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 Ant colony optimization (ACO) was successfully applied to data mining 

classification task through ant-mining algorithms. Exploration and 
exploitation are search strategies that guide the learning process of a 
classification model and generate a list of rules. Exploitation refers to the 
process of intensifying the search for neighbors in good regions, whereas 
exploration aims towards new promising regions during a search process. 
The existing balance between exploration and exploitation in the rule 
construction procedure is limited to the roulette wheel selection mechanism, 
which complicates rule generation. Thus, low-coverage complex rules with 
irrelevant terms will be generated. This work proposes an enhancement rule 

pruning procedure for the ACO algorithm that can be used in rule-based 
classification. This procedure, called the annealing strategy, is an 
improvement of ant-mining algorithms in the rule construction procedure. 
Presented as a pre-pruning technique, the annealing strategy deals first with 
irrelevant terms before creating a complete rule through an annealing 
schedule. The proposed improvement was tested through benchmarking 
experiments, and results were compared with those of four of the most 
related ant-mining algorithms, namely, Ant-Miner, CAnt-Miner, TACO-

Miner, and Ant-Miner with hybrid pruner. Results display that our proposed 
technique achieves better performance in terms of classification accuracy, 
model size, and computational time. The proposed annealing schedule can be 
used in other ACO variants for different applications to improve 
classification accuracy. 
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1. INTRODUCTION  

Data mining involves methods used at the intersection of a multidisciplinary field, and it aims to 

discover knowledge from databases. Data mining tasks can be categorized into classification, clustering, 

regression, and association [1-4]. Classification involves introducing a classification model from a database 

by finding the relationship between data attributes and their classes. This model can then be utilized to 

classify the class values of other instances. Examples of classification tasks include intrusion detection, 

medical diagnosis, handwritten digit recognition, spam email detection, and bankruptcy determination [5-9]. 

In recent years, the field of swarm intelligence (SI) has been derived by observing the swarming behavior of 

some animals, such as ant colonies, flocking birds, and fish schools [10, 11]. The SI field, particularly ant 
colony optimization (ACO), has received widespread attention in data classification tasks. ACO is an SI 

metaheuristic algorithm that is used to solve combinatorial optimization problems [12]. ACO was first used 
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to solve the traveling salesman problem. Since then, it has widely been applied to various NP-hard problems 

such as vehicle routing, quadratic assignment, grid computing, and data mining [13-15]. The ant system (AS) 

was the first version of ACO algorithm which was proposed by Dorigo et al. in the 1990s. ACO uses the 

stigmergy method to find good paths when searching for a solution and then deposits pheromones to mark 

these paths. The amount of pheromones laid depends on the distance and the solution quality. As each ant 

moves randomly, other ants can detect previously visited paths and decide whether to visit them. The 

pheromones of other ants are then deposited along these paths. The process is described by a positive 

feedback iteration and stochastic behavior. Therefore, indirect communication among ants provides them 
with the ability to find the optimal solution for complex optimization problems. In addition, ACO was 

successfully applied to data mining classification tasks, particularly through the Ant-Miner algorithm. This 

algorithm, which simulates the foraging behavior of ants, is considered one of the most successful SI 

algorithms due to its competitive accuracy compared with other well-known classification algorithms [16]. 

Ant-Miner uses ACO techniques to discover classification rules, which are presented as IF (conditions)–

THEN (class) statements. Rule-based classification introduces an understandable model to the user. Thus, the 

discovered rules have natural language representations that are easy to interpret. 

Overfitting is a problem that is frequently encountered when dealing with rule classification for a 

large number of terms. Rules are perfectly fit a particular dataset from which they are created, and thus, hard 

to generalize those rules to a new dataset. Rule pruning is a routine utilized in the rule discovery process to 

avoid overfitting. Many pruning methods, such as pre, post, and hybrid methods, have been proposed in Ant-

Miner literatures to omit irrelevant terms that do not give correct classification [17]. Most of these algorithms 
are based on post-pruning, which removes irrelevant terms after the rules are expanded to their maximum 

size. Subsequently, the quality of a rule is measured using a quality function. If the quality can be further 

improved by simplifying the rule, then simplification will be performed repeatedly until further simplification 

will degrade the quality of the rule or only one term is left in the rule. Post-pruning method is considered a 

time-consuming, complex, and costly process when the training dataset consists of a considerable amount of 

attributes and instances [18, 19]. In addition, post-pruning incorporates greedy search biases to remove one 

term at a time. In contrast, pre-pruning techniques eliminate irrelevant terms before developing a complete 

rule. The stopping criteria addresses unrelated terms during the construction process (e.g., terms are no 

longer selected when the information measured for some terms do not exceed the predetermined value) [20]. 

The limitation of pre-pruning techniques is the difficulty in selecting the appropriate threshold to omit 

unrelated terms. The construction rules will underfit the data when a high threshold value is applied. 
Conversely, a small value of the threshold will not be able to overcome the overfitting problem. The 

threshold value is data-dependent, and it considered very critical. Hence, selecting an unsuitable value will 

fail to overcome the problem of overfitting. Another study has proposed a hybrid pruning procedure that 

combines post-pruning and pre-pruning based on a user-specified parameter [21]. The parameter determines 

the allowable number of terms in a rule. Pre-pruning is applied to each rule that exceeds the predefined 

parameter value. Then, the number of terms in the selected rule is reduced to be equal to that of the parameter 

value. Thereafter, the original Ant-Miner’s rule pruning method will be applied. The parameter value of this 

mechanism is critical, and any mistake related to this value may lead to an extremely simple model that does 

not consider the implicit structure of the data.Thus, the classification model will be inappropriate and 

perform poorly. This is known as underfitting problem. 

The current study presents an enhanced Ant-Miner algorithm called ACO-Annealing, that uses an 
annealing strategy to find a trade-off between exploration and exploitation in the rule construction progress 

and prevent the inclusion of unfit terms. This strategy is based on a new parameter, called Importance Rate 

(IR), which controls the strength or importance of each term added to the rule. Our proposed technique deals 

with irrelevant terms during learning instead of finding a complete rule and then pruning it. Each ant is 

assigned its own IR value during the model learning process. Over time, the IR value is modified linearly to 

ensure diversity. Other terms that can be added to the rules are explored, and the learning process is 

prevented from being stuck in local optima. Furthermore, this strategy reduces post-pruning computational 

complexity by eliminating the majority of unfit terms during the construction process. In addition, this 

strategy overcomes the pre-pruning limitation by using dynamically adjusted rejection criteria during the 

learning process rather than keeping such criteria constant. 

 

 

2. ENHANCED ANT-MINER ALGORITHM 

Ant-mining rule-based classifiers follow the ACO variants. The variants are AS, ant colony system 

(ACS), max–min AS (MMAS) algorithms [22]. The first developed classifier, known as Ant-Miner, is based 

on the well-known AS algorithm. Since then, numerous classifiers have been developed. Among these 

improvements, one of the most successful is the Antminer+ algorithm, which is based on the MMAS 
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strategy. Other classifiers, such as Ant-Miner2, Ant-Miner3, and Ant-Miner4, are based on ACS [23-25]. The 

three aforementioned ACO variants were developed to enhance balance between exploration and exploitation 

and to produce better classification rules. However, the MMAS classifier is expensive in terms of its rule 

construction procedure, and its learning time is longer than those of the two other variants. MMAS also uses 

a less accurate heuristic function. By contrast, the ACS-based classifier is improved by using an adaptive-

state transition strategy to develop the exploration mechanism; however, it does not enhance the exploitation 

strategy. During the learning process, an imbalance between exploration and exploitation affects the learning 

model, which results in a non-optimal rule set. Therefore, the present study focuses on the Ant-Miner variant, 

which is a prominent ACO classification algorithm, for discovering rules [26, 27]. 

Exploitation and exploration are the primary search strategies that guide the rule construction 
process in the Ant-Miner algorithm. Exploitation refers to the process of intensifying the search for neighbors 

in good regions, whereas exploration transfers the search toward new promising regions. Therefore, the 

success of the Ant-Miner algorithm depends on the balance between exploitation and exploration to arrive at 

an optimal global model during the learning process that can be used during classification. Ant-Miner starts 

with high exploration due to the randomness of the selection terms that must be included in the rule. After 

producing a sufficient number of rules, ants narrow down the search to promising regions (exploitation), 

continue with the exploitation results in generating the same rule set, and then get trapped in local optima. 

Therefore, the algorithm restarts the search with random term selection. 

An annealing strategy is a technique used to improve the performance of the Ant-Miner classifier 

through better balance between exploration and exploitation and preventing the inclusion of irrelevant terms. 

During rule construction, probabilities are used by ants to determine the paths in traveling through a 
constructed graph. Ants start from an initial node and then select terms on the basis of the probability 

function. A probability function is used by each ant to determine the importance and strength of the term 

being selected while constructing a rule. The probability function of each term is calculated in accordance 

with its heuristic information and pheromone amount. Thus, our proposed method uses the parameter 

Importance Rate (IR) (Figure 1, Line 6) and an annealing schedule to determine the degree of uphill 

movement allowed during a model’s learning process. This annealing schedule is critical for the credibility of 

terms and aims to find the global optimum for a given classification problem. Therefore, IR is a pre-pruning 

criterion that is responsible for adding only the most important terms to each rule (Figure 1, Lines 8 to13). 

The value of IR linearly increases over time, i.e., from its minimum value to its maximum value, to escape 

local optima. This strategy increases search diversity by assigning a unique value to each ant in the colony 

(Figure 1, Line 20). A high-level description of our proposed algorithm is provided in Figure 1. 

 
 

1 TrainingSet= {all Training instances}; 

2 InitialConstructionRuleList =[]; 

3 WHILE(TrainingSet>MaxUncoveredInstances) 

4 AntIndex=1; ConvergenceTest=1; 

5 InitializePheromone; 

6 Initialize IRt= Mini-Value; /* determine the importance or the strength of each term */ 

7 REPEAT  

8                  WHILE (TermsNotSelected==True)  

9                               IF (TheProbabilityOfChosenTermij is >= IRt)  

10                               THEN AddTerm;  

11                               ELSE RejectTermFromInclusion; 

12                               END IF; 

13     END WHILE   

14 RulePrune; 

15 UpdatePheromone; 

16 IF(CurrentRule=PreviousRule) 

17 THEN ConvergenceTest = ConvergenceTest + 1; 

18 ELSE ConvergenceTest = 1; 

19 END IF AntIndex = AntIndex + 1;  

20 GraduallyIncreaseParameter IRt; 

21 UNTIL(AntIndex>=AntNo)OR(ConvergenceTest>=RuleConvergenceNo) 

22 SelectBestRule; 

23 AddBestRule to DiscoveredRuleList; 

24 TrainingSet = TrainingSet-{InstancesSetCoveredByRule}; 

25 END-WHILE 

 

Figure 1. High-level pseudocode of the proposed algorithm 
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The annealing strategy suggests initializing the algorithm with a minimum IR value to explore the 

search space. During the learning process, each ant is assigned its own value and terms are randomly added 

to the rule. Over time, exploitation becomes essential for the learning process to find the most important 

terms and include them in the construction rule. The value of IR gradually increases when our developed 

mechanism is used, as presented in Equation (1), to increase the parameter for the next ant. 

 

𝐼𝑅𝑡 = (Max)𝑓(𝑡)  (1) 
 

𝑤ℎ𝑒𝑟𝑒 𝑓(𝑡) = 𝑒−t 
ln (𝑎)

𝑎   

 

where IR represents the importance of each term that will be selected; Max is the maximum IR value; F(t) is 
a function that increases the IR value for the next ant; and a and t are the number of ants and the ant index, 

respectively. 

The IR parameter has minimum and maximum values as boundaries. Annealing strategy process is 

illustrated in Figure 2, starting with the minimum value. Our study shows that the minimum value of IR is 

nearly a nonentity (0.0). Then, an ant constructs the rule, prunes it, and updates the pheromone in accordance 

with the minimum value. Therefore, the annealing strategy gradually increases the IR value for the next ant 

to avoid falling into local optima by allowing the selection of non-improving moves as other terms to explore 

new rules. Over time, the significance of the IR parameter will increase until it reaches the maximum value. 

This process iterates until convergence occurs or all ants discover their own rules. 

 

 

 
 

Figure 2. Process of the annealing strategy 

 

 

3. RESEARCH METHOD 

A research method is a systematic process that aims to solve a particular research problem. A 

researcher should not only know existing research methods/techniques but also evaluation criteria that must 

be used. The current study uses a 10-fold cross-validation method, which is considered the best approach in 

evaluating the performances of algorithms when dealing with datasets of various sizes [28]. This procedure 
randomly divides a dataset into 10 approximately equally sized subsets or partitions. Two major stages are 

used to build the classification model during the learning process. The algorithm in the first stage utilizes 

nine partitions in the learning process to construct the classification model based on ant capabilities. 

Meanwhile, in the second stage, the classification model is tested with the remaining partition that was not 

used by the algorithm. This procedure is repeated ten (10) times. Figure 3 depicts the validation of the 

classification model which has been adopted and adapted from [29]. 

The performance of each repetition (10 times) is statistically computed for three (3) metrics: 

classification accuracy, model size, and elapsed computational time (in second). The classification accuracy 

is also a measure for error while model size can be used to analyse the model complexity. Then, the overall 

performance is averaged, and standard deviation is calculated as shown in Figure 4. 
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Figure 3. Validation process for classification model 

 

 

 
 

Figure 4. 10-fold cross-validation method 

 

 

4. RESULTS AND DISCUSSION 
We conducted several experiments using 15 publicly available benchmark databases from the 

repository of the University of California, Irvine (UCI) [30] to test and study the performance of our 

proposed algorithm. These datasets are widely used in the literature of ant-mining algorithms, and they vary 

in their attribute numbers (i.e., between 4 and 60). In addition, attribute numbers consist of continuous and 

categorical types. The datasets also vary in terms of instance number (within the range of 148–8124) and 

target class numbers. The major characteristics of the datasets are summarized in Table 1. 

 

 

Table 1. Major Features of the Datasets Used in Our Experiments 

Datasets Name 
Description 

Instances number Attributes Number Classes Number 

BalanceScale 625 4 3 

Ljubljana (Breast Cancer) 286 9 2 

Wisconsin (Breast Cancer) 699 9 2 

Credit (a) 690 15 2 

Credit (g) 1000 20 2 

Diabetes dataset 768 8 2 

Cleveland (Heart) 303 13 5 

Statlog (Heart) 270 13 2 

Hepatitis dataset 155 19 2 

Ionosphere data 351 34 2 

Iris (flower) 150 4 3 

Lymphography 148 18 4 

Mushroom 8124 22 2 

Segment 2310 19 7 

Sonar 208 60 2 
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The Ant-Miner algorithm does not work with continuous features during the training process. Thus, 

a discretization method is required to address such attribute types. In the Ant-Miner algorithm literature, 

discretization is performed either before the rule construction process [31] or during the rule generation 

process [32]. In our experiment, we use the well-known C4.5-disc method as a preprocessing step. This 

method has also been used in other studies on the the Ant-Miner algorithm. 

The proposed algorithm is evaluated by comparing its performance with those of the Ant-Miner and 

other related ant-mining algorithms, namely, CAnt-Miner, TACO-Miner, and Ant-Miner with hybrid pruner. 

The CAnt-Miner classification algorithm is an extended version of the Ant-Miner classifier that integrates an 
entropy discretization method to split the continuous attributes during the model training [33]. In contrast, 

TACO-Miner provides a threshold value based on the information gain of each term. If the information 

associated with the selected term is below the threshold value, then the information will be rejected. The 

threshold value is considered a pre-pruning criterion that determines the acceptance or rejection of terms 

[34]. The Ant-Miner with hybrid pruner presents a new hybrid rule pruner that combines the original Ant-

Miner’s rule pruner with a rule pruner based on information gain and the r parameter. This parameter 

determines the number of terms allowed in the rule. The new method will be applied to each rule that exceeds 

the number of terms in a rule. This number of terms is a user specified parameter. Then, the number of terms 

in the selected rule is reduced until it is equal to the specified value. This method is implemented on the basis 

of information gain and roulette wheel for selection. Thereafter, the procedure of the Ant-Miner’s original 

rule pruner is applied [21]. The experiments have been conducted using a MacBook Pro (2016) with a 2.9 

GHz Intel Core i5 processor and 8 GB 2133 MHz memory. We have not attempted to optimize the 
parameters of ACO-Annealing in the experiments. The parameter values for the Ant-Miner classifiers are 

adopted from Raul et al. (2016) to ensure that each classifier will work with the same parameters’ values and 

to provide a fair evaluation of the results [35]. The parameters we used for the Ant-Miner classifiers are as 

listed in Table 2. 

 

 

Table 2. Experiment Parameters 
Parameter Description Value 

NA Number of ants in the colony. 10 

MCR Minimum number of cases that each rule must cover. 5 

MUC Maximum of uncovered cases by the discovered rules. 10 

RC Number of rules for convergence. 10 

NI Number of iterations. 10 

 

 

Figure 5 displays the comparison of the classification accuracy of ACO-Annealing algorithm with 

those of the Ant-Miner, CAnt-Miner, TACO-Miner, and Ant-Miner with hybrid pruner algorithms. Each 

column in the figure displays classification accuracy obtained through 10-fold cross-validation. Among the 

evaluated algorithms, our proposed technique achieves the highest classification accuracy on 11 datasets 

(73% of the results), thereby indicating that the performance of proposed technique is above average.  
 

 

 
 

Figure 5. Comparison of the classification accuracies of different ant-mining classification algorithms 
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Figure 6 shows the performance evaluation of the algorithms based on model size (average number 

of terms in a rule). Again, the 10-fold cross validation has been used in the experiment. The overall results 

show that the model size discovered by TACO-Miner is simpler on nine datasets, whereas our proposed 

technique ranks second place, with a simpler model size on seven datasets. However, the no-free-lunch 

theorem states that no algorithm performs best on all datasets [36, 37]. 
 

 

 
 

Figure 6. Comparison of model sizes of different ant-mining classification algorithms 
 

 

Table 3 provides the overall average statistical test results for classification accuracy, model size, 

and computational time (in second) on all the datasets used in our experiments. In general, our proposed 

algorithm performs the best for classification accuracy and computational time. In addition, our algorithm 

achieves the second-best average for model size which shows that the complexity of the algotirhm is lower 

than Ant-Miner, CAnt-Miner and Hybrid Pruner algorithms. 

Figure 7 shows the plot of average classification accuracy rank against the average model size rank. 

A lower average rank indicates better performance of the algorithms. The result shows that our proposed 

algorithm outperforms the other four classification algorithms based on ideal rank between the model size 

and classification accuracy. Trade-off between classification accuracy and model size has been considered in 
developing our proposed algorithm. In contrast, the most accurate classification algorithm requires more 

terms per rule to produce better classification accuracy because our proposed strategy aims to find the 

appropriate pruning criteria for each dataset by considering classification accuracy. 

 

 

Table 3. Test Results Based on Average Performance on All Datasets 
Datasets Ant-Miner CAnt-Miner TACO Hybrid Pruner ACO-Annealing 

Average Predictive Accuracy 80.06 81.06 79.14 79.95 81.97 

Average Model Size 10.09 9.87 8.23 10.04 8.73 

Average Computational Time 24.93 7.27 21.33 20.80 5.80 

 

 

 
 

Figure 7. Comparison between the averaged classification accuracy rank vs. the averaged complexity size 

rank of the ant-mining classification algorithms 
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5. CONCLUSION  

ACO is an SI metaheuristic algorithm used to solve complex problems. The Ant-Miner algorithm is 

a typical example of ACO for classification. The strength of this algorithm lies in its ability to provide a 

complete comprehensible result, which is a key requirement in different application domains, such as medical 

diagnosis and bankruptcy. In this paper, we elucidate the importance of the pruning component of the Ant-

Miner algorithm and discuss the primary strategies (exploitation and exploration) that guide the rule 

construction process. We then modify these strategies in accordance with an online control parameter, which 

varies during the learning process by using an annealing strategy. This method, which is presented as a pre-
pruning technique, deals with irrelevant terms before creating a complete rule. Experiments were conducted 

using publicly available benchmarking datasets from the UCI repository. Results indicate that our proposed 

strategy improves the overall performance of the Ant-Miner classifier algorithm and yields better results than 

CAnt-Miner, TACO-Miner, and Ant-Miner with hybrid pruner algorithms. Further research is required to 

improve the adaptability of the proposed parameter value using different search spaces and considering 

feedback from the rule construction process. This mechanism involves assigning rewards, and the action of 

the Ant-Miner algorithm may determine whether a new value will prevail in the search space. 
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