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 The amount of digital biomedical literature grows that make most of the 

researchers facing the difficulties to manage and retrieve the required 
information from the Internet because this task is very challenging.  
The application of text classification on biomedical literature is one of the 
solutions in order to solve problem that have been faced by researchers but 
managing the high dimensionality of data being a common issue on text 
classification. Therefore, the aim of this research is to compare the 
techniques that could be used to select the relevant features for classifying 
biomedical text abstracts. This research focus on Pearson‟s Correlation and 

Information Gain as feature selection techniques for reducing the high 
dimensionality of data. Towards this effort, we conduct and evaluate several 
experiments using 100 abstract of stroke documents that retrieved from 
PubMed database as datasets. This dataset underwent the text pre-processing 
that is crucial before proceed to feature selection phase. Features selection 
phase is involving Information Gain and Pearson Correlation technique. 
Support Vector Machine classifier is used in order to evaluate and compare 
the effectiveness of two feature selection techniques. For this dataset, 
Information Gain has outperformed Pearson‟s Correlation by 3.3%.  

This research tends to extract the meaningful features from a subset of stroke 
documents that can be used for various application especially in diagnose the 
stroke disease. 
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1. INTRODUCTION  

In the century, the vast amount of available text documents that related to biomedical produces new 

challenges for the researchers in collecting specific information concerning any particular diseases such as 

stroke or about any specific interest in any field. The text document can be from many sources of like World 

Wide Web, governmental electronic repositories, biological databases, and news articles which all of this are 
in the form of unstructured information [1]. This issues and situation are growing fast that we need some 

experts to manage this huge amount of document that are available in many repository that have been 

mentioned in [2]. 

Recently, there are several approaches that have been proposed by many researchers to identify 

terms in biomedical literatures due to difficulties for users to find the effectively and efficiently ways for 
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organizing data and retrieving relevant information from the text such as by performing text classification or 

known as text mining technique. Text classification is a process of categorizing documents automatically into 

their predefined classes based on their contents [3]. Mete et al. [4] also defined text classification as a process 

of discovering textual information that must have a fixed class for each text. However, big issue of 

classifying is a high dimensionality of data that consist of redundant or irrelevant data [5]. In order to reduce 

this high dimensionality, feature selection is the best solution to use [6]. As mentioned by [7], by employing 

the feature selection in classification, there are benefits can be gained such as reducing in time and storage. 

Other than that, the feature selection method can improve the performance by removing the redundant or 

irrelevant data based on their weight itself. 

Among many feature selection techniques or also called as filter approaches, Wu et al. [8] describes 
that the proposed probabilities approach that called SVM-based probability feature selection can avoid the 

problem bias towards data that able to outperformed Information Gain and Chi-Square. In other hand, Sharaff 

et al. [9] have compared filter approaches which are Chi-Square and Information Gain with Support Vector 

Machines (SVM), Naïve Bayesian and J48 classifier in classifying the spam emails. A similar study also has 

been conducted by [10] and [9], where they used filter and wrapper approaches namely Information Gain, 

Gain Ratio, Chi-Square, Correlation Feature Selection, Linear discriminant analysis and Random Forest that 

have been applied also in classifying the spam emails. The result shows filter approaches enable the classifier 

achieves the improvement on classification accuracy by reducing the number of unnecessary attribute while 

wrapper approaches has potential highly desirable reduce the number of features but it will not affecting to 

accuracy of classifier. Meanwhile, [11] has introduced an approach of combination feature selection based on 

the average weight of features to classify Arabic corpus. In another work, [12] claimed that Distinguishing 
Feature Selector is better than Gini Index in selecting the features of OHSUMED dataset. In classifying the 

SMS Spam collection, [13] has claimed that Pearson Correlation performed with the highest accuracy 

compared to Symmetric Uncertainty, Chi-Square and Mutual Information feature selection techniques.  

This is due to Pearson Correlation is more simple and reduce computional time in building the text 

classification model. 

In this paper, this study aims: (i) to identify the related features on risk factors of stroke, (ii) to 

perform feature selection removing irrelevant features on document of risk factors of stroke, and (iii) to 

evaluate Pearson Correlation and Information Gain techniques in classifying stroke documents. The strong 

related stroke documents were identified at the end of the classification process. This paper is organized as 

follows: In Section 1, we present the introduction of this paper. Then, in Section 2, the material and method 

are discussed in detail. While Section 3 presents the result and discussion of the experimental results.  

Finally, Section 4 provides the conclusion of this research. 
 

 

2. MATERIAL AND METHOD 

Figure 1 illustrates the proposed research framework of this study that consists of six phases.  

In phase 1, the process begun by identifying the issues and risk factors that related stroke disease. Mostly the 

risk factors were found and extracted from American Stroke Association, National Heart, Lung, and Blood 

Institute (NIH) and Stroke Foundation sources. For stroke document datasets, among the available databases, 

the PubMed database was referred because it is free databases that stores publicly accessible full-text of 

articles. For every document, title and abstract parts have been scanned whether the document belongs to 

risky or non-risky stroke document. Furthermore, these two parts were selected because they potray the 

whole content in documents. Table 1 shows keywords that have been used to search the stroke documents. 
Based on Table 1, 100 documents have been selected as a dataset in this study which later have been 

divided into two categories risk factor and non-risk factor. As shown in Table 2, the first category is  

“risk factor” that contains 60 journals while the second category is “non-risk factor” contains 40 journals. 

Even though the keyword “factors of stroke” or “risks of factors of stroke” are used for searching the 

documents, the document that not related to keyword also exists in the query so that the documents that not 

related to risk factors will put in non-risk factors category. 

 

 

Table 1. Keywords used in Searching Stroke Documents 
Database Keyword Result (Documents) 

PubMed Stroke 284575 

 Factors of Stroke 99141 

 Risk factors of stroke 60948 
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Pre-processing method plays an important role in the application of text classification which this 

phase involved the cleaning and preparing of text to proceed to next step. The aim of this pre-processing is to 

select the relevant words that carry the meaning and remove the words that not contribute to differentiating 

between the documents [14]. In this study, the pre-processing step focused on stop words removal and 

stemming. These two were known as the important steps in doing pre-processing for text classification [14]. 

The stop words removal aims to reduce the dimensionality of term space while the stemming discovers the 

root word or base word for any particular term. The document term matrix (DTM) is output from this phase 

that contains the documents within the corpus for its rows while the columns represent the count for each of 
the features that appear within the corpus in the csv format. R language was used in pre-processing step. 

 

 

 
 

Figure 1. Research framework  

 

 

Table 2. Stroke Documents 
Class Document Category Number of Documents 

Yes Risk Factor 60 

No Non-Risk Factor 40 

 

 

After the text pre-processing is done, the Pearson‟s Correlation and Information Gain feature 

selection are applied to filter the datasets using Waikato Environment for Knowledge Analysis (WEKA). 

Feature selection can solve the high dimensional of data that always occur in text classification by reducing 

the irrelevant, noise and redundant features which are burden on challenging tasks [15]. Based on the 
different strategies of searching, feature selection can be classified into three approaches which are filter 

approach, wrapper approach and embedded approach [16]. This study only focus on Pearson‟s Correlation 

and Information Gain which are under filter technique. 

Basically, both feature selection technique used the same input that refer to document term matrix 

(DTM) which it is the result of pre-processing stage and the WEKA software capable to load CSV format of 

DTM and convert to ARFF format to proceed to feature selection phase. Besides, both of this technique also 

applied feature ranking that providing a rating of the features that orderly by their score to the evaluator and 

generally it performs the rank which features should be obtain high or low rank according to the selected 

features in the given datasets [17]. 

The concept of Pearson Correlation and Information Gain technique in selecting the subset of 

relevant features from the extracted features of the stroke documents are explained as above:  

a) Pearson‟s Correlation 
The way Pearson correlation coefficient ρ dealings the strength of the relationship between two features 

to find the similarity between of them, is based on value which the giving a value between +1 and –1, 

where 1 indicates positive, 0 indicates no correlation and -1 is negative correlation [18]. 
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b) Information Gain 

Information Gain measures the amount of information in bits obtained for prediction of a class by 

determining the presence of a feature in a dataset. It determines the change in entropy when the feature 

is present vs. when the feature is absent. Entropy is a measure of uncertainty or unpredictability in a 

system. It is the basis for Information Gain attributes ranking methods [18].  

The effectiveness of those two feature selection techniques is evaluate in classification phase as 

mentioned earlier. The experiments conduct using three sets of features which involved subset of dataset 

before and after feature selection using IG and Pearson‟s Correlation. The classification process also 

performs by WEKA tools which SVM classifier is used. In this research, 70% of dataset is being chosen 

randomly as the training which contribute 70 documents and 30% for testing dataset that equal to 30 
documents.  

In order to measure on the performance of any particular algorithm or technique used, the thing that 

needs to be done is the performance measurement on the chosen method, which is SVM, for this research. 

The classifier performance is being measured based on three properties which are accuracy, precision and 

recall. The model is being run on subsets of stroke documents without and with feature selection.  

The accuracy is calculated by using the following formula stated by [19], 

 

           
(     )

(           )
 (1) 

 

The precision is calculated by using the following formula stated by [19], 

 

            
  

(     )
 (2) 

 

Where tp is true positive, fp is false positive.  

The recall is calculated by using the following formula stated by [20], 

 

        
  

(     )
 (3) 

 

Where tp is true positive, fn is false negative. 

 

 

3. RESULTS AND DISCUSSION 

In this section, analysis on text preprocessing and also analysis on feature selection will be discussed 

in details. 

 

3.1.  Analysis on Text Preprocessing 

Figure 2 shows the most frequent features within the documents from “strokedocs” corpus using 

Pearson Correlation and Information Gain evaluation. The classification process aim to identify the strong 

related stroke documents. As a result, after pre-processing is done towards the corpus of text documents,  

the most frequent features that have been extract from documents within corpus using Graph Bar as 

visualization method. The features demonstrate that “Stroke” present the highest number of frequency. 

“Stroke” show the highest number of frequency because original datasets mostly about the text or document 
regarding to Stroke disease which is searched by using certain keywords and those keywords always include 

word „stroke‟ in the query. In addition, the documents in corpus mostly review about “Stroke”, for that 

reason “Stroke” present the highest frequency compared to other terms. 

Apart from that, from the extracted documents there are five most frequent risk factors of stroke that 

have been mined as tabulated in Table 3. Based on Table 3, there are a few risk factors appear which show 

that risk factors like hypertension, age, smoking, diabetes were always being issues on the documents. 

Hypertension also known as high blood pressure is the common risk factors of stroke which it put a strain on 

all the blood vessels throughout our body including the brain that the lead one then our heart has to work 

much harder to keep the blood circulation going but this strain can damage our blood vessels which causing 

them to become harder and narrower, a condition called atherosclerosis then it makes a blockage more likely 

to occur, which could cause a stroke or transient ischaemic attack (Stoke Association, 2012). Even though, 

the rare case, this extra strain may cause a blood vessel to weaken and burst inside the brain that will causing 
bleeding into surrounding tissue that called haemorrhagic stroke (Stoke Association, 2012). According to 

State of the nation. (2018), stroke can attack to anyone of any age including babies and children and usually 

the causes of stroke in children are very different from those in adult. Besides, State of nation. (2018) also 

stated that the rate of first time strokes in people aged 45 and over is expected to increase by 59% in the next 
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20 years. Actually, risk factor of age is closely related to the way of their lifestyle itself which involve 

consumption of alcohol, illegal drug and also smoking habit (State of nation, 2018). Besides, there are about 

5% stroke occurs in adults around 18 to 44 years old due to the substance abuse like consumption of alcohol, 

illegal drug and also smoking habit that stated by (Ríos, F et al. 2013) 

 

 

 
 

Figure 2. Frequent features of the dataset 

 

 

Table 3. Risk Factors of Stroke 
Features Frequency 

Age 250 

Hypertension 197 

Diabetes 180 

Smoking 167 

Gender 100 

 

 

3.2.   Analysis on Feature Selection 

Table 4 shows the number of features that have selected after applying the different feature 

selection. There are 2021 features from the original document after the extraction information from 

unstructured to structured information that represent by features. After applying Pearson‟s Correlation feature 

selection only 923 feature are selected while when applying Information Gain feature selection only 9 

features were selected. When applying different feature selection, the result also differs due to the weighted 
that apply the feature selection itself. The performance of classification was then tested using SVM with 

using different feature selction techniques namely Pearson‟s Correlation and Information Gain. Figure 3 

demonstrates the accuracy of SVM classifier on different feature selection techniques. The highest accuracy 

was performed when using with Pearson‟s Correlation feature selection technique which is 94.12%. 

Information Gain was then performed with 91.18% accuracy, while the accuracy without using any feature 

selection technique was only 79.41%. This showed that selection of the relevant features able to boost the 

accuracy of text classification.  

On the other hand, the performance of classification also been tested in term of precision and recall. 

Precision can be known as positive predictive value which measure the portion that shows the level of 

relevant of the retrieved instance that will be affected the value of accuracy. Meanwhile, Recall also known 

as sensitivity which measure the fraction of relevant instances that are retrieved instance that will be affected 

the value of accuracy. Yet, Pearson‟s Correlation has outperformed Information Gain with the highest 
precision and recall, at 94.10%. The recall and precision value could portray that the textual documents could 

be precise and correctly classified by using Pearson Correlation and Information Gain (IG) feature selection 

since both of the measure even achieved maximum percentage of recall and precision value.  

 

 

Table 4. Result of Number of Features Selected with Different Feature Selection 
Feature Selection(FS) Number of features selected 

Without FS 2021 
Pearson‟s Correlation 923 

Information Gain 9 
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Figure 3. Performance measurement of SVM classifier with different feature selection 

 

 

4. CONCLUSION 

A huge amount of biomedical documents in repository gives difficulties for users to find the 
effectively and efficiently terms in biomedical literatures. Hence, a strategy to identify features on risk 

factors of stroke was proposed and the used of feature selection techniques such as Pearson Correlation and 

Information Gain were successfully filters the irrelevant features on documents. For future works, expert 

validation could be considered as a part of weighted quatification in selecting the more relevant features. 
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