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1. INTRODUCTION

Amount of data is increasing day by day along with disparate distributions in many real time
applications. In a dataset, if quantity of specimens present in one classes is more than other class, then this
dataset is said to be highly disparate in nature [1], [2]. The major class is used to identify the any imbalance
dataset that have more number of specimens, whereas the minor class contains less number of specimens [1].
Oftenly, major class expresses the specimens as negative and minor class expresses the specimens as positive
[3], [4]. The amount of majority class specimens dominates the minority class specimens by the class’s ratios
which can be 100 with 1 and 1000 with 1, etc. The dataset having only two classes is known as binary class,
whereas the dataset containing more than two classes is known as multi-class, and both the binary and multi-
class datasets suffer from imbalance data problems.

Many real-world domains include imbalance dataset problems, like detecting unreliable
telecommunication customers, word pronunciations learning, marking of oil spills in the images of satellite
radar, information retrieval, text classification, filtering tasks, revelation of fake telephone calls and most
importantly the medical diagnosis. [5]-[7].

In such circumstances, mostly the majority classes bias the classifiers towards themselves and the
classifier presents the rates of minority classes classification poorly; eventually, a classifier addresses entirely
as majority class and ignores the minority class. To solve problems affiliated with the class imbalance,
various techniques have been proposed in literature [8]. This is a thought-provoking and challenging in
research topics nowadays [9], where many issues at a time need attention such as multiple classes problem,
binary class problem, cost of misclassified class, class overlapping, insignificant disjoints, and size of the
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imbalanced datasets. Problems of the binary classes related to imbalance data, received attention, but multi-
class imbalance problems having various types of issues are hardly solved. In which the number of majority
and minority classes can be one or more than one in the multiple class imbalance problems. Decomposition
or any other techniques might be used for multi-class problem, but it still needs consideration. Hence,
whenever the data will be disparate in nature, it will be seriously more daring to proceed with the minority
class [1].

Owing to the importance of this issue, to solve these problems, there are significant contributions
made in developing techniques. These propositions can be categorized into three types according to how they
are proceeding with class imbalance, external or data level approach, which is preprocessing of data for
rebalancing the class distributions to decrease the disparate distribution effect in classification process
[11], [2]. The internal or algorithmic level approach creates or modifies the existing algorithms and takes
consequences of minor class into consideration [12]-[14]. And the third one, cost-sensitive approach,
that may unite data level and algorithmic level approaches to integrate variety of misclassification cost for
every class in learning phase [15], [16].

In external or data level, before the classification process, resampling is performed in datasets to
balance the data externally. For example, the specimens of majority class are randomly removed, and
specimens of minority class are increased by generating artificial specimens to balance the ratio, or in ideal
case, no specimen is created or deleted but choice of specimens to create or eliminate is informed [10].
In algorithmic approach, minority class is taken into consideration and the learner is not allowed to bias for
the majority class to overcome the overall cost of misclassification [17]. In cost-sensitive method,
we consider all types of costs, and mostly focus on misclassification cost to minimize the total cost in order
to make classifier nonbiased [18].

Numerous survey and review papers on imbalanced data problems were published during last
decade. Regardless of reasonable work available on handling the imbalanced data set problems, this research
study especially focuses more deep survey of class imbalance problems. Following points can summarized as
the main objectives of this research.

a) To review the efforts made on imbalanced data to determine how many ideas and solutions are
published in this area of research.

b) To follow the research trends in data normalization and distinguishing the consequences of this area.

c) Todetermine the hurdles and distractions researchers faced by the influences of skewed data.

The remaining paper is organized as follows: Research methodology is given in Section 2.
Section 3 briefly describes the issues of imbalanced data in classification problems and performance metrics.
Section 4 provides solutions proposed for class imbalance problems. The research gaps are discussed in
Section 5. Finally, Section 6 includes the conclusion and potential future directions in this area of research.

2. RESEACH METHODOLOGY

The systematic literature review search can be conducted into two ways: manual [19] and automatic
[20]. First strategy was preferred by this study because the second approach shows some drawbacks since
automatic search engines which are currently available are not feasible for this kind of study [21].
The manual search from the most relevant sources are commonly used for searching primary studies.
This study was conducted into a two-stage search process based on research methodology of [22], in order to
compile relevant papers published in last two decades. In primary stage, seven library databases: Springer,
Elsevier, IEEExplore, Sage, ACM, Cambridge and Wiley, were employed to search and collect literature,
which covers most natural science and social science research fields. To furnish a complete set of search
terms to cover application and technical articles on imbalanced data and rare events, a two-level keywords
tree is given in Figure 1.

First level of the tree was limited to basics of skewed/imbalanced data, which focused on class
imbalance classification, learning from imbalanced data. The second level of tree search terms were divided
into two nodes to takeover both practical and technical articles. Keywords for techniques and approaches for
the class imbalance classification in data mining, keywords for applications for rare events like fraud
detection, cancer medical diagnosis, challenges and their solutions. The primary search yielded 550 papers on
imbalanced data domains, which were downloaded and again filtered for next stage. After manual review of
paper almost 400 papers were found to be relevant of this study. In second stage of search relevant cross
references, through google scholar, these papers are also included in this search review. After second stage
theses papers also added into this review and total of 440 papers are included into this study.
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Context keywords:
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Applications/real world
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Frauds, cancer patient
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minority, majority.

Figure 1. Two level keywords tree for research methodology

3. ISSUES AND PERFORMANCE PARAMETERS IN IMBALANCED DATA PROBLEMS

The class imbalance problems eventuate due to the presence of minor class in data, and on
classification, the classifiers show bias behavior towards the majority class. For instance, in a majority class
we have 99% specimens and just 1% specimens in minority class, and then accuracy attained by the
classification algorithm is 99%, that is from the majority class. Whereas, the minority class is dominated by
majority class and that 1% could be some important samples. For example, catching of cancerous cells in
medical diagnosis, misclassification of non-cancerous cells may prescribe more clinical tests, but if defected
cells of cancer will be misclassified then it poses a very serious health risk. Hence, in unbalanced data
classification, due to the design principles of algorithms, the majority class specimens are not or less
misclassified. Subsequently, the all-around accuracy of classification in machine learning algorithms mostly
misclassifies minority class which will result into more misclassification cost, time and risk evaluation [23].

Rareness comes in the result of erring nature of small disjoints. So, why rareness is a problem,
can be understood by knowing the reasons why small disjoints are so error disposed. One reason is that small
divisions or disjoints may not show the rare or anomalous cases, yet relatively something else like noisy data.
Therefore, it should keep only “meaningful” small divisions. For removing sub-ideas (i.e., disjoints) that are
not meaningful, mostly classifier induction systems have some ways of avoiding over fitting. Inductive bias
in rare classes also performs a role. So, in the presence of uncertainty (or biasing towards priors class),
many induction systems lean to favor more common classes [17]. Distinguishing between two components of
the imbalanced datasets is a major issue of imbalanced datasets problems:

e (IR) the imbalance as the ratio of number of minority
number of majority
e  (LI) The lack of information for the minority class.

Both components exist in imbalanced datasets learning problems, but as mentioned before, other
factors such as overlapping, over fitting, small disjoints and size of datasets also affect a specific machine
learning algorithm. All algorithms suffer from the lack of information (which cannot be learned) but it is
important to conclude the ones which do not suffer from imbalance data ratio. For example, a dataset
containing 1:99 ratio for minority:majority specimens respectively, IR is same for ratio 10:990, but minority
class is low esteemed due to poor representation in first dataset and sustain from LI lack of information than
the second dataset [24].

For performance evaluation, most important consideration is to choose appropriate performance
metrics for analysis. To calculate the accuracy rate, we commonly use confusion metrics. But, it shows some
flaws in results like it neglects the minority class data and it just lowered the global measures to give the best
result like as low error rate [25]. A very applicable visual tool, Receiver Operating Characteristic (ROC)
curve demonstrates the diagnostic ability of a learning classification system as its perception threshold is
diverse, it interpret the trade-off between the costs (False Positive rate) and benefits (True Positive rate)
[29]. For evaluation of models on average, the Area Under an ROC curve (AUC) gives a measure
performance of single classifier [27]. There are also many other metrics used for performance evaluation,
some famous and commonly used are Geometric-mean (G-mean), F-measure (Fm), sensitivity,
and specificity [25], [28].
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4. SOLUTIONS PROPOSED FOR CLASS IMBALANCE PROBLEMS

Owing to the importance of class imbalance problems, there is significant contribution made in
developing techniques to solve these problems. These propositions can be categorized into three types
according to how they are proceeding with class imbalance, external or data level approach, internal or
algorithmic level approach and cost-sensitive approach. Moreover, ensemble learning classifiers are also play
a significant role in imbalanced data classification.

4.1. External, Data Level (Preprocessing) Approach

Resampling techniques are used for preprocessing of imbalanced data that can be distributed into
three types; random under-sampling method that eliminates specimens of majority class randomly and
generates a subset of primary dataset in a way to balance the ratio. It may lead to the loss of potential data
due to eliminating some data that can be used in induction process. Random over-sampling method,
it increases the quantity of specimens in minority class by replicating the existing specimens randomly and
generates a superset of the primary data. But, it can enhance the chances of over fitting due to replication.
And lastly, hybrid technique, it unites both sampling methods to balance the ratio [29].

Synthetic minority over sampling technique (SMOTE) [10], in minority class, new specimens are
created by interpolation of minority class specimens which reside together. SMOTE selects randomly one of
the k-nearest neighbors (KNN) of an inferior specimens and creates a duplicate specimen generating value
from a random both interpolated specimens. Decision boundaries have been made for minority class to
disperse more into the space of majority class. Hereby, this method avoids the over fitting problem but it
creates noisy and borderline specimens that may create problems. For such problems faced in SMOTE,
some of the filtering based methods are used to avoid noise in imbalanced datasets (i.e. SMOTE-TL and
SMOTE-EL) on the other hand, for handling the imbalanced data, original sampling techniques are also
modified with neighborhood-balanced bagging (NBBag) [30].

Modified synthetic minority oversampling techniqgue (MSMOTE) [31] is an improved form of
SMOTE. By calculation of distances between all specimens in this algorithm, minority class is divided into
three groups, latent noise, safe, and border specimens. It rejects the hidden noise spots based on kNN
classification method when MSMOTE generates new examples. However, it does nothing for hidden noise
instances, also does not prioritize the important characteristics. Extension of SMOTE and Iterative—
Partitioning Filter (IPF) is used to handle noises and regular the class boundaries [32]. Modifications of
SMOTE go further for more powerful data level techniques, like extension of SMOTE, B1-SMOTE and B2-
SMOTE [32] to normalize the imbalanced data.

Majority weighted minority oversampling technique (MWMOTE) [33] selects the specimens of
minority class effectively which are difficult-to-learn and then allocates weights appropriately. Moreover,
it is able to create accurate artificial examples. Selective preprocessing of imbalanced data (SPIDER) [34] is
also a technique which, from majority class, it merges screened complex examples with local oversampling
of minority class by coinciding two phases, identification and preprocessing.

A new inverse random under-sampling (IRUS) [35] is used to resolve the imbalanced data problem
by using inverse (ratio of unbalance cardinality) approach. It is also significant for multi-label classification.
In [36], for handling the problems of imbalanced datasets, radial basis function network (RBFN) is proposed
in which strategy of training local weights is used, which is designed by using local and global terms. In local
weights training methods, lessened value of imbalance ratio (IR) should be balanced with any technique
(i.e. SMOTE or any other) and the major value of IR gives better results.

Authors proposed in [37] a classifier algorithm which is a combination of particle swarm
optimization (PSO) and SMOTE, whereas incorporating like logistic regression (LR), C5 decision tree (C5)
model, and 1-nearest neighbor search and some famous classifiers. Accuracy indices and G-mean are used as
performance metrics for this new set of classifiers for justifying its effectiveness. Experimental results show
that PSO + SMOTE + C5 is an efficient hybrid algorithm for 5-year lastingness of breast cancer patients.
Another technique very powerful for binary class imbalanced problems is proposed that is fusion of PSO,
SMOTE and aided radial basis function (RBF) classifier in [38] and tested by different types of metrics
shows combination of SMOTE + PSO-RBF performs well on normal imbalanced datasets, but not
satisfactory for the highly imbalanced datasets. Neighbor Weighted K-Nearest Neighbor (NW-KNN) [39]
used for sambat online classification and this algorithm is able to classify imbalanced data with optimal value
of k neighbor 3. All data level techniques are summarized in Table 1 with pros and cons.

4.2. Internal Algorithmic Approaches

Internal or algorithmic level approach may create or modify the existing algorithms and take
consequences of minor class into consideration for handling the imbalanced data. Different types of
algorithms are discussed below.

Imbalance class problems in data mining: a review(Haseeb Ali)
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4.2.1. Variants of Support Vector Machine (SVM)

Class imbalance problems occur frequently in DNA microarray data, due to which forecasting
performance for minority classes becomes poor. Furthermore, other features, such as high-dimension and
high noise, small sample, etc., aggravate this issue. Ant colony optimization (ACO) sampling was proposed
in [40], that is a new under-sampling technique based on the ACO idea for handling this problem. Support
vector machine (SVM) is a classification technique which is generally used for the imbalanced data.
Data level approaches with pros and cons shown is Table 1. SVM and its variants with their pros and cons

shown is Table 2.

Table 1. Data level Approaches with Pros and Cons

Data level Methods/Approaches Pros Cons
Synthetic minority oversampling technique (SMOTE) Increase minor class examples to balance Over fitting
[10]
Neighborhood-balanced bagging (NBBag) [30] Better than current over-sampling bagging Costly

Modified SMOTE (MSMOTE) [31]

Iterative—Partitioning Filter + SMOTE (SMOTE-IPF)
[32]

Majority weighted minority oversampling technique
(MWMOTE), [33]

Selective preprocessing of imbalanced data (SPIDER)
[34]

Novel inverse random under-sampling (IRUS) [35]

Radial Basis Function Networks (RBFN) SMOTE
[36]
SMOTE + PSO + C5 [37]

Combined SMOTE and PSO-based RBF classifiers
(SMOTE+PSO-RBF) [38]

extension and competitive to randomly
balance bagging.
It reduces the noise.

Addressing the problem of bordered and
noise examples in unbalanced data sets.
According to Euclidean distance it creates
artificial inferior samples.

Filter difficult examples.

Improve multi-label classification accuracy,
Beneficial for irregular learning datasets
sizes.

Higher the IR Value of dataset tends to
better result.

Estimate 5-year lastingness of breast cancer
patients
Create synthetic specimens for minority
class, and RBF give very good
performance.

Does not consider the
priorities of important
features.

Small sample size

Multi class imbalance
problem.
Complex

Other different applications
to multi-label classification.

More storage Space.

It can improve for other
cancer datasets.
More storage space.

Table 2. SVM and its Variants with Their Pros and Cons

Algorithms/Methods/Approaches

Pros

Cons

Ant colony optimization (ACO) sampling, SVM [40]

Mega-trend diffusion and Support vector machine
(MTD-SVM) [41]

Adjusted F-measure, SVM with suitable Kkernel
transformation [42]

Parallel Selective Sampling (PSS), combined with
SVM, (PSS-SVM). [43]

EnSVM and EnSVM+ with additional re-sampling
method [44]

Preprocessor SVM with MLP, LR, and RF intelligent
algorithm. [45]

Second-order cone programming with SVM (SOCP-
SVM) [46]

Near-Bayesian Support Vector Machine (NBSVM)
[47]

To resolve imbalanced data
classification problem by ACO
algorithm based sample selection
process.

Enhance the number of samples in
minority class.

It manages the cost function and
imbalance data with kernel scaling.

Accurate statistical predictions and low
computational complexity
Effective than normal SVM

It balance data in effective manner and
increase the number of samples in
minority class.

Due to SVM-LP formulation it gives
Robust and improved classification
performance.

It minimizes the misclassification cost
by minority class.

Excessive
Computational and storage cost.

Synthetic data generation is
costly, and MTD technique
performs better on small sized
datasets.

Efficient estimation
Strategy for parameters and
different kernels.

For parallel and distributed
computing.

It does not determine the value
of k automatically.

Not so simpler and faster

Only designed for imbalanced
data.

Performance metrics
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The number of specimens can also be enhanced in minority class by using mega-trend diffusion
(MTD) method. SVM and KNN are employed with machine learning methods for creating hybrid MTD-
KNN, MTD-SVM and prediction models in the predictor stage [41]. By using the cost analysis, it is marked
that this technique MTD-SVM is finest model as compared to Random Forest, Naive Bayes, and KNN.

In an imbalanced dataset, majority and minority problems are handled in [42], in which SVM is
improved with the kernel scaling method. Parallel selective sampling (PSS), combined with the SVM,
PSS-SVM [43] classification presented promising results on benchmark datasets, that is far superior from
standard SVM because of no convergence. For reducing unbalancing in large data sets, it is able to select data
from the majority class. Authors in [44] combined ensembles of SVMs with both under-sampling and over-
sampling techniques for improving the prediction performance. Comprehensive experiments showed that this
technique is better than individual SVM as well as several other classifiers. The research experimented on
selective ensemble EnSVM+ and base model EnSVM with additional re-sampling methods.

Multilayer perceptron (MLP), random forest (RF), logistic regression (LR) and other intelligent
machine learning algorithms results are more improved by these approaches in which, SVM trained as the
preprocessor for improving the results of intelligent algorithm. Two phases have been taken in balancing
approach; in first phase, the SVM tuned the imbalanced data to get improved balance data and this improved
data, which is used as the input in the second phase to MLP, RF and LR [45]. Furthermore, these all
techniques are summarized in Table 2 with pros and cons.

4.2.2 Clustering

Clustering is used to separate the data into classes, whereas for detecting the minority class samples
in data, outlier detection is employed. On the basis of clustering techniques and outliers detection,
the similarity based hierarchal decomposition method takes place. It contains two portions in hierarchy
construction; one, in which clusters are misclassified, and second, clusters are perfectly classified [48].
Data similarities of labeled subsets at every level are used to make hierarchy and feature subsets as well to
build other data based on these different levels. Class overlapping and variety of imbalanced problems can be
avoided by this method.

Fuzzy rule based classification systems (FRBCSs) [49] also improved the classification
performance. For handling the imbalanced data, this is a useful technique where low and high ratio of
imbalanced datasets can be taken by this method by using 2-tuple genetic tuning which also enhances the
performance of FRBCSs. Summary of this method is given in Table 3.

4.2.3. Feature Selection

For many machine learning algorithms, feature selection is known to be door step, in such situations
when the data is exceptionally high-dimensional. The data which is disparate in nature and high-dimensional
in learning, feature selection method is superior to achieve the best possible results. When dealing with small
feature sets, the fundamental power of FS metrics is negated. In general, main objective of the feature
selection is to permits the classifier for achieving best performance by choosing a subset of y features; here y
is a user-specified parameter. Each feature is valued independently based on a rule by using filters for high
dimensional data sets [50].

Existing feature selection measures for imbalanced datasets are not suitable, suggested by Zheng et
al [51]. A feature selection frame work was proposed by authors, which chooses the majority and minority
classes features separately and combines these features explicitly. Existing measures in this way can be
simply converted by considering the features of majority and minority class individually. This method is so
far simple but effective for all high dimensional and the imbalanced datasets having limited sample size
classes of the imbalanced datasets.

To resolve the problems in imbalance datasets related to feature selection, two different methods
were proposed by authors, Decomposition-based and Hellinger distance-based methods. First method was
used to tackle the conflicts of the imbalanced class distribution by measuring the distributive differences.
In second method, huge classes were isolated in synthetic subclasses and various techniques were utilized for
classification process [52]. Summary is given in Table 3.

4.2.4. One Class Learning

In this method, the algorithm identifies such specimens which correspond to that particular class
whereas rejects the remaining. In this way, it is helpful for imbalanced data classification. For instance,
for minority class, it fetches the samples specifically which belong to its class, ignore the other samples,
and does same for the majority class. One class learning for high-dimensional imbalanced datasets,
gives better performance than others [50]. Furthermore, this method is based on the rules, the separate and
conquer approach is used in rule induction system to build iteratively rules and cover the examples of
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previous uncovered training examples, Ripper [53]. From most rare to most common class, it makes rules for
each class, up to no negative samples covered; it keeps adding conditions for each rule. The capability of this
algorithm provided by Ripper is fairly directed to learn rules for minority class only.

For excessively imbalanced datasets which may be encompass of noisy features and high
dimensional space one class learning is efficiently useful. Kowalczyk and Raskutti [5] argue that violent
feature selection methods are related to one class learning, however often it can be expensive to apply rather
than one class learning, which is more practical. This method is summerized with pros and cons in Table 3.

4.3. Cost Sensitive Learning

Cost sensitivity framework lies between internal and external level approaches. It integrate both
approaches, algorithmic level modifications and data level alterations by modifying the learning procedure to
accept costs and adding costs to samples respectively [16], [54]. For minimizing the overall error cost of both
classes and by assuming higher misclassification cost of minority class, it tends the classifier to bias towards
minority class. Moreover, from an example in the aspects of cost sensitivity for minority class of a certain
cancer patients medical diagnosis, if we declared cancer patient as positive class (i.e. minority class) and non-
cancer, healthy as negative class (majority class) so misclassifying a cancer patient is called “false negative”
(that was actually positive but classified as negative) is very sensitive case and expensive as compared to
“false positive” (that was actually negative but classified as positive) error i.e. for negative class.
In misclassification or delay in correct medical diagnosis and treatment, patient can lose his/her life [18].
For minimizing the misclassification and total test cost, cost matrix for cost sensitive learning and
formulation cost also with their improvements are discussed in [18], [56].

For reaching unequal treatment to the classes which is not equally treated by cost-sensitive learning,
it preserves the main AdaBoost learning framework [29] and also it introduces cost items simultaneously into
weight update formula., Therefore, the common difference in these proposals can be like how they improve
the weight update formula. From the boosting family of cost sensitivity, the most representative approaches
are AdaC1,AdaC2 and AdaC3[56], CSB1,CSB2 [57], AdaCost[58]. Proposed texonomy for the review of
imbalanced class problems in data mining shown as Figure 2.

Imbalanced data solutions

AN

Preprocessing Algorithmic Cost Ensemble
Techniques Approaches Sensitivity Learning
Over Under SVM and Clustering Feature One C.!ass Bagging Boosting
sampling sampling its variants Selection learning Based Based
+SMOTE[10] IRUS[37]  +MTD-SVM  Clustering by  DBFs[54] ®Oneclass = Cost sensitive * gm'. (64 * fé\;I]OTEB"w
* NEEag [32] (2] technique learning learning [56 aeeing .
« MSMOTE [33] *+PSSSVM[44]  similarity- 51 . Ada(:ost[[SQ]] o Under- + MSMOTEBoost
« MWMOTE [35] « SOCP-SVM based Bagging [65]  [33]
« SMOTE + PSO [47] bierarchical o Under Over-  ® RUSBoost[68]
+C3[39] « NBSVM [48] erarchical Bagging [64]  * DataBoost-IM
« ACO-SVM decompositio o MVotes [66] [65]
[#1] n, outl_1er
» EnSVM and detection
EnSVM+[45]  [49].
*FRBCSs, 2

tuple based

genetic

algorithms,

genetic fuzzy

systems. [50]

Figure 2. Proposed texonomy for the review of imbalanced class problems in data mining

4.4. Ensemble Learning Algorithms
Composition of several classifiers is used in a manner to get a new classifier so that every one of
single classifier performs better [59]. Accuracy of single classifier in machine learning has been increased by
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ensembles of classifier as well as single learning classifiers cannot solve imbalance class problem

individually, but to deal with this issue, learning algorithms can be specially deliberated [29]. Different

techniques and methods can be used to develop ensemble learning algorithms by considering a weak learning
algorithm. Like Bagging [60], Boosting [61] and Adaboost [62] are the most famous ensemble learning
algorithms.

e  Bagging : The concept of bootstrap accumulating to construct ensembles introduced by Breiman [60].
Bagging used for imbalanced data problems in a way to create the balanced datasets distributions of
minority and majority samples. Furthermore, four main bagging based ensembles are proposed:
Over-Bagging [63], Under-Bagging [64], Under Over-Bagging [63], without compromising the
importance of the diversity.

e Boosting : In 1990, Schapire [61] introduced a new term Adaptive Resampling and Combining
(ARCing). The researcher certified that Probably Approximately Correct (PAC) learning framework
can change a weak learner into a strong learner. Boosting is little variation in bagging like selecting the
points which give wrong prediction. SMOTEBoost [65], MSMOTEBoost [31], RUSBoost [66],
and DataBoost-IM [67] algorithms are included in boosting based ensembles for training of ensuing
classifier directed to minority class.

e AdaBoost [62] was first practicable approach of Boosting, and it is found in top ten data mining
algorithms [68]. In imbalanced data, the algorithm biases the learning (the weight), but in AdaBoost
whole dataset is used to train each classifier serially and after iteration, the samples which are harder to
classify (minority examples) are mainly focused by this approach [62]. AdaBoost.M1 and AdaBoost.M2
[69] are the two of famed modifications that have been used in imbalanced dominions.

For classification of imbalanced data, a novel ensemble technique is also used, that convert an
imbalanced dataset into many balanced subsets of original data and number of classifiers with specific
classification algorithm are then applied on these multiple subsets. These classifiers for new data give
classification results which again united by specific ensemble rule [70].

4.5. Multiclass Imbalance Problem

Binary class imbalance problems are mainly more focused by all efforts done so far. But in
multiclass imbalance problems, there is not enough research performed to solve these problems.
These unsolved issues found in many real-world applications which have multi-minority, multi-majority
classes like one majority and many minority classes or one minority and many majority classes respectively.
Both types of classes affect negatively to minority and overall performance [1].

Table 3. Clustering, Feature seletion, One Class Learning, Cost Sensitivity, Ensemble Learning and
Multiclass Techniques and Approaches

Algorithms/Methods/Approaches Pros

Clustering by technique similarity-based This technique useful for identification In duration of training this method,
hierarchical decomposition, outlier detection of classes and balancing them. computational complexity is very
[48] high.

FRBCSs, 2 tuple based genetic algorithms, Enhance the performance of standard Highly imbalanced datasets.
genetic fuzzy systems. [49] FRBCSs.

Density Based Feature Selection (DBFS) [71] To tackle high-dimensional data and
the small sized samples problem in
imbalanced datasets.

To solve the feature selection issues
in the imbalanced datasets.
Efficient when data is high
dimensional, useful for both binary and
multiclass imbalanced datasets

Cons

Don’t work for multiclass,
encounter many problems.

Only compared with only three
trending feature selection methods.
Expensive.

Decomposition-based and Hellinger distance-
based methods. [52]
One class learning [50]

Cost sensitive learning [55]
AdaCost [58]
Ensemble Learning [59]

A Novel ensemble method for classifying
imbalanced data. [70]
OAA and OAO Schemes [72] [73]

Reduce the total error cost
Efficient than normal CSL
It increases the generalization ability
and accuracy of single classifier
No loss of information and remove
chances of mistakes
Improve the coverage of minority class

Define misclassification
Complex
Alone not sufficient to solve class
imbalance problems
For only binary class imbalanced
data.
Create ambiguity

samples

For solution of multiclass imbalance problems, most existing methods use decomposition in which it
handles each imbalanced binary subtask by employing binary class imbalance techniques. One most common
example of imbalanced multiclass problem is protein fold classification, The author Tan et al. [74] put one-
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against-one (OAO) [73], one-against-all (OAA) [72] ideas to resolve this problem and improved the
prediction of minority class examples, the research built rule-based learners. Without full data knowledge,
it trained each individual classifier, which may left uncovered data regions and also cause classification
uncertainty by each type of decomposition [74]. Without using class decomposition for multiclass imbalance
problem which addresses directly, a cost-sensitive ensemble technique is proposed [75].

A noval adaptive dara structure based oversampling [76] model is proposed which create synthetic
samples and Extreme Learning Machine for Ordinal Regression (ELMOP) for multiclass imbalanced data
issues. The summary of these methods is shown in Table 3.

5. RESEARCH GAPS

There are corresponding gaps in the in the field of imbalanced data that need attention from the
researcher community. Generally, the preprocessing of data in resampling methods is more effective to
balance the class data before learning process. Although, many achievements has been made using hybrid
sampling techniques. Still, there are some issues that need to be solved; such as, over-fitting, computation
cost, lack of consideration of important features, and storage consumption of some techniques. Various
methods of SVM in algorithmic level are useful to resolve imbalanced data problems and misclassification
cost, but such techniques encounter problems of excessive computational and storage cost, yet some
techniques are not simple or fast or specific for the problems. For the purpose of high dimensional data,
the feature selection method is efficient to imbalanced class data; however it is inefficient on multi-class
datasets, also insignificant for small sized data. Clustering and one-class learning are also specific for some
datasets and imbalance problems. Cost sensitive approach is used to reduce the total error cost and efficiently
work with boosting learning algorithm for imbalanced class problems, yet it requires additional focus to
define misclassification cost. Ensemble learning algorithm handle the over fitting problem and generalization
ability of class imbalanced problems, however some ensemble learning techniques alter the data distribution,
hard to implement on real world data. Also multi-class dataset imbalanced issues need more improvement.

Research gaps are summarized as follows.

e  Techniques used for oversampling like SMOTE [10] are suffering through overlapping, noise or
overfitting of minority and majority samples due to wrong selection of samples for synthetic generation,
this is in also case of under-sampling techniques which remove some potential data from the majority
class.

e  The hybrid algorithms proposed for classification of imbalanced data like SOCP-SVM [46], MTD-
SVM[41] give significant accuracy but complexity of algorithm is increased due to hybrid approaches.
Clustering by technique similarity-based hierarchical decomposition [48], outlier detection
computational complexity is high in training process. One class learning [50] is significantly expensive
as it has complex model which is robust for both binary and multi class datasets, moreover its
computational time is long.

e  Cost sensitive learning is significant for imbalanced class problems especially in medical real world
datasets but it cannot define the misclassification cost specifically.

6. CONCLUSION AND FUTURE WORK
This paper surveyed literature and found the theoretical concepts of imbalance data problems,
and presented different challenges and methods to handle imbalance data problems in classification. It is
essential to balance the imbalanced class with efficient method by considering the cost factor. The right
selection of classifier methods with performance evaluation metrics should be applied in order to accomplish
better results. In conclusion, we have found that ensemble learning algorithms handle the over fitting
problem and increase generalization ability of class imbalanced problems. The research community presented
positive collaboration between the sampling techniques and bagging ensemble learning algorithms; such as,
RUSboost, which showed to be the least complex in computation among all significant performers.
Furthermore, current novel ensemble learning methods are also effective for both binary. Such as Boosting,
which is also useful ensemble learning algorithm; it enhances the performance of weak classifiers.
While developing more solutions for imbalanced learning problems, the research community should consider
the following summarized directions.
e  The nature and structure of samples in minority classes need focus to be improved source of learning
complications.
e  Future research on learning algorithms should consider new area, research in how learning algorithms
are divergent and consider specific method for what type of learning problems.
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e  Propose solutions for multi-label learning based on particular designed nature of problem.

e  Besides altering the data distributions, focus on the nature of imbalanced dataset.

e  Propose new techniques for multi-class imbalanced data that consider different relationships between
the classes.
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