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 Minimal realization for linear systems has been studied extensively in the 
literature. Techniques proposed differ in terms of the configuration of the 
state space form, the time efficiency of the algorithm and the reduction of 
memory storage. The minimal realization toolbox presented in this paper 
offers the possibility to test different methods and choose the most suitable 
form depending on the application. The given system can be represented by a 
transfer function or by raw (frequency or time domain) data. A graphical user 
interface (GUI) was implemented in order to ease the use of this toolbox and 
allow to rapidly test the methods and display the results. 
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1. INTRODUCTION  

Minimal realization and model reduction [1, 2] are widely used to obtain mathematical 
representations of systems in state space form with the smallest possible number of states [3-7].  

Many definitions have been given to realizations but generally speaking, a realization is the process 
of transforming exactly a system from its frequency based transfer function G(s) to a time based state space 
representation (A, B, C, D) : 

 

  

  

X A X B U

Y C X D U

  


 



 (1) 
 
Where U is the input vector regrouping m inputs. Y is the output vector regrouping with p inputs. X 

is the state vector with dimension n. A is an n×n state matrix. B is an n×m input matrix. C is a p×n output 
matrix. D is a p×m feedforward matrix. 

A minimal realization is a realization with a minimal order n called the McMillian degree.  
All minimal realizations are equivalent [3]. It is worth noting that a state space representation is a minimal 
realization of a proper rational function G(s) if and only if (A, B) is controllable and (A, C) is observable [3]. 

Beside time reduction in controller and observer designs [4, 5], minimal realizations in general have 
the advantage of reducing the cost of implementation of the state space equations in terms of electronic 
components. Different techniques exist for minimal realization. Each technique has its advantages and its 
disadvantages. Some techniques focused on obtaining the state space representation in a minimal time and 
other focused on the form of the matrices of the state space representation. Depending on the application, 
time efficiency or configuration of the resulting minimal realization may be preferred. This requires to have 
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tool that would allow researchers and engineers to easily compute minimal realization. Up to now such a 
complete tool could not be found in the literature. 

Many toolboxes have been implemented to help researchers and engineers in their work [8-14].  
This MATLAB toolbox for minimal realization can be combined to other tools to design controllers and 
observers in an efficient way. Although a toolbox for minimal realization was presented in the past [15],  
it is incomplete as it presents only one method and is not user friendly as it does not have a graphical user 
interface (GUI). 

In this paper, first, the implemented minimal realization techniques are presented theoretically, then, 
the graphical user interface (GUI) is presented along with individual functions corresponding to the different 
minimal realization techniques. Finally, the GUI is tested using practical applications and different 
techniques are compared using the minimal realization toolbox. 

In the broad sense, realizations aim to obtain systems in state space representations even for raw 
input-output data. One of the most promising methods for data from requency domain and time domain,  
are the methods based on Lowener framework [6, 7]. These are also presented and implemented in this paper.  

The presented toolbox is valid for single input single output (SISO) systems as well as multi input 
multi output (MIMO) systems. It is also valid for continuous time and discrete time systems. 

 
 

2. PROPOSED PROCEDURES 
There exist many minimal realization techniques [16-18]. In this paper we distinguish two main 

categories: realization from a transfer function and realizations from data. In this section, we present the 
theoretical basis for the methods implemented in the toolbox. 

In 1963, Gilbert presented a method based on the partial fraction of the transfer function [19]. 
Although this method is interesting in terms of the resulting configuration, it is not general because it is not 
applicable to repeated poles. Thus, this method will not be detailed here. Another popular method is the 
Kalman decomposition method. The goal of this method is to obtain a minimal realization given a non-
minimal realization. Other methods based on the Hankel matrix were presented in the following years. We 
present here two methods based on the Hankel matrix: the Singular value decomposition (SVD) method and 
the row searching method. Finally, methods based on coprime fractions of the transfer function are presented. 

Concerning the realizations from data, we present two methods based on the Loewner matrix. One 
method is a realization from frequency domain data while the other one is a realization from time  
domain data. 

 
2.1. Kalman Decomposition 

The Kalman decomposition method [20] is an indirect method which requires to have first a non-
minimal realization to be able to compute the minimal realization. Once a realization is obtained, Kalman 
decomposition is used to separate the system into four parts: 
a) A controllable and observable part (c-o). 
b) A non-controllable and observable part (nc-o).  
c) A controllable and non-observable part (c-no). 
d) A non-controllable and non-observable part (nc-no). 

Kalman decomposition is obtained using a similarity transformation. After Kalman decomposition, 
the obtained system is in the form: 

 

 
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34
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 0 0             
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A



 
 





   
   
      
   
   

    (2) 
 
Since by definition a minimal realization is controllable and observable, only that part is kept.  

Using the form (2), the minimal realization is given by (3): 
 

  

  
c o c o

c o

X A X B U

Y C X DU
 



  


 



 (3) 
 
The main advantage of this form is the ability to use it when the given system is already in state 

space form but it is not of minimal order. 
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2.2. Hankel Matrix and SVD 
The Hankel matrix is defined as:  
 

   
   

 
 

   
   

 
 

1       2

2       3 1

1 2 2

1 2 1

H H H r

H H H r

T

H r H r H r

H r H r H r

 
  
 
 

  
   



  


 (4) 

 
where H(i) are Markov parameters which can be computed from the transfer function as: 

 
1 2( ) (0) H(1)s (2) .....G s H H s      (5) 

 
For SISO systems H(i) is just a scalar. 
Theorem 1: A strictly proper rational function G(s) has degree n if and only if  
rank{T(n,n)}=rank{T(n+k,n+l)} for every k, l=1,2…… 
 
Proof of theorem 1: [3]. 
There exist many methods based on the Hankel matrix. We present here two methods: one based on 

the SVD and the other one on row searching. 
In the first method, the singular value decomposition of the Hankel matrix (4) is computed: 
 

0

0 0
TT K L

 
 
 




 (6) 
 

By definition, K and 
TL are orthogonal and  1 2diag  , , , n   

 where i  are the square roots 

of the positive eigenvalues of 
TT T . The rank of T can be deduced from theorem 1. 

Let K  denote the first n columns of K and 
TL  denote the first n rows of

TL . Then T can be 
decomposed as: 

 
 1/2 1/2  : OT TT K L K L    Λ Λ Λ  (7) 

where 
1/2O K Λ  and 

1/2 TL Λ .


 Is the controllability matrix and is O  the observability matrix. 
The resulting minimal realization is given by: 
 

A O T  
 (8) 

 
 B First p columns of   (9) 
 
C First q columns of O  (10) 
 

(0)D H  (11) 
 

This minimal realization is also called balanced realization because the controllability matrix 


 and 

the observability matrix O satisfy: 
 

' 'O O    (12) 
 
A modified version of this method is used in model reduction. 
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2.3. Hankel Matrix and Row Searching 
This method consists of searching for linearly dependent rows (columns) in the Hankel matrix. 

Because of the structure of the Hankel matrix and theorem 1, if one row in a block row is linearly dependent 
on its previous rows, then it is also linearly dependent on the subsequent rows in the same block row. 

Let 
 i
be the number of linearly independent rows in a block row i where i=1, 2…, a. Each 

primary linearly dependent row in a given block row will be written as a linear combination of its previous 
block rows. A primary linearly dependent row is the first linearly dependent row in a given block row. At the 
end, the outcome of the row searching algorithm will be the coefficients corresponding to the q primary 
linearly dependent rows: 

 

   
       

           

1 11 11 1

2 21 21 1 22 22 2

1 1 1 2 2 2

1 1 0 0 0 0 0 0 0 0

1  0 1 1 0 0 0 0 0

     

1 0 1 0 0 1  1 0q q q q q qq qq q

k a a

k a a a a

k a a a a a a



 

  

        
        

        

  

  



  
 (13) 

 

Such that
0ik T 

. 
A minimal realization is given by: 
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

 (14) 
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           

 
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 
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 
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h

h

b

h 

 
 
 
 
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 
 



 (16) 
 
For all i.  
The matrix C is computed as: 
 

1 2

1 0 0 0 0 0  0 0 0

0 0 0 1 0 0  0 0 0

         

0 0 0 0 0 0 1 0 0

q

C q

   
 
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    

  
  
  
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 
  

           

 




 

 

 

 (17) 
 

for i=1, 2…, q, and if 
0i 

. 
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If 
0i 

 for some i then the ith row in the (i-1) first block columns will be constituted from 

 ija v
 where j is the number of the block column and   1, 2, jv   . 
 

2.4. Coprime Fractions 
Given a coprime right fraction G(s): 
 

      1

R RG s N s D s


 (18) 
 
If the fraction is column reduced then D(s) and N(s) can be written as: 
 

       hc lcD s D H s D L s 
 (19) 

 

    lcN s N L s
 (20) 

 
where 

1 1 1

1

1

0

0
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0 1

0

u u
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s

s s

H s L s

s

s

s





 
 
 
 
               
 
 
 
 
 





     






 (21) 
 

hcD
,
 lcD

 and lcN
 are constant matrices. i Is the column degree of D(s) for i=1, 2..., p. 

It was proven [21] that if a system is controllable and observable then: 

  11( ) ( )n rh rI A B L s D   
 (22) 

 
1

r hcB D   (23) 
 
And by definition: 
 

   1 1
( ) ( ) R RnG s C I A B N s D s    

 (24) 
 
Replacing  (22) and (23) results in: 
 

 R rh rD s D 
 (25) 

 

  ( )RN s CL s
 (26) 

 
Where: 

 

( ) ( )r rH s A L s  
 (27) 

 
Replacing (24) in (25): 
 

  ( ) ( )R hc hc rD s D H s D A L s 
 (28) 

This results in:  
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1 1,      ,       r hc lc r hc lcA D D B D C N    

 (29) 
 

rA
and rB

are the nontrivial rows of A and B. 
The resulting minimal realization is in controller canonical form: 

a. A is in general controller canonical form where  
 

 
 
b. B is in general controller canonical form where  
 

 
 

c. C Nlc  
The controller canonical form was obtained from a right coprime fraction. This is particularly 

interesting for controller design using pole placement [22]. If a left coprime fraction is used, the result  
is a minimal realization in observer canonical form. Both methods were implemented in the minimal  
realization toolbox. 

 
2.5. Realization from Frequency Domain Data: 

The first results for realizations based on frequency domain data using the Loewner matrix were 
presented in [6]. In this subsection we present the main results and a brief explanation of the procedure used 
to contrcut the numerical minimal realization. The resulting system is a descriptor system or also known as 
differential algebraic equations (DAE). It has the form: 

 
Ex Ax Bu

y Cx Du

 
 



 
 
If E is invertible, the standard state space form can be easily recovered. If E is singular some 

techniques exist to transform it to a standard state space provided that some conditions are met. More details 
can be found in [23-26]. 

Given right frequency data: 
( ; r ; ), 1,...,i i iw i k 

 and left frequency data

( ; * ;v* ), j 1,...,q.j j j 
. The goal is to find a transfer function H(s) that interpolates this data such that: 

 

( )  , * ( ) *i i i j j jH r w H v  
 (30) 

 
Then one can regroup the data in matrices such that for right data: 
 

 
 

1

1 2

1 2

,k k

k

m k
k

p k
k

R r r r

W w w w











 
    
 
 

 

 

 

 

 
 (31) 

and for left data: 
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1 1 1* v*

 , L  , 

* v*

q q q p q m

q q q

l

M V

l





  

     
               
          

     

 (32) 
 

Then from this data, one can contrcut the well known Loewner matrix 
q kL   as follow: 

 

1 11 1 1 1

1 1 1

1 1

1

L

k k

k

q q q k q k

q q k

v r l wv r l w

v r l w v r l w

   

   

 
   
 
 

  
   



  


 (33) 

 
This L matrix satisfies the Sylvester equation: 
 
L ML VR LW     (34) 
 

Then one also needs to contruct the shifted Loewner matrix 
q k

sL 
 such that: 

 

1 1 11 1 1 1 1 1

1 1 1

1 1 1

1

L

k k k

k

s

q q q q q k q k k

q q k

v r l wv r l w

v r l w v r l w

  
   

   
   

 
   
 
 

  
   



  


 (35) 

 

This sL
 matrix satisfies the Sylvester equation: 

 

s sL ML MVR LW    
 (36) 

 
Then one can contruct a realization: 
 

 ,  ,  ,  , 0sE L A L B V C W D      
 (37) 

 

If the numerical minimal realization is to be computed and the numerical  rank L k , compute the 

rank revealing SVD:  
 

* *k k kL Y X Y X   
 (38) 

 
Then the minimal realization is given by: 
 

*  , *  , *  ,  , 0k k k s k k kE Y LX A Y L X B Y V C WX D      
 (39) 

 
The resulting system may be complex. A procedure was developed to recover the underlying real 

system. This procedure and the proofs for the results given above can be found in [27]. 
 
 



      ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 17, No. 2, February 2020 : 929 - 940 

936

2.6. Realization from Time Domain Data: 
The goal in this procedure is to interpolate the time domain input-output data by a descriptor system: 
 
Ex Ax Bu

y Cx Du

 
 



 (40) 
 
To achieve this objective, a modified Loewner can be used [7]. This algorithm constructs a model 

for an LTI system directly from a single time domain input/output snapshot without prior knowledge of 
frequency response data. Of course, the more knowledge about the characteristics of the system, the more 
accurate the model will be. 

The input u and the output y of the system are measured with respect to time and recorded as vectors 
u and y with length K which corresponds to the number of samples taken. Kmin is selected as a quarter of K 
such that to ensure that the outputs have entered a steady state after kmin. n is an integer corresponding to the 
dimension of the model. 

The choice of the input u, the interpolation points and the number of samples K can be changed to 
best correspond to the system at hand including which range of frequencies is of importance. Specifically, the 
range of the possible interpolation frequencies that can be chosen is: 

 
2 2 ( 1)

,
K

K K

      


 (41) 
 
Therefore, increasing the number of samples K, increases the range of possible frequencies. 
We used a modified version of that algorithm in our implementation to meet our requirements.  

For more details on the algorithm itself and its proof, please refer to [7]. 
 
 

3. RESEARCH METHOD 
There exist different algorithms each with its advantages and drawbacks. The best method depends 

on each specific application. This requires having a tool to be able to compare between the different methods 
and choose the most appropriate method for that specific application. This tool (or commonly called toolbox) 
is the minimal realization toolbox implemented in MATLAB and presented in this paper. MATLAB was 
chosen because it is used by a lot of researchers and engineers [28, 29]. All the methods presented in  
Section 2 were implemented in functions: Gilbert Method, Kalman decomposition, Hankel and SVD, Hankel 
and row searching, Left coprime fraction (LCF), Right coprime fraction (RCF), Interferq (from frequency 
domain data), Intertime (from time domain data). 

All the programmed functions are grouped in a toolbox for minimal realization. This toolbox can be 
easily used using the graphical user interface (GUI) shown in Figure 1. 

The GUI is divided into two main sections: The first one on the top left is the “interpolation and 
minimal realization” section where one can obtain a minimal realization from frequency or time domain data 
by pressing the appropriate button. In the second section, one can compute a minimal realzaition from a 
transfer function (TF). Six buttons corresponding to six minimal realization methods are available. Choosing 
a specific method will display the result of that method directly on the same view (Figure 1). Choosing 
another method will display the results of that method discarding the previous results. Finally on the top 
right, in the options section, one can load data, save the results to a matlab file or compare the different 
minimal realization methods available with a bode plot. Under these sections, we have five text fields 
displaying the matrices of the minimal realization. In the next section, the GUI is used to compute the 
minimal realization of practical problems. 

 
 

4. RESULTS AND DISCUSSION 
In order to test the methods for the minimal realization from a transfer function, a distillation 

column system is used [30]. The matrix transfer function is as follow: 
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Entering this matrix transfer function into the GUI and choosing for example left coprime fraction 
results in the minimal state space realization shown in Figure 1. This can be done for all the other methods by 
selecting the appropriate button. 

Using the button “Methods’ comparison”, the methods can be compared in terms of their Bode plot 
where the transfer function is plotted in dots and the other methods as continuous line. For the example used, 
the resulting Bode plot is shown in Figure 2. 

 
 

 
 

Figure 1. Minimal realization of a distillation column using the presented GUI 
 
 

 
 

Figure 2. Bode plot comparison of the TF (dotted blue) and state space form (line red) 
 
 
The previous example allowed us to test the capabilities of the GUI. After few clicks, a minimal 

realization can be obtained using the chosen minimal realization method. This also permitted to determine the 
McMillian degree. Since the size of the matrix A is clearly 4 then the McMillian degree is 4. Also, based on 
the comparison of the methods, the Bode plot of the original system perfectly superposes with the resulting 
methods. This proves that these minimal realizations are indeed exact. 

Since the algorithms have similar time complexities between ranging between  3  n
and  4 n  

,  
the engineer or the researcher will generally choose the method based on the usefulness of the configuration 
of the state space representation.  

In order to test the Loewner method given frequency domain data, we use the beam example of 
order 348 from [31].The Loewner method allows to choose the numerical minial order based on the decay of 
singular values. In order to capture the behaviour of the system, the order is chosen to be 14. The results are 
shown in Figure 3. The original and resulting bode plots are depicted in Figure 5. 
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Finally in order to test the time domain Loewner method, we consider Penzl's time-continuous LTI 
system introduced in [32], which is investigated in the context of the Loewner approach. The data given is in 
form of input-output time domain data. Using the the button “time domain interpolation”. We obtain the 
system shown in Figure 4. A comparison between the bode plots of the original system and the interpolated 
system in descriptor form are shown in Figure 5. 

 
 

 
 

Figure 3. Result of the interpolation of the beam example as shown in the GUI 
 
 

 
 

Figure 4. Result of the Penzl example’s interpolation as shown in the GUI 
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Figure 5. Bode plot comparison for the beam example (left) and Penzl example (right) 
 
 

5. CONCLUSION 
A new Minimal realization MATLAB toolbox was implemented. Minimal realization is an 

important tool used to compute the state space representation of a system with a minimal number of states. 
The presented GUI and toolbox allows to compute and compare between different minimal realizations 
techniques for linear systems. Transforming the system to state space allows to use the rich theory available 
for systems in state space representation especially controller and observer design using pole placement.  

This toolbox works for both SISO and MIMO systems. The presented toolbox can be enhanced by 
incorporating controller and observer design algorithms. Some of these algorithms are already available as 
functions in MATLAB. 
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