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 Acoustic problem is a main issues of the existing classroom due to lack of 
absorption of surface material. Thus, a feed forward neural network system 
(FFNN) for classroom Reverberation Time (RT) estimation computation was 
built. This system was developed to assist the acoustic engineer and 
consultant to treat and reduce this matter. Data was collected and computed 
using ODEON12.10 ray tracing method, resulting in a total of 600 
rectangular shaped classroom models that were modeled with various length, 

width, height, as well as different surface material types. The system is able 
to estimate RT for 500Hz, 1000Hz, and 2000Hz. Using the collected data, 
FFNN for each frequency were trained and simulated separately  
(as absorption coefficients are frequency dependent) in order to find the 
optimum solution. The final system was validated and compared with the 
actual measurement value from 15 different classrooms in Universiti Tun 
Hussein Onn Malaysia (UTHM). The developed system show positive results 
with average validation accuracy of 94.35%, 95.91%, and 96.42% for 500Hz, 
1000Hz, and 2000Hz respectively.  
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1. INTRODUCTION  
Most of the existing classroom are designed for lecture-based education, meanwhile, the growth in 

education world toward Education 4.0, required the used of education tool and platform to become 

interactive. This finishes of existing classroom are fine for lecture-based education that may cause acoustic 

problem in the interactive education, and lead difficult to hear. Reverberation is one of the reasons of the 

acoustic problem which able to be treatable with the proper mix of absorption. While, surface material; 

ceilings, concrete walls, wooden walls, tile floors, and wooden doors, plays a critical role of lack of 

absorption that can creates an excessively reverberant room.  

The proposed system of Reverberation Time (RT) computation is able to assist the acoustic engineer 

and consultant to treat and properly locate the exact specifications of absorption material in order to reduce 

the classroom acoustic problem. RT is a time taken for the audio signal to drop by 60 dB. The first 

established formulae in estimating RT in an enclosed space was made by Sabine [1], as seen in (1). 

 

𝑅𝑇60 =
0.05𝑉

(∑𝑆𝛼)
 (1) 
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With,  

V = room volume  

S = surface area 

α = material absorption coefficient 

Considering the simplicity of the Sabine formulae on top of ignoring many other factors, a jarring 

error can be seen between the formulaic and the actual measurement RT value. Since then, many other 

researchers have made improvements and materialized with more solid and accurate formulae calculations in 

regard of RT [2-6]. Besides this fundamental calculations, other techniques and methods were also being 

presented such as the computer simulations ray-tracing techniques (ODEON) [7] and finite element models 

(FEM) [8-9]. As ODEON and FEM taking an extra time on preparations (designing room models, etc.) 
researchers are still seeking for other alternative methods in estimating RT for instance by using neural 

network (NN) [10]. 

Since 1999, researches on RT prediction using NN, were started by Nannarielo and Fricke [11], in 

order to examine the developed NN using dataset from actual large halls building. This group of researchers 

were successfully manage and prove that NN is useful in predicting room RT. In 2010, experiments to 

predict RT for classrooms using dataset gathered from FEM computation were reported by [12]. Research in 

predicting RT was continued by Aliabadi et al. in 2014 [13]. In this research they were able to strengthen the 

potential of NN method in minimizing the uncertainties in acoustics' modeling for industrial workrooms.  

The purpose of this research is to design an alternate method in estimating RT in a classroom that is 

cost effective and uncomplicated in addition to be able to provide users with an alternative prediction model 

with low percentage error. This research focuses on classroom RT computation in order to obtain the 
optimum sound between the teacher and students, by minimize the noise [14]. Moreover, poor working 

conditions in a classroom can be avoided as well as maintaining the teacher’s comfort in delivering the 

speech [15]. The ideal classroom RT value is in the range of 0.4 – 0.6 seconds, although most of the existing 

classrooms produced RT more than 1 second that can cause sounds confusion between teacher’s voice and 

it’s reflecting sounds [16]. Therefore, RT has become an important parameter in classroom architectural 

design in order to achieve and maintain the ideal RT value. Process flow of the proposed system was 

summarize as in Figure 1. 
 
 

 
 

Figure 1. Experimental process flow 
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2. DEVELOPMENT OF FEED FORWARD NEURAL NETWORK (FFNN) RT PREDICTION 

SYSTEM 

The neural network dataset was collected from rectangular shaped classroom models as seen in 

Figure 2. This classroom model was sketched using Google SketchUp with different in heights, widths, and 

lengths. Window was also added to some of the models. 

The RT output values from these classroom models were computed and simulated using ODEON 

12.10 ray-tracing simulation. Different materials were applied to the surface and the sound source was placed 

randomly for each model in the dataset. At the end, 600 data that consists of various models and surface 
materials were successfully gathered.  

 

 

 
 

Figure 2. Samples of room models 

 

 

Frequency of 500Hz, 1000Hz and 2000Hz, were chosen in order to complete the train and analysis 

of FFNN system. (2), (3), and (4) show RT for 500 Hz, 1000 Hz and 2000Hz, respectively. 13 variables were 

applied as FFNN input features and requested to compute the RT. Input dataset geometrical characteristics 

for the FFNN training dataset was shown in [17]. 

 
RT500 = f(V, L, W, H, Sαw1[500], Sαw2[500], Sαfl[500], Sαdoor[500], Sαcei[500], Sαwin[500], x/L, y/W, z/H)  (2) 

 

RT1000 = f(V, L, W, H, Sαw1[1000], Sαw2[1000], Sαfl[1000], Sαdoor[1000], Sαcei[1000], Sαwin[1000], x/L, y/W, z/H) (3) 

 

RT2000 = f(V, L, W, H, Sαw1[2000], Sαw2[2000], Sαfl[2000], Sαdoor[2000] , Sαcei[2000], Sαwin[2000], x/L, y/W, z/H)  (4) 

 

 

3. FEED FORWARD NEURAL NETWORK (FFNN) TRAINING PERFORMANCE 

In this experiment, 60%, 20%, and 20% data from the dataset is used as the training data, validation 

data and testing data, respectively. The training data is used to train and fit the models; the validation data is 

used to estimate the prediction error for the model selection, as well as prevent network from overfitting; the 
test set is used for the assessment of the generalization error of the final chosen model [18]. The test data 

should be unknown or new to the FFNN system. Figure 3 shows the regression plots for training, validation, 

and testing data for 500Hz, 1000Hz and 2000Hz, respectively. 

The optimum network for 500Hz, 1000Hz, and 2000Hz were lastly combined into one final system 

using Matlab GUI. Figure 4 shows the main page in the final system, where the users are required to fill up 

the values needed in the NN computation. 

Figure 5 shows the interfacing page of adding the material surface. The users have to insert the 

photographic surface image or select surface images from library as well as its dimension. Figure 6 shows the 

result page where the RT for 500Hz, 1000Hz, 2000Hz are displayed. 
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(a). 500Hz 

 

 
(b) 1000Hz 

 

 
(c) 2000Hz 

 

Figure 3. Regression value for (a). 500Hz, (b)1000Hz, and (c)2000Hz 

 

 

 

 

 
 

Figure 4. Main page of the system 
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Figure 5. Interface page of adding 

 

Figure 6. Result page of the system material surface 
 

 

4. VALIDATION WITH ACTUAL ROOM MEASUREMENTS 

The finished system is then applied to the actual classrooms. 15 classrooms (CR01 - CR15) in 

UTHM were sampled and real-time RT measurements were taken using the regular reverberation room 

method. Figure 7 shows an example of the actual RT measurement. For comparison, the sampled classrooms 

were also modeled and simulate using ODEON 12.10 as shown in Figure 8. The geometrical characteristic 

for these 15 classrooms are compiled in Table 1. 

 

 

 
 

Figure 7. Example of actual room measurement using reverberation time method 

 
 

 
 

Figure 8. Samples of modeled actual classrooms using ODEON 12.10 
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Table 1. Room Geometrical Characteristics for NN Validation Dataset 
 Max Min Mean Standard Deviation 

V (m3) 325.32 300.41 319.899 6.16 

H (m) 2.88 2.82 2.86 0.025 

L (m) 10.89 10.20 10.84 0.162 

W (m) 10.44 10.07 10.35 0.102 

Sαw1[500]  4.68 2.53 4.37 0.94 

Sαw2[500]  5.63 2.76 2.82 1.37 

Sαfl[500]  1.14 1.07 1.12 0.02 

Sαdoor[1000]  0.21 0.21 0.21 0.00 

Sαcei[1000]  112.41 94.27 110.57 5.66 

Sαwin[1000]  2.43 1.42 1.94 0.39 

Sαw1[1000]  5.47 2.96 5.10 1.10 

Sαw2[1000]  3.75 1.84 1.88 0.91 

Sαfl[1000]  1.14 1.07 1.12 0.02 

Sαdoor[1000]  0.28 0.28 0.28 0.00 

Sαcei[1000]  93.11 72.09 91.73 6.67 

Sαwin[1000]  1.62 0.95 1.29 0.26 

Sαw1[2000]  7.03 3.80 6.55 1.41 

Sαw2[2000]  3.75 1.84 1.88 0.91 

Sαfl[2000]  2.27 2.13 2.24 0.03 

Sαdoor[2000]  0.36 0.36 0.36 0.00 

Sαcei[2000]  86.30 77.64 85.01 2.69 

Sαwin[2000]  0.94 0.55 0.76 0.15 

x/L 0.515 0.178 0.218 0.079 

y/W 0.513 0.415 0.478 0.024 

z/H 0.555 0.408 0.454 0.036 
a V, room volume; L, length; W, width; H, height; Sαw1, equivalent absorption coefficient of wall1 area; 
Sαw2, equivalent absorption coefficient of wall2 area; Sαfl, equivalent absorption coefficient of floor area; 
Sαdoor, equivalent absorption coefficient of door area; Sαcei, equivalent absorption coefficient of ceiling area; 
Sαwin, equivalent absorption coefficient of window area; and x/L, y/W, z/H are the sound source position.  

 
 

Table 2-4 show the results comparison between the actual physical measurement, ODEON 12.10 

simulation, and the proposed FFNN system for frequencies of 500Hz, 1000Hz and 2000Hz, respectively.  

As the initial FFNN trainings were done per frequency, the validation tables were separated in order to 

observe each FFNN system efficiency. 

From the results obtained, it can be observed that the error between the proposed FFNN system and 

the actual physical measurement are all within the accepted range of ±0.1s with the average accuracy 

percentage of 94.35%, 95.91%, and 96.42% for 500Hz, 1000Hz, and 2000Hz, respectively. The average 

percentage accuracy between the proposed system and the actual physical measurement is 1.18% lower for 

the 500Hz frequency, 2.2% higher for the 1000Hz frequency, and 1.1% higher for the 2000Hz frequency than 

the percentage accuracy between the ODEON simulation and the actual physical measurement. This shows 

that the proposed system managed to produces up to par results as the ODEON ray-tracing simulation for 
classroom RT estimation.  

 

 

Table 2. Validation for 500Hz Frequency 

Class room 
Actual measurement 

(s) 
ODEON (s) 

Proposed 

Neural 

network (s) 

% accuracy 

ODEON vs 

measurement 

% accuracy 

proposed vs 

measurement 

CR01 0.74 0.71 0.73 95.95 98.65 

CR02 0.75 0.76 0.79 98.67 94.67 

CR03 0.74 0.81 0.79 90.54 93.24 

CR04 0.72 0.77 0.80 93.06 88.89 

CR05 0.77 0.71 0.81 92.21 94.81 

CR06 0.72 0.72 0.81 100.00 87.50 

CR07 0.80 0.74 0.81 92.50 98.75 

CR08 0.81 0.76 0.78 93.83 96.30 

CR09 0.83 0.75 0.78 90.36 93.98 

CR10 0.80 0.78 0.79 97.50 98.75 

CR11 0.73 0.72 0.78 98.63 93.15 

CR12 0.74 0.72 0.81 97.30 90.54 

CR13 0.80 0.79 0.85 98.75 93.75 

CR14 0.81 0.78 0.83 96.30 97.53 

CR15 0.76 0.74 0.80 97.37 94.74 

   Average 95.53 94.35 
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Table 3. Validation for 1000Hz Frequency 

Class room 
Actual measurement 

(s) 
ODEON (s) 

Proposed 

Neural 

network (s) 

% accuracy 

ODEON vs 

measurement 

% accuracy 

proposed vs 

measurement 

CR01 0.85 0.88 0.88 96.47 96.47 

CR02 0.85 0.92 0.88 91.76 96.47 

CR03 0.87 0.97 0.87 88.51 100.00 

CR04 0.86 0.95 0.88 89.53 97.67 

CR05 0.85 0.89 0.90 95.29 94.12 

CR06 0.81 0.90 0.90 88.89 88.89 

CR07 0.87 0.85 0.89 97.70 97.70 

CR08 0.90 0.94 0.87 95.56 96.67 

CR09 0.89 0.85 0.88 95.51 98.88 

CR10 0.88 0.83 0.87 94.32 98.86 

CR11 0.95 0.89 0.87 93.68 91.58 

CR12 0.82 0.88 0.88 92.68 92.68 

CR13 0.92 0.99 0.96 92.39 95.65 

CR14 0.92 0.97 0.94 94.57 97.83 

CR15 0.84 0.83 0.88 98.81 95.24 

   Average 93.71 95.91 

 

 
Table 4. Validation for 2000Hz Frequency 

Class room 
Actual measurement 

(s) 
ODEON (s) 

Proposed 

Neural 

network (s) 

% accuracy 

ODEON vs 

measurement 

% accuracy 

proposed vs 

measurement 

CR01 0.91 0.89 0.96 97.80 94.51 

CR02 0.88 0.93 0.90 94.32 97.73 

CR03 0.92 0.97 0.89 94.57 96.74 

CR04 0.89 0.94 0.87 94.38 97.75 

CR05 0.85 0.90 0.89 94.12 95.29 

CR06 0.84 0.89 0.89 94.05 94.05 

CR07 0.93 0.85 0.88 91.40 94.62 

CR08 0.89 0.87 0.88 97.75 98.88 

CR09 0.93 0.88 0.89 94.62 95.70 

CR10 0.93 0.83 0.87 89.25 93.55 

CR11 0.91 0.91 0.91 100.00 100.00 

CR12 0.84 0.88 0.88 95.24 95.24 

CR13 0.92 0.91 0.91 98.91 98.91 

CR14 0.93 0.89 0.89 95.70 95.70 

CR15 0.86 0.84 0.88 97.67 97.67 

   Average 95.32 96.42 

 

 

5. CONCLUSION  

An RT estimation system was built using feed forward neural network and the data for the FFNN 

training was computed using ODEON 12.10 ray-tracing method. The built system shows positive results with 
average validation accuracy of 94.35%, 95.91%, and 96.42% for 500Hz, 1000Hz, and 2000Hz respectively 

compared to the actual measurement using reverberation room method. From the results gathered, the built 

system has shown a huge potential for commercialization although the system works are still wide open for 

exploration and improvement, such as applying the adaptive filter to eliminate the source of speaker 

identification noise [19].  
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