
Indonesian Journal of Electrical Engineering and Computer Science
Vol. 1, No. 1, January 2016, pp. 109 ~ 118
DOI: 10.11591/ijeecs.v1.i1.pp109-118  109

Received July 11, 2015; Revised October 24, 2015; Accepted November 15, 2015

Collision Detection and Trajectory Planning for
Palletizing Robots Based OBB

Aal-Hasan Ali Joodi Jasim*
1
, Tang Xiao Qi

2
, Song Bao

3

National Engineering Research Center of Numerical Control System,
Huazhong University of Science and Technology, 430074, Wuhan, Hubei, P.R. China

*Corresponding author, e-mail: ali.judy@yahoo.com
1
, xqtang@hust.edu.cn

2
, songbao@hust.edu.cn

3

Abstract
Collision problems of convex polyhedra, in different applications, attract researcher’s attentions

recently. This paper proposes an efficient collision detection algorithm, for palletizing robot’s end-effector
grasped a convex polyhedra object (Box), based Oriented Bounded Boxes (OBB) theory. The OBB theory
is preferable for detecting collision, because of its ability to handle unspecified orientations of objects and
the transformations, with high-accuracy. The key factor for detecting collision between two OBBs is the
Separating Axes Theorem (SAT). The spatial rotation representation of boxes is based Z-Y-Z Euler’s
angles. The algorithm presents incremental distance computation, for planning translation path and
spherical trajectory. Checking and simulations in C++ language and AutoCAD software, attest the accurate
results.

Keywords: Collision Detection, Oriented Bounded Boxes (OBB), SAT-theorem, Euler’s Angles,
Translation, Spherical Trajectory

Copyright © 2016 Institute of Advanced Engineering and Science. All rights reserved.

1. Introduction
The importance of collision detection in Industrial palletizing robotics has been

increased by the researchers and companies recently. In this paper, a presentation of simple
methods related with robot end-effector that can detect before or during a collision of the robot.
This algorithm often sensing the collision and it could avoid or stop the collision. The problem is
basically computationally and geometrically; it can be formulated as a linear programming [1] .
Finding the separating states between objects, calculated by determine the dimensions and the
positions of objects testing.

To solve the problem of separating or detecting collision state by simplifying the
complexity of the shapes and reduce the costs. The main common theories ideas are bounding
by volumes the object, theories like Oriented Bounded Boxes (OBB), Axis Aligned Bounded
Boxes (AABB), and Sphere Bounding Volumes. The main idea of these theories is modification
complex computationally object to Simplified and easy to handle mathematically and
geometrically[2] .

AABB has many representations, but the most common one is searching for the
maximum and the minimum dimensions of the new box (corners) which is bonded the object;
the distances between these points represent the align axis of the box[3] . It is very fast
detecting method, and its speeds up the collision detection process, because of simple
implementation idea. Bounding Sphere Theory is Simple overlap test method and very fast
continues tests with cheap memory costs, because only the radiuses is required to compute the
distances between objects [4] .

However, both of these methods are not convenient with transformation like a rotation
or trajectory, because both have one orientation and they need to update data after each one
step and the results will not be accurate enough, hard implementing and complex. Mainly, it is
more desirable with video game graphics and animations.

Oriented Bounded Boxes (OBB) represents the best solution. Bonding Volumes by OBB
theory is a rectangular block bounding any complex objects and makes it feasible
computationally and geometrically. In other words, its minimum box that bounding a complex
convex polyhedron’s object perfectly and tightly[5] . Representation of OBB is Center Point (c)
and three axes start from this center point (x, y, z) and oriented by right hand rule. OBB makes

  ISSN: 2502-4752

 IJEECS Vol. 1, No. 1, January 2016 : 109 – 118

110

a bounded box in arbitrary orientation and that make it perfect choice with transformation while
the robot end effector manipulating the box from a frame to another. The number of parameters
required to test is less than the other theories [6] , but the memory required is the almost high
values, however, development of high memory of the computer chips filled this gap between
bounding volumes theories now days [7] . Testing two of OBBs is related with Separating Axes
Theorem (SAT). SAT assume that two convex polyhedra; they are not colliding if and only if
there is at least one separating plane between them and the normal vector of this plane
separate them. This technic is hard and complicated to implement it, even though; the proposed
algorithm will try to combine it with the transformation, and planning path or trajectory[8] .

Next sequence of this paper will be as follows: section 2 present best rotation
representation. In 3rd section, most important equations and notices require to achieve an
accurate collision detection. In 4th section present path planning by translation and 5th section
presents spherical trajectory planning. In section 6 a presentation of simulation results from
previous sections. This paper is concluded in section 7 and offers contributions of algorithm.

2. Rotation Representation

Best representation of spatial rotation of boxes assumed to be done by Z-Y-Z Euler’s
angles, which is representing one of the common rotation’s representations. Euler’s angles
assume the rotation about one fixed (z-axis) Roll by an angle (), and then rotate about (y-

axis) Pitch by an angle () and finally rotate about (z-axis again) Yaw by an angle () [9] .

The final matrix that represents the total box spatial rotation by Z-Y-Z Euler’s angles, the box will

transform from frame {A}to frame{B} , is as follows:

1 2

c

(, ,)A

B Z YZ

c c s s c c s s c c s

R s c c c s s c s c c s s

s c s s c

           

              

    

   
 

    
  

 (1)

Where, cosc  and s sin  and so on. As a result, the representation of the box have

coordinates position (, ,)x y z after spatial rotation in its frame, and by simplify eq.1, we will get

the matrix of this box as follows:

1 2

11 12 13

21 22 23A

B

31 32 33

(, ,)

0 0 0 1

Z YZ

r r r x

r r r y
R

r r r z
  

 
 
 
 
 
 

(2)

3. Detecting Collision

Collision detection between two OBB represents a homogeneous test; hence,
minimizing testing numbers of boxes tested, this step will eschew the tree construction cost
between numbers of boxes. By considering the Cartesian coordinates positions and analyzing
the dimensions of OBBs into vectors takes the right hand orientation method. Assume two
Boxes (A & B) having an arbitrary orientation, and the following parameters, Figure 1:

Box – A Box – B

 AP = coordinate position of the center of A.
BP = coordinate position of the center of B.

XA = unit vector representing the x-axis of A.
XB = unit vector representing the x-axis of B.

YA = unit vector representing the y-axis of A.
YB = unit vector representing the y-axis of B.

ZA = unit vector representing the z-axis of A.
ZB = unit vector representing the z-axis of B.

IJEECS ISSN: 2502-4752 

Collision Detection and Trajectory Planning for Palletizing Robots … (A-H Ali Joodi Jasim)

111

AW = half width of A.
BW = half width of B.

 AH = half height of A
 BH = half height of B

 AD = half depth of A.
 BD = half depth of B.

After rotation, each box will have its own matrix. For box A, the matrix will be as follows;

(3)

and for box B matrix will be like:

(4)

In each box, three edges to concern about it, as a result will get (3*3) possible

separating planes produced by cross product of these edges, and these edges parallel to the

axes of the box. Hence, the expecting separating planes will be (),X XA B (),X YA B

(),X ZA B (),Y XA B (),Y YA B (),Y ZA B (),Z XA B (),Z YA B ()Z ZA B

X

Z

Y

Pa

X

Z

Y

P b

Figure 1. Right Hand Rule of Two Boxes

Figure 2. Shows Cross Product of Two
Different Edges & The Normal Vector

These nine planes produced by the cross product of boxes edges. Figure 2 illustrates
this idea. In each plane, there is normal vector that separates boxes. The expecting separating
states will add 6 more expecting axes, which are the edges of boxes as a separating axes (3*2)

(
XA , , , , , ZB). Totally will get 15 separating vectors must to find. The general

assumption of SAT equation is:

| L| > | L |+| L |+| L |+| L|+| L |+| L |A A A B B Bd W H D W H D       (5)

That’s mean if the projection of the distance between boxes (d) bigger than the

projections of boxes on the same separating axes, then there is no collision, else, there will be a
collision. Where (d) represent the distance between two boxes and its value can be find by:

1 2

11 12 13

21 22 23

31 32 33

0 0 0 1

A

AA

Z YZ

A

a a a X

a a a Y
R

a a a Z

 
 
 
 
 
 

1 2

11 12 13

21 22 23

31 32 33

0 0 0 1

B

BB

Z YZ

B

b b b X

b b b Y
R

b b b Z

 
 
 
 
 
 

YA
ZA XB YB

  ISSN: 2502-4752

 IJEECS Vol. 1, No. 1, January 2016 : 109 – 118

112

2 2 2(X X) (Y Y) (Z Z)B A B A B A B Ad P P       

(6)

and (L) Represent the expecting separating axes, which is one of the 15 vectors. Finding the
projection of (d) on (L) depending on the other dimensions of boxes coordinates positions after

rotation. To find the projection of (d) on (
XA), and the same idea can apply it with other axes:

11 21 31| a * |+|a * |+|a * |
| |

|W |

X Y Z
X

A

d d d
d A 

(7)

To continue finding the right side of SAT assumption in Eq. (5), by finding the projection

of boxes on ():

|A | | + | | + | |X A X A X A XA W A H A D A    

(8)

and also finding the projection of box (B) on (

XA):

B | =| | + | | + | |X B X B X B X| A W A H A D A   

 (9)

The projection of dimension parallel to (L) will be equal to its value. Like the projection of

() on (XA) will be the same value of (), in figure 3. All projections of boxes

dimensions can be found by implementing the same method implemented before to find the

projection of (d) in Eq. (7). Also, this idea can be implementing it with (, , , , ,X Y Z X Y ZA A A B B B).

X

Z

Y

X

Z

Y

A

B

XA

d

Figure 3. Projections on (AX
) axis

d
A B

Two Parallel Edges

Separating Plan

Figure 4. NO Cross Product Between Two
Parallel Edges

To find the projection of (d) and the boxes on one of the expecting separating planes

that contain the normal vector of (),X XA B

(),X YA B

(),X ZA B

(),Y XA B

(),Y YA B

(),Y ZA B

(),Z XA B

(),Z YA B

()Z ZA B

will be as follows, by taking the ()X XA B

plan as

an example, and can implementing the same method in others planes.

| ()| > | ()| + | ()| + | ()|

 + | () | + | ()| + | ()|

A A A

B B B

X X X X X X X X

X X X X X X

d W H D

W H D

A B A B A B A B

A B A B A B

   

  

   

  

(10)

XA

| |B XW A BW

IJEECS ISSN: 2502-4752 

Collision Detection and Trajectory Planning for Palletizing Robots … (A-H Ali Joodi Jasim)

113

Finding the projection of (d) on (
X XA ×B), will be as follows:

() () () () ()X X Z Y X Y Z Xd • A ×B = d • A * A • B d • A * A • B

(11)

Find the normal vector results from the cross product of ()X XA B and then project the

dimensions on it. The same idea can be implementing it with other planes.
In some cases, there are two edges (axes) are parallels, and there is no cross product

between them. To check the edges are parallel and they are not intersected, simply, the
projection of (d) on both is equal to (zero). Here, the user directly must assume that the cross
product equal to (zero) and the value of the separating axis will be also (zero). The projection of
(d) is equal to (zero) too. Figure 4 depicting this idea[10] [11] .

4. Translation Path Planning

Assume the start point coordinates of the box (1) in figure 5, are (x, y, z) and the end
point or the target coordinates are (xꞌ, yꞌ, zꞌ) hence, the total translation (t) equation between
points will be as follows:

() ()t x, y,z = x, y, z  

(12)

then:

()=()x ,y ,z x+ x,y+ y,z+ z     

(13)

where (∆x, ∆y, ∆z) represent the translation along (x, y, z) axes respectively. Simply, adding the
translation value to the original value. While, Inverse translation can also be considered if the
translation done in the inverse direction, it will be as follows:

() ()x ,y ,z = x x,y y,z z        

(14)

The most important notice in translation is that one of the parameters must be fixed,

and the other is in motion. The whole system must be in one space. In this assumption, assume
the plane that contains all objects is fixed by an origin point (o) which represents the reference
point and it’s often starting point.

The rotations combine the translation, then, the transformation of any point (P(x, y, z))
will transform to (Pꞌ (xꞌ, yꞌ, zꞌ)), then the total transformation (T) will be as follows:

11 12 13

21 22 23

31 32 33

0 0 0 1

r r r x

r r r y
T

r r r z

 
 

 
 
 
 

(15)

A (3D) rigid body that is capable of translation and rotation, therefore, had six degrees

of freedom ((∆x, ∆y, ∆z, α, β, γ).

  ISSN: 2502-4752

 IJEECS Vol. 1, No. 1, January 2016 : 109 – 118

114

1

41 3241

3

5

Side viewTop view

1
11 1 32

1

11

1

Safety distance

S
a

fe
ty

 d
is

ta
n

c
e

1

Rotate ((45°)& (-45°))

End pointStart point

Figure 5. Translation Path Assumption

Nothing better than a straight line connect the start point and an end point to represent
the translation. For the grasped box, it is important to consider the end effector dimensions to
moving and placing it accurately, but ignoring the grasping calculations and focusing on box
motion and its path. Hence, finding a straight line could be more complicated. So, considering
that the robot motion will be autonomous, and it will react after detecting any collision (before
collide), by finding different path to reach the target safely. Another important technic before

translation is rotating the grasped box with an end effector (45  & - 45) and enlarging the total
dimensions, and that to avoid collision by adding safety distance[12] . As figure 5 shows, the
box try to move in straight line towards its target, but it’s changed a path immediately after
detecting collision with another boxes. The safety distance it has to calculate before starting
motion[13] . For that, divide the rotation and the total translation into steps, and detecting
collision in each step, if there is no collision; continue adding distance and checking again the
new step... and so on, until reach the end point. The reaction of the robot must be reacting
autonomously, and will always search for new path in different directions, with high computing
accuracy. For C++ language’s programmers make a while loop and dividing all the distance into
small distances will be perfect to achieve that. As example, dividing (10) into ten steps and
that’s mean detecting for collision every (1 step). The while loop stop, after reach the end point
target.

5. Spherical Trajectory Planning

To plan a spherical trajectory, three points are requires to find before achieving that
target. It is important to calculate safety space before starting motion, by rotating the end

effector that grasped the box (45  & - 45 ), just like in translation path, and then by assume a
fix coordinate point as reference point (o) to connect all other points with it. Then, will assume

that the start arc point
0 0 0 0(x , y ,z)P  , and an end arc point

2 2 2 2(x , y ,z)P  , which represent

the target. Third point
1 1 1 1(x , y ,z)P  is arbitrary assume lay in the middle distance of the arc

between the two other points, and also can make equal chords between (
2P) and (

0P). To find

(
1P), assuming that the line from the center middle point of (

0 2P P) vector is equal to

(
0() / 42P P). Figure 6 shows the points. As a result, the center point of the arc ((, y ,z)c c cc x)

has the same distance equally from all three points. Figure (7) shows the assumption of the
trajectory and the points. Another assumption has to consider is the speed (F) and the
interpolating cycle (T) which is important to give a value previously [14] .

IJEECS ISSN: 2502-4752 

Collision Detection and Trajectory Planning for Palletizing Robots … (A-H Ali Joodi Jasim)

115

P1

P0

C

o

θ

δ

P0

P1

P2

P2

o

 Figure 6. (
1P) Assumption Figure 7. Three Point of Spherical

Trajectory

The center of the arc can be calculated as follows:

TA[,y ,z] Bc c cx 

(16)

where:

12 13

21 3

31

11

22 2

32 33

a a a

a a a

a a a

A=

 
 
 
 
 

=
     

     

     

1 0 1 0 1 0

2 1 2 1

13 13 22 21 23 13 11 23 13 12 11 13 22 21 2

2 1

3

2 2 2

2 2 2

/ 8 [] / 8 / 8

X X Y Y Z Z

X X Y Y Z Z

a a a a a a a a a a a a a a a

  

  

       

 
 
 


 


 (17)

(18)

To find the normal vector of chords, and the points (n) which are perpendicular on all of

them, the projection on them always equal to zero. As follows:

(19)

The propose of computing (n) is to find the value of arc angle (θ), which is depending

on (H), where (H) value can be found as follows:

(20)

where:

(21)

1 0 C 2 0 0 C 2 0(z z)(x x) (x x)(z z)v     

(22)

1 0 C 2 0 0 C 2 0(x x)(y y) (y y)(x x)w     

(23)

2 2 2 2 2 2 2 2

1 1 1 0 0 0

2 2 2 2 2 2 2 2

2 2 2 1 1 1

31 0 32 0 33 0

[() ()]

[() ()]

[

B

]

X Y Z X Y Z

X Y Z X Y Z

a X a Y a Z

    

    




 

  

  

1 0 2 1i j kn u v w PP P P    

1 1 1H uu vv ww  

1 (0 C 2 0 0 C 2 0y y)(z z) (z z)(y y)u     

  ISSN: 2502-4752

 IJEECS Vol. 1, No. 1, January 2016 : 109 – 118

116

The value of (, ,u v w) results from the cross product of (1 0 2 1PP P P), which represent

the value of the normal vector (n). If the value of (0H ), then (θ π), and can compute it as

follows:

       
1

2 2 2 2

2 0 2 0 2 02arcsin{ / 2 }X X Y Y Z Z R       
 

(24)

if (0H ) then the value of ( ), and can be computing it as follows:

       
1

2 2 2 2

2 0 2 0 2 02 2arcsin{ / 2 }X X Y Y Z Z R         
 

(25)

Now setting the starting point , and then start motion until reaching the point

, and making detection for collision in every (i+1), till reach the final end

point. The interpolating point () can be calculating it as follows:

(26)

where (G) can be computed as:

 
1/ 2

2
1 / 1 /FT RG   

 
(27)

and (E):

 
1/2

2 2 2/ i i iE FT m n l  

(28)

where:

   

   

   

i i C i C

i i C i C

i i C i C

m v Z Z w Y Y

n w X X u Z Z

l u Y Y v X X

   


   
    

 (29)

The equations above representing the calculations of the next point by adding and

expecting small errors could cumulate after each interpolate. The total error value is very small

amount and can be calculating it as (
2 / 8FT R), which can neglect it. The interpolating

numbers account (N) is equals to:

1N



 

(30)

where () represent the Step angle which is dividing (θ) into steps along its arc, and compute

as:

0 (0,0,0)P 

1 1 1 1(x , y , z)i i i iP   

1iP

 

i 1 C i i C

i 1 C i i C

i 1 C i i

1

C

Y Y G(Y En Y

X X G

)

)(X Em X

Z Z G Z El Z

iP









   

   

 
 

  
     

IJEECS ISSN: 2502-4752 

Collision Detection and Trajectory Planning for Palletizing Robots … (A-H Ali Joodi Jasim)

117

arcsin /
FT

FT R
R


 

  
 

 (31)

This algorithm represents an accurate calculation for determining a spherical trajectory

with minimizing errors expecting occurs while each step interpolating the grasping Box to new
point until reach the final destination. This method is appropriate with transformation appears
with homogeneous matrices of the grasped box, which meets the demands of users.

6. Results and Simulations

The presented before is an algorithm for planning an accurate collision detection
combining the transformation, and this algorithm have been tested and checked by common
tool (C++ computer language), which represents the simple tool to implement the proposed
algorithm. Another tool for checking done by (AutoCAD) software, which showed the figures and
the situations states of objects, and checking by naked eyes if the algorithm was correct or not
by making the virtual environment graphics.

SATRT

INPUT BOX 1

DIMENSION,

COORDINATE

S POSITION

INPUT BOX 2

DIMENSION,

COORDINATE

S POSITION

INPUT OTHER

BOXES

DIMENSIONS,

COORDINATES

 POSITIONS

INPUT

 Z-Y-Z

EULER’S

ANGLES

DEFINE

TRAJECTORY

TRANSLATION

SPHERICAL

TRAJECTORY

 DETCTING

COLLISION

BETWEEN BOXES.

 ADD MOTION.

 APPLY

ASUMPTIONS AND

CALCULATIONS.

 COLLISION ?

YES

NO

Avoid collision

Find new

trajectory

ARRIVE

YES

END

NO

Figure 8. C++ Algorithm Logical Sequence

Drawing by AutoCAD shows the situation’s states of boxes and the transformations, the
spatial rotation of boxes combine translation or spherical trajectory from the frame to a new
frame. As shown in Figure 8, the logical sequences of algorithm implemented in C++ and in
Figure 9 the simulation of collision boxes and trajectory implemented by the AutoCAD. This
method avoided expecting errors can be occurred, while dividing the curve interpolating into
steps. For circuit contains hundreds, and even several hundred steps points, the intuitive three
point’s technic is impossible at all to be optimal. And the method based control is also infeasible
due to its complexity and obstacles collision detection computation [15] .

  ISSN: 2502-4752

 IJEECS Vol. 1, No. 1, January 2016 : 109 – 118

118

Figure 9. Auto CAD Spherical Trajectory Simulation

7. Conclusion

This paper presented an accurate algorithms and methods to achieve perfect collision
detection, by presented correct steps to achieve this target, including implementing different
types of transformation like rotation and planning translation and spherical trajectories. It is
chosen to work in OBB bounding method instead of others theories and detecting collision by
SAT theorem. SAT theorem represents the main tool to achieve collision detection accurately.
The trajectory of grasped box by an end effector has translation and spherical trajectories, and
divides the path into steps and detecting collisions in each step, and assuming the robot reacts
autonomously. The efficiency of this algorithm have been tested and checked.

References

[1] Ericson C. Real-time collision detection. 1
st
 Edition. United States, San Francisco: Elsevier. CRC

Press. 2004; 5-156.

[2] Suaib N M. Bade A, Mohamad D. Hybrid Collision Culling by Bounding Volumes Manipulation in
Massive Rigid Body Simulation. TELKOMNIKA Indonesian Journal of Electrical Engineering. 2013;

11(6): 3115 - 3122.

[3] Bergen G. Efficient collision detection of complex deformable models using AABB trees. Journal of
Graphics Tools. 1997; 2(4): 1-13

[4] Philip M. Hubbard. Approximating Polyhedra with Spheres for Time-Critical Collision Detection. ACM
Transactions on Graphics. 1996; 15(3): 179-210

[5] Fourar R, Melaab D. Acceleration of the Collision Detection for the Grasping of Objects by a Robotic
Hand. International Journal of Control & Automation. 2015; 8(4): 181 - 200.

[6] Gottschalk S. Collision queries using oriented bounding boxes. University of North Carolina at Chapel
Hill. 2000: 38-81

[7] Kay TL, Kajiya JT. Ray tracing complex scenes. ACM SIGGRAPH computer graphics. ACM. 1986;
20(4): 270-275

[8] Johnny Huynh. Separating Axis Theorem for Oriented Bounding Boxes. www.jkh.m. 2009: pp (3-45).

[9] Craig JJ. Introduction to robotics: mechanics and control. 3
rd

 Edition. New Jersey, USA. Upper
Saddle River: Pearson Prentice Hall. 2005; 19-61.

[10] Aarts JM. Plan and Geometry. 1st Edition. Netherland. Springer Science & business Media. 2009:
64-290

[11] Strang G, Aarikka K. Introduction to applied mathematics. 4th Edition. Wellesley, MA: Wellesley-
Cambridge Press, USA. 2010; 376-460.

[12] Mason M.T. Mechanics of robotic manipulation.1st Edition. MIT press, USA. 2001; 41 - 71

[13] De Berg M, Van Kreveld M, Overmars M, et al. Computational geometry. 3rd Edition. Eindhoven,
Netherland. Springer Berlin Heidelberg. 2000; 280-326.

[14] Bosheng Y. Implementation of arc interpolation in a robot by using three arbitrary points. Journal-Hua
Zhong University of Science and Technology Nature Science Edition. 2007; 35(8): 5-8.

[15] Wang Y, Chi N. Path planning optimization for teaching and playback welding robot. TELKOMNIKA
Indonesian Journal of Electrical Engineering. 2013; 11(2). 960-968.

http://www.jkh.m./

