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 Load forecast provides useful information for effective electricity dispatch, 
planning for future expansion and significantly enhances operational 

efficiency. Conventional techniques yield unsatisfactory forecast which 
results in high energy losses and in turn leads to high operational cost and 
suppressed electricity demand. This paper presents hybrid neuro fuzzy 
(HNF) and Nonlinear Auto-Regressive with eXogeneous input (NARX) 
neural network for the short term load prediction of Kano region Nigeria.  
Simulation results obtained demonstrated the generalization capabilities of 
the models in predicting the load accurately well by achieving MAPE of 
0.025% and 0.6551% for the HNF model and NARX network model 
respectively. The models could serve as promising tool for predicting Kano 

Zone load demand. 
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1. INTRODUCTION  

Load forecast refers to the method utilized by energy supplying companies to predict the energy 

required to meet the demand and supply equilibrium. Load forecasting can be categorized as either a short-

term (which concerns a few hours prediction and mostly provides necessary  information  for  the  system 

management of day-to-day operations and power allocation) or medium-term (a few weeks up to a year 

prediction and this is used  for  the purpose of scheduling fuel supplies and unit maintenance) or long-term 

(over a year forecast used  to  provides  electric utility  company  management  with  future expansion 

requirements, equipment  purchases and performance improvement) [1]. 

It is significantly important to estimate hourly load and daily peak load [2] as these provide adequate 

information of load flows and helps in decision making. Appropriate implementation of the decision 

enhances network reliability, reduces frequent power outage and equipment failure. The accuracy of 
forecasting is of great significance for the system operation and energy management. However, traditional 

(both linear and nonlinear) forecasting tools when used yield unsatisfactory results which could be due to few 

samples of data sets or the data contained large amount of noise or non-stationary. 

Intelligent techniques provide better alternative. These include various paradigm that uses artificial 

intelligence methods such as expert system [3], support vector machine (SVM) [4-5], Fuzzy Logic [6] and 

neural network. Expert system is a knowledge base method that builds load forecasting by imitating 

experience and human expertise. Nevertheless, the main issues with the knowledge based approach are need 

of large amount of time to acquire the required skills, errors may occur with knowledge base which in turn 

leads to wrong forecasting and cannot adapt to changing environment. SVM models are promising nonlinear 

approximation tools which usually produced good load forecasting results. SVM has much better 

generalization capability in practice, less risk of over fitting and effective extrapolation. 
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Notwithstanding, choice of suitable kernel function, difficulty in understanding and interpreting of 

the final model are major limitations of support vector machine. Fuzzy logic is one of the most convenient 

and effective method of mapping an input space to an output space. The rule-based operation nature aids 

fuzzy logic in handing reasonable number of inputs and outputs. However, rules formation, choice of 

membership functions and adaptability are the main drawbacks of fuzzy logic. Hybrid neuro-fuzzy (HNF) 

and neural network are quite adaptive to changing environment, have the abilities of handling well rowdy 

data, uncertainties and producing reliable forecasting results [7-12].  

The paper investigate the effectiveness of HNF and NARX- neural network in load forecasting. 

Several performance measures were used to evaluate the capabilities of the models in estimating the load. 

The organization of the paper is as follows: section 2 describes the materials and methods, section 3 presents 
simulation results and discussion while section 4 is the conclusion. 

 

 

2. RESEARCH METHOD  

2.1. Zone Description 

Kano zone is one of the eleven electricity distribution zones in Nigeria with geographical coverage 

of 67,128 km2 comprising of Kano, Katsina and Jigawa States. The distribution capacity is over 2000MVA 

and the electricity comes from national grid supplied by Kumbotso 330/132/33KV, Dangora 132/33KV and 

Funtua 132/33KV transmission stations, with combined total installed capacity of 600MVA [13]. Part of the 

responsibilities of the zone are network coverage, provision of quality power supply and efficient marketing 

and customer services delivery. These can only be achieved with an appropriate load forecasting. 

 

2.2. NARX Neural Network 

The ability of neural network to learn and generalize make it an appropriate tool for approximating 

complex problems that are intractable [14]. Neural network has a built-in capability to adapt its synaptic 

weight to changes in the environment, this gives the network an edge over other nonlinear approximating 

techniques. NARX neural network belongs to a class of neural network termed as recurrent. NARX neural 

network requires a limited number of feedback as compared to other recurrent neural network. NARX 

network has a great computational abilities [15] and converges much faster with a better generalization. 

NARX neural network is expressed as follows: 

 

            ,....., 1 , , ,....., 1u yy t u t n u t u t y t n y t    
  (1) 

 

where   represents nonlinear function to be mapped,  u t  and  y t  depict the input and output of the 

network at time t  and un  and 
yn  are the input and output order. NARX network is commonly configured as 

either parallel mode or series- parallel mode. Parallel NARX neural network is quite efficient especially in 

multi-step prediction and suitable for validation [16]. Parallel NARX network is given by: 

 

         
~ ~ ~

1 ,....., 1 ; ,....., 1p p py k u k u k m y k y k n
 

      
    (2) 

 
Although there is no established systematic method of determining the structure of the network. 

Nevertheless, appropriate network structure aids in producing an accurate forecasting results. 

 

2.3. Hybrid Neuro Fuzzy 

There are many ways of integrating neural network and fuzzy to form neuro-fuzzy system. The 

integration can be either concurrent or cooperative or hybrid neuro-fuzzy. Cooperative neuro-fuzzy as 

depicted in Figure 1 looks like a pre-processor in which the neural network (ANN) learning algorithm utilizes 

the training data set to obtain the fuzzy inference system (FIS) membership functions or fuzzy rules. Once the 

fuzzy inference system parameters are obtained, the neural network goes to the background. 
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Figure 1. Cooperative neuro-fuzzy structure 
 

 

In a concurrent nuero fuzzy shown in Figure 2, neural network aids the fuzzy system continuously 

(or vice versa) to obtain the required parameters especially if the input variables of the controller cannot be 

measured directly. This kind of combinations do not update the fuzzy system but only assists to enhance the 

performance of the overall system. Learning happen only in the neural network and the fuzzy system remains 

unchanged during this phase [17]. 

 

 

 
 

Figure 2. Architecture of Concurrent neuro fuzzy 

 

 

In a hybrid neuro-fuzzy, the fuzzy system and neural network are one fully merged system.  

The fuzzy system utilizes the learning algorithm since it’s depicted in a special neural network like structure 

[18]. Hybrid neuro fuzzy has supervised learning abilities as stated in [19-20]. HNF is made up of nodes, 

which depend on parameters that are updated based on certain learning algorithm to reduce error measure and 

links that always show the direction of information flow. The adaptive network received much attention from 

various fields as a result of its enticing features such as speedy convergence, accurate learning, ease of use, 

tolerating uncertainties and imprecise information [17]. The learning algorithm for the fuzzy inference 
system (FIS) parameters updating can be back-propagation or hybrid learning algorithm [21-23]. 

 

2.4. Model Building 

A one day and half day hourly data were collected from Kano Electricity Distribution Company 

(KEDCO) to develop the models. To achieve reliable prediction, the data were preprocessed and randomly 

divided into training and testing data set. The training data set consisting of 80% in each case were used to 

build the forecasting models for one day and half day respectively. For testing the generalization capability of 

the models testing data set were utilized comprising of 20% for each model. 

 

2.4.1. Hybrid Neuro Fuzzy Model Structure 

Using the training data, the architecture of the HNF models for the one day and half day were 

realized. As illustrated in Figure 3, two gaussian membership functions were assigned to each inputs and this 
generated eight (23) fuzzy rules. Each of these fuzzy rules yeilded one rule output and the aggregate of the 

rules produced the final output. 
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Figure 3. Hybrid Neuro Fuzzy Structure 

 

 

2.4.2. NARX Neural Network Structure 

Same training data set were used in realizing the structure of the NARX  neural network, the 

structure was selected through trial and error since there is no established systematic method as shown in 

Figure 4. The hidden layer consisted of 10 neurons, [0 1] and [1 2] were used for input and output delay 

respectively. 

 

 

 
 

Figure 4. NARX Neural Network model Structure 

 

 

3. RESULTS AND ANALYSIS 

The performances of the proposed models during the training and testing phases for the one day and 

half day were illustrated in Figure 5, Figure 6, Figure 7 and Figure 8. 

During the training phase the HNF and NARX neural network were able to achieved high  
accurate prediction as illustrated in Figure 5. However, in testing phase the performance of the ANFIS is 

slightly better than the NARX Neural network as dipcted in Figure 6. The accuracy of the models were 

evaluated using commonly used measures as Root Mean Square Error (RMSE) and Mean Absolute 

Percentage Error (MAPE). Table 1 presents the results obtained by the models during training and testing 

phases for the one day. 

From the Figure 5 during the training phase the models demonstrated their capabilities in tracking 

well the trajectories of the observed data and achieved highly accurate forecasting with MAPE of 0.000024 

and 0.019591 for the HNF and NARX NN respectively as illustrated in the Table 2. 

 

 

 
 

Figure 5. Models performance during training 

 
 

Figure 6. Models performance during testing 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 16, No. 2, November 2019 :  562-567 

566 

Table 1. Full Day Model Performances 

Model 
Training Phase Testing Phase 

RMSE MAPE (%) RMSE MAPE (%) 

Hybrid Neuro Fuzzy 7.3058E-11 3.3288E-06 0.2326 0.0250 

NARX Neural Network 8.5474E-06 0.4757 1.1145 0.6551 

 

 
The obtained results indicated that the models have accurately estimated well the observed data 

having achieved a MAPE of less than 10% during the testing phase as illustrated in the Table 1.  

The generalization capabilities of the models are extremely accurate in line with a scale of judgement of 

forecast accuracy [24, 25]. 

The ranges of the data samples for the half day differ from the full day data set. The performances of 

the models for the half day during training and testing were illustrated in Figure 7 and Figure 8. 

From the Figure 5 during the training phase the models demonstrated their capabilities in tracking 

well the trajectories of the observed data and achieved highly accurate forecasting with MAPE of 0.000024 

and 0.019591 for the HNF and NARX NN respectively as illustrated in the Table 2. 

 

 

 
 

Figure 7. Half day models performance during 

training 

 
 

Figure 8. Half day models performance during 

testing 

 

 

Table 2. Half Day Model Performance 

Model 
Training Phase Testing Phase 

RMSE MAPE (%) RMSE MAPE (%) 

Hybrid Neuro Fuzzy 0.00011 0.00002 0.38332 0.05273 

NARX Neural Network 0.06321 0.01926 0.00400 0.01753 

 
 

In the testing phase as depicted in Fig. 6 the models were able to efficiently estimate the observed 

data and the forecasting accuracy is quite high for both the models having achieved less than 10%, although 

the NARX network is slightly better than the hybrid neuro fuzzy model, this could be connected to the choice 

of the suitable structure and generalization capability of NARX neural network. 

 

 

4. CONCLUSION 

The paper has presented hybrid neuro fuzzy and NARX network model for short term load 

forecasting of Kano Zone. The obtained results indicated the models achieved highly accurate forecasting of 

less than 10% in both the two cases (full day and half day). Apparently this proves their generalization 
capabilities especially when the data samples are few as compared to the traditional forecasting tools which 

mostly perform poorly for few data samples or non-stationary data samples. Smaller value of MAPE 

indicates the more accurate the forecasting model. The models may serve as an indispensable forecasting 

tools for the Kano Zone load demand. 
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