is minimum at SNR=25 dB; the average visited nodes when use Euclidean metric and 
Manhattan metric is 108 and 10 respectively. And it is maximum at SNR=12.5 dB; the average 
visited nodes when use Euclidean metric and Manhattan metric is 934 and 20 respectively. This 
means for the proposed FIKSD with Manhattan metric requires 90% to 97% less computations 
than FIKSD with Euclidean metric.  

 

 
 

Figure 4. The average number of nodes visited of detected symbols for 4×4 MIMO system with 
16- QAM modulation by FIKSD (K=1, ∆=0.2) using Euclidean metric and Manhattan metric. 
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5. Conclusion 
In this work, a proposed detection algorithm is considered for describe the SER 

performance in order to achieve a performance close to MLD with low computation complexity 
for MIMO systems. Our proposed algorithm (FIKSD) considered stopping rule based on a 
comparison of the distance of the detected vector with a threshold β. The calculated distance of 
two neighboring transmits vectors depend on Manhattan metric. The aim of using the detection 
process frequent to the symbols is to get more accurate results. The Manhattan metric reduced 
the number of mathematical operations by the elimination of multiplication operations in the 
detection process. In FIKSD, the use of Manhattan metric instead of Euclidean metric reduces 
the number of calculation performed at a cost of a trivial performance degradation within 1dB. 
The simulation results show that the proposed FIKSD with stopping rule and Manhattan metric 
requires less computational complexity than the IKSD and KSD algorithms. Therefore, the 
FIKSD can be considered a valid alternative for implementation in the future of wireless 
communication systems. 
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