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 A non-dominated sorting Harris’s hawk multi-objective optimizer 
(NDSHHMO) algorithm is presented in this paper. The algorithm is able to 
improve the population diversity, convergence of non-dominated solutions 

toward the Pareto front, and prevent the population from trapping into local 
optimal. This was achieved by integrating fast non-dominated sorting with 
the original Harris’s hawk multi-objective optimizer (HHMO). Non-
dominated sorting divides the objective space into levels based on fitness 
values and then selects non-dominated solutions to produce the next 
generation of hawks. A set of well-known multi-objective optimization 
problems has been used to evaluate the performance of the proposed 
NDSHHMO algorithm. The results of the NDSHHMO algorithm were 
verified against the results of an HHMO algorithm. Experimental results 

demonstrate the efficiency of the proposed NDSHHMO algorithm in terms 
of enhancing the ability of convergence toward the Pareto front and 
significantly improve the search ability of the HHMO. 
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1. INTRODUCTION  

Several real-world optimization problems take into consideration multiple conflicting goals 

(objectives) simultaneously. This type of problem is known as a multiobjective optimization problem (MOP). 

Multi-objective optimization has been applied in several areas, such as, manufacturing process optimization, 

engineering design, chemical engineering [1, 2] and cloud computing [3]. In general, solving an MOP is 

much more difficult than a single objective optimization problem (SOP) because an optimal solution of the 
SOP can, generally, be clearly defined. On the other hand, in the MOP, there is usually no single solution that 

is optimal for all objectives. In other words, improving the value on one objective can make the value on 

other objectives worse because, there is a trade-off between different objectives. Therefore, it is not possible 

to simply define the optimal solution for an MOP. Instead, there is a set of solutions, not dominated by any 

other feasible solution, with different trade-offs, known as a Pareto optimal solution set or Pareto boundary 

(Pareto frontier) of a MOP [4].  

MOPs using conventional single-objective optimization methods is not efficient. Therefore, the 

search for new optimization methods that can overcome the great challenge of this type of problem has 

become necessary. One way to deal with this challenge is to convert MOPs into SOPs using an aggregated 

objective function, which requires finding solutions with priorities, or weights, associated with the objectives 

and utilizing a single objective optimization algorithm to solve a problem. However, for a complex MOP 

with a large number of objectives and high-dimension, it is difficult to find an optimal solution using 
traditional methods. Therefore, the interest moves toward using metaheuristics. With the development of 

swarm intelligence (SI) theory [5], several multi-objective SI-based metaheuristics have been proposed. Most 
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of these algorithms were deduced by various existing single-objective algorithms such as multi-objective ant 

colony optimization (MOACO) [6], multi-objective particle swarm optimization (MOPSO) [7], multi-

objective firefly algorithm (MOFA) [8], multi-objective artificial bee colony (MOABC) [9], multi-objective 

grey wolf optimizer (MOGWO) [10].  

One of the most successful SI-based algorithms is the grey wolf optimizer (GWO) algorithm [11], 

which has been widely used in solving complex optimization problems [12-15] because of its simple concept, 

few parameters to be adjusted, easy implementation and strong global search ability. In [10], the MOGWO 

algorithm shows a competitive performance in solving different MOPs as compared to other well-known 
algorithms such as MOPSO [7] and multi-objective evolutionary algorithms based on decomposition 

(MOEA/D) [16]. The MOGWO algorithm, similar to most SI-based multi-objective optimization algorithms, 

tries to approximate the whole Pareto front and returns a set of non-dominated solutions which are evenly 

distributed across the whole Pareto front as shown in Figure 1(a). However, in real situations, different 

regions of the Pareto front could be more preferred than others and some regions could be not at all 

interesting. Therefore, the main drawbacks of this approach are time is wasted in exploring undesired 

solutions and difficulties for the decision-maker (DM) in determining the most preferred solution among a 

large number of solutions.  

In general, the ultima goal of multi-objective optimization algorithms is to help the DM to find the 

most satisfactory solution rather than all optimal Pareto solutions [17, 18]. This can be achieved by 

combining the preference of DM with the optimization process. In the preference approach, preference 

information is added to the search process to guide the search to the region of greatest interest to the DM. 
This helps to improve optimization efficiency and reduce computational cost [17, 18]. According to different 

ways of interacting with users, multi-objective optimization algorithms can be divided into three categories, 

namely, a priori, posterior and interactive [19, 20]. Interactive algorithms, as preference algorithms, have 

become a new trend, in which the user dynamically guides the search process in an interactive manner until 

an output that is satisfactory to the user is obtained.  

DeBruyne and Kaur [21] proposed the Harris’s hawk multi-objective optimizer (HHMO) which is 

developed based on the GWO [11]; this can be considered as an improved version of the MOGWO [10]. 

Instead of spending time in searching for non-dominated solutions in undesired regions, as in the case of the 

MOGWO, the HHMO algorithm focuses on a particular region of the Pareto front approximated based on 

preference points (reference points) determined by the DM and the non-dominated solutions are clustered 

near a reference point as illustrated in Figure 1(b). Thus, it inherits the advantages of the preference 
interactive approach in terms of effectively finding the most satisfactory solutions. This can help in reducing 

the computational cost [22, 23]. 

 

 

  

 
(a) (b) 

 

Figure 1. Non-dominated objective vectors: (a) evenly distributed across the whole Pareto front;  

(b) clustered near a reference point 

 
 

Although, DeBruyne and Kaur [21] claimed that the HHMO algorithm is able to solve three or more 

objectives, they do not provide any test that shows the performance of HHMO in solving three or more 

objectives with high-dimensional MOPs. This algorithm is relatively new and, according to the No-free-

lunch (NFL) theorem [24], there is no an algorithm that can be efficiently used to solve all optimization 

problems. If the algorithm provides an efficient performance in solving a particular problem, this does not 

mean it will be able to provide the same performance in solving other problems. This has encouraged 
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researchers to propose new algorithms or improve existing algorithms. Therefore, this study focuses on 

performing more tests to validate the performance of the algorithms using different benchmark functions. 

Additionally, to the best of the authors’ knowledge, there is no improved version of HHMO that has been 

proposed in the literature. This paper aims to propose an improved Harris’s hawk multi-objective optimizer 

algorithm, called the non-dominated sorting HHMO (NDSHHMO) by integrating the HHMO algorithm with 

non-dominated sorting (NDS). The NDS is considered as one of the most common vector sorting schemes in 

solving MOPs. Several studies have proved the efficiency and effectiveness of NDS, with most common 

multi-objective evolutionary algorithms (MOEAs) [25-30]. NDS helps in improving the convergence of the 

algorithm towards the true Pareto front (PFtrue), especially for dealing with complex MOPs with a large 

number of local Pareto fronts [31]. The performance of proposed algorithm is evaluated using a set of well-
known MOPs and its results are compared with the original HHMO using several performance metrics. 

In multi-objective optimization, the following important basic concepts are usually used. In general, 

a MOP can be defined as a problem whose search for the set of decision variables, X= (x1, x2, . . . , xd), 

satisfying certain constraints and simultaneously optimizing a set of criteria of dimensions greater than or 

equal to two, f (X) = (f1(X), f2(X),. . . , f(X)M). A MOP can be defined as follows: 

 

min⁡(max)𝐹(𝑋) =(𝑓1(𝑋), 𝑓2(𝑋),…𝑓𝑀(𝑋))  

𝑠. 𝑡. 𝑥𝑆𝑅𝑛 (1) 

 

where d is the dimension of decision vector; S is a feasible domain of x; fm(X), m=1,…, M; M is the number 

of objectives. In multi-objective optimization, Pareto dominance relations are used to measure the quality of 

the solutions in the objective space and defined as: for any two solution vectors S1 and S2, we denote that S1 

forms a Pareto domination for the solution S2 if and only if: S1 is superior to S2 for all objectives, then we 

say S1 dominates S2. S1 is called a non-dominated solution, also known as a Pareto solution, if it is not 

dominated by other solutions. For the sake of simplicity, we can also say the solution S1 is dominating 

solution S2, denoted as S1 ≺ S2, and the solution S1, by dominating solution S2, represents that solution S1 
is better than solution S2. If the two do not dominate each other, then S1 and S2 are equivalent. 

Based on this definition, the essence of solving the MOP is to find all solutions that are not dominated by 

any other solutions.  

This paper is organized as follows. Section 2 presents the concept of fast non-dominating sorting in 

multi-objective optimization. Description of the original HHMO is presented in Section 3 while Section 4 

describes the proposed NDSHHMO algorithm. The experimental setting is presented in Section 5 while 

Section 6 presents the experimental results and analysis of the MOPs. Finally, the conclusion and future work 

are presented in Section 7. 

 

 

2. FAST NON-DOMINATED SORTING 
The concept of NDS was first proposed by [32]. However, its main drawback is the high 

computational cost which has been resolved in [27], by proposing fast non-dominated sorting (FNDS). In 

FNDS, fitness calculation based on the concept of Pareto optimum is used to move a population up to the 

Pareto front in a MOP. The fundamental idea is to select the non-dominated solutions (individuals) with 

respect to the current population to calculate the hierarchy and the higher aptitude. Individuals that have the 

best quality in the population are considered as a first level of frontier and assigned the first rank. 

Subsequently, these individuals are temporarily eliminated from the competition. The non-dominated 

individuals in the remaining population are selected to construct the second level of frontier and assigned the 

second rank. These processes are repeated until there is no individual left. Thus, solutions that are not 

dominated by other solutions are assigned a rank equal to 1, if they are dominated by only one solution they 

are assigned a rank equal to 2 and solutions dominated by only two solutions are assigned a rank equal to 3, 

and so on. In this way, the population is divided into multiple non-dominated frontiers, each defining a 
specific quality level. Figure 2 illustrates the principle of non-dominated sorting. 

The FNDS divides the population of N individuals into four non-dominated frontiers and it stratifies 

all individuals in a population P. The first layer, F1, is composed of non-dominated solutions in the initial 

population. Then the individuals that have been assigned to F1 are removed from P. The remaining 

individuals are a composition of the set P − F1 and the second layer, F2 is composed of the non-dominated 

solutions in P − F1. The third layer, F3 is composed of the non-dominated solutions in P − F1 − F2. The 

subsequent layers are analogous. Details about FNDS can be obtained from [27]. Figure 3 shows the main 

steps of FNDS [27]. 
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Figure 2. Dividing a population into four levels of front (F1, F2, F3, F4) by fast non-dominated sorting 

 

 
Algorithm 1: Fast non-dominated sorting of P  

1 For each pP  

2 Sp = 0  

3 np = 0  

4 For each qP  

6  If p ≺ q then If p dominates q 

5   Sp = Sp{q}  Add q to the set of solutions dominated by p 

11  Else If q ≺ p then   

12 
  np = np+1 Increment the domination counter of p belongs to the  

first front 

13 If np = 0 then  

14  prank = 1    

15  F1=F1{p}  

16 i = i Initialize the front counter 

17 While Fi  0  

  Q = 0 Used to store the members of the next front 

  For each qSp  

   np = np – 1  

   If nq = 0 then q belongs to the next front 

   qrank = i+1  

   Q = Q{q}  

  i = i + 1  

  Fi = Q  

 

Figure 3. Pseudo code of fast non-dominated sorting 

 

 

In general, NDS-based algorithms, when making survival choices, it is possible to discard F3 and F4 

directly but discarding F2 will lead to losing too many individuals. In this case, the number of selected 

individuals will not be enough to produce the next generation. If the total number of F1 and F2 has exceeded 

the required population size of the next generation, all individuals in F1 will survive to the next generation 
and the rest will be selected from the next front, F2, based on another quality criterion (such as diversity) [31] 

. In this paper, -clearing strategy, proposed by [33], has been used as a second quality criterion to select 
between individuals that belong to the same front (have the same rank). This strategy divides the objective 

space into grids of size, . Then, individuals with the smallest Euclidean distance to a reference point are 
selected to be added to the next generation, P. This helps in preserving diversity among solutions of the  

same front. 

 

 

3. HARRIS’S HAWK MULTI-OBJECTIVE OPTIMIZER ALGORITHM 

The HHMO algorithm [21] is a kind of SI-based optimization algorithm proposed by mimicking the 

social hierarchy and hunting behavior of the Harris’s hawk predator in nature [34]. In the social hierarchy of 

the Harris’s hawk, there are four social ranks, from high to low, alpha (α), beta (β), delta (δ) and gamma (ω) 

hawks. The hunting process is divided into two main stages, namely, encircling and attacking, which closely 

resemble the encircling and attacking behavior of grey wolves [21]. The mathematical model of the HHMO 
is developed based on the GWO algorithm. Therefore, it inherits the characteristics and advantages of the 

GWO algorithm [11]. In the HHMO algorithm, the hawks represent candidate solutions in the decision space. 

The population of hawks is divided into groups according to the number of reference points. In each group, 

the leaders α, β and δ are the hawks that have the three shortest distances to a reference point and they 
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represent the first best three non-dominated solutions, respectively. The remaining hawks are represented by 

ω. To simulate the collective hunting behavior of the Harris’s hawks, it is assumed that, α, β and δ hawks 

have a better understanding of the potential position of the prey. Therefore, during each iteration, their 

positions are saved and used to comprehensively determine the direction of the ω hawks and their positions 

are updated to move toward the prey. The behavior of the group approaching and surrounding the prey is 

formulated as follows: 

 

�⃗�(𝑡 + 1) = �⃗�𝑝(𝑡) − 𝐴 ∗ �⃗⃗⃗�  

�⃗⃗⃗� = 𝐶 ∗ �⃗�𝑝(𝑡) − �⃗�(𝑡) (2) 

 

D is the distance between the hawk and the prey, t is the number of current iterations, and Xp = (xp1, xp2;…, 

xpd) is the position vector of the prey, while X = ( x1, x2, · · · , xd) represents the position vector of the hawks 
in d dimension. A and C are parameter vectors, formulated as follows: 

 

𝐴 = 2�⃗� ∗ 𝑟1 − �⃗� (3) 

 

𝐶 = 2 ∗ 𝑟2  (4) 
 

where r1 and r2 are random vectors in interval [0,1]. 𝑎 = 2 − 𝑡(2/𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛), is the control parameter, 

in the range [0,2] and decreases linearly during the optimization process, with the number of iterations t. The 

average position of α, β and δ hawks is used to calculate a new position of hawks, as shown in Equation (5).  

 

�⃗�(𝑡 + 1) =
(�⃗⃗�1(𝑡)+�⃗⃗�2(𝑡)+�⃗⃗�3(𝑡))

3
  

�⃗�1(𝑡) = �⃗�𝛼(𝑡) − 𝐴𝛼 ∗ �⃗⃗⃗�𝛼  

�⃗�2(𝑡) = �⃗�𝛽(𝑡) − 𝐴𝛼 ∗ �⃗⃗⃗�𝛽  

�⃗�3(𝑡) = �⃗�𝛿(𝑡) − 𝐴𝛼 ∗ �⃗⃗⃗�𝛿 (5) 

 

 

4. NON-DOMINATED SORTING HHMO BASED ON REFERENCE POINT  

In general, an efficient, simple and fast method is required to reach an optimum with acceptable 

accuracy within a reasonable time. One of the challenges of metaheuristics is therefore to facilitate the choice 

of a method and simplify its adjustment to best adapt to a problem. In [21], to enhance the performance of the 

HHMO algorithm, the authors introduce two evolutionary strategies (ES), namely, direct replacement (µ,λ)-

ES and selection of the best (µ+λ)-ES [35, 36], with HHMO. These strategies were used to generate the next 

generation from the current and old generations. In the former strategy, the next generation is produced by 
replacing the entire parent population, µ, with the offspring, λ. In later strategy, the parent and offspring 

populations are combined, then the best individuals are selected to produce the next generation. According to 

the authors [21], the (µ+λ)-ES shows superior performance compared to (µ,λ)-ES. However, in HHMO, the 

non-dominated solutions are selected based on the closest distance to a reference point, vi. In this case, the 

solutions in the objective space are tends to move toward a reference point instead of Pareto front. To 

overcome this limitation, this study integrates the FNDS, as another criterion to select non-dominated 

solutions and improve the convergence toward the true Pareto front. This aims to improve the stability and 

convergence of the algorithm. The pseudo code of NDSHHMO algorithm is shown in Figure 4. 

In NDSHHMO, the optimization process starts by randomly initializing the population of hawks. 

Then, each hawk, Xi, is evaluated by calculating the fitness value for all objectives, fm(Xi). The distance 

between the reference points, V and all hawks in the objective space, fm(Xi), is calculated using Euclidean 

distance formula. The population of hawks is then divided into groups based on the number of reference 
points. At each iteration, the position of hawks is updated according to Equation (5). Then, the binomial 

recombination procedure [37] is performed to produce a new generation of hawks (offspring). The new 

positions are evaluated and the new leaders are selected based on the shortest Euclidean distance to a 

reference point. In the proposed NDSHHMO, in addition to the main procedures of HHMO with (µ+λ)-ES 

[21], the FNDS procedure is incorporated to divide the objective space into front levels. Then, non-

dominated solutions are selected from the front to be used in the next generation. These processes are 

repeated until the loop termination condition is met and, finally, output the non-dominated solutions set. In 

NDSHHMO algorithm, the mutation operation used in the enhanced HHMO (HHMO with (µ+λ)-ES), has 

been eliminated to reduce the complexity of the algorithm and the number of parameters represented by a 

mutation factor. Basic procedures of the NDSHHMO algorithm are:  
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a) Initialize a population of hawks. 

b) Evaluate each hawk in the population. 

c) Select the leaders, α, β and  from the initial population, based on the smallest Euclidean distance to a 
reference point. 

d) Update the position of hawks with respect to the positions of leaders. 

e) Recombination. 

f) Evaluate each hawk. 

g) Perform FNDS and select non-dominated solutions to produce the next generation of hawks. 

 

 
Algorithm 2: NDSHHMO 

1 Given the set of objective functions 𝐹(𝑋) = (𝑓1(𝑋), 𝑓2(𝑋),… 𝑓𝑀(𝑋)) 
2 Initialize the population of hawk, X within the boundaries of the decision space d 

3 Evaluate each haw in the population according to objective functions 

4 Divide the search agents into groups based on based on number of reference points  

5 while ( t <= maximum number of iterations or termination condition) 

6  For each reference point group 

7   Select leaders (α, β and ):  

8 
  

  

 i. Calculate the Euclidean distances to a reference point, vi for each hawk, Xi, on all objectives F(X). 

9              ii. Select first three hawks that have a shortest distance to a reference point, Vz, to be α, β and  . 
10   For each search agent in a group 

11    Update position of a hawk based on Equations set (5) 

12   end for 

13   Perform recombination procedure 

14   For each search agent in a group 

15    Calculate fitness values for all hawks in a group 

16   end for 

17   Perform FNDS and select non-dominated solutions to produce the next generation of hawks. 

18  end for 

19  t = t+1 

20 end while 

21 Return the best non-dominated solutions 

 

Figure 4. Pseudo code of non-dominated sorting Harris’s hawk multi-objective optimizer 

 

 

5. RESEARCH METHOD 

A set of eight (8) test functions (Deb & Sundar, 2006) has been used to evaluate and compare the 

performance of the proposed, NDSHHMO and the original HHMO algorithms with respect to convexity, 

non-convexity multimodality and non-uniformity. These functions are ZDT1, ZDT2, ZDT3 and ZDT4, with 

two objectives. The test function DTLZ2 with three, five and 10 objectives has also been used [38]. These 

test functions are commonly used to test the stability and efficiency of an algorithm. For each algorithm, the 

maximum number of iteration has been set at 300, and the population size of 100 individuals for each 
problem. Table 1 shows the reference point used with each problem. 

 

 

Table 1. Reference Points used in the Experiment 
Problem Reference point 

ZDT1,4,3 (0.1,0.6) (0.5,0.2) 

ZDT2 (0.8,0.2) (0.15,0.8) 

ZDT6 (0.90,0.3) (0.5,0.7) 

DTLZ2 with 3 objectives (0.2,0.2,0.6) (0.8,0.6,1.0) 

DTLZ2 with 5 objectives (0.5, 0.5, 0.5, 0.5, 0.5) (0.2 0.2 0.2 0.2 0.8) 

DTLZ2 with 10 objectives (0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25) 

 

 

To compare the results obtained by the multi-objective optimization algorithms, three (3) commonly 
used performance metrics have been utilized , namely, inverted generation distance (IGD) [39] and R-metrics 

[40], which includes R-IGD and R-HV. For each metric, the statistical measures have been used to compare 

the performance of algorithms. They seek to capture the characteristics that make an approximation of the 

Pareto front better than another in some criterion. In general, the values of these metrics reflect a certain 

quality aspect to a particular approximation set, such as, diversity of solutions and convergence. The inverted 
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generation distance measures the average distance between all individuals in the PFtrue to the nearest 

individual in the solution set obtained by the algorithm. The final solution represents information about the 

convergence and the diversity of the non-dominated solutions. The IGD value is calculated as shown in 

Equation (6): 

 

𝐼𝐺𝐷 =
√∑ 𝑑𝑖

2𝑛
𝑖=1

𝑝

𝑛
 (6) 

 

where p = 2 and 𝑑𝑖
2⁡is the minimum Euclidean distance between a point, i in the approximate Pareto front and 

a nearest point in the PFtrue. n is the number of solutions belonging to the PF. IGD values close to zero 

indicate that non-dominated solutions are very close to true Pareto optimal set. 

 

 

6. RESULTS AND ANALYSIS 

Each algorithm was executed 10 times, independently with each MOP, to obtain the statistical 

significance of the results and for fair comparison. The comparison between NDSHHMO and HHMO was 
carried out based on the mean, standard deviation (SD), best and worst values of quality metrics. Table 2 

shows the results of the IGD metrics. 

 

 

Table 2. Results of Mean, Standard Deviation, Best and Worst IGD Values Over 10 Independent Runs for 

Both HHMO and NDSHHMO Algorithms 
Algorithm HHMO NDSHHMO 

Problem m Mean (SD) Best (Worst) Mean (SD) Best (Worst) 

ZD1 2 
3.015766e-05 

3.456729e-06 

2.289158e-05 

3.395342e-05 

4.097678e-05 

(4.313639e-06) 

3.465444e-05 

(4.928885e-05) 

ZDT2 2 
3.462937e-05 

5.876528e-06 

2.454948e-05 

4.608892e-05 

4.137926e-05 

(8.304714e-06) 

3.217633e-05 

(5.937574e-05) 

ZDT3 2 
3.054700e-04 

3.639905e-05 

2.507444e-04 

3.652381e-04 

6.919176e-05 

(7.736077e-06) 

6.022995e-05 

(8.499650e-05) 

ZDT4 2 
1.209638e-04 

2.012809e-04 

2.581917e-05 

6.664835e-04 

5.070034e-05 

(1.821928e-05) 

2.390682e-05 

(8.380816e-05) 

ZDT6 2 
3.174891e-05 

(1.213382e-05) 

1.531363e-05 

(5.010032e-05) 

2.161897e-05 

(6.071884e-06) 

1.409194e-05 

(3.070295e-05) 

DTLZ2 3 
9.162699e-04 

4.509744e-05 

8.520694e-04 

9.986688e-04 

4.271674e-04 

(3.098091e-05) 

3.849329e-04 

(4.825089e-04) 

DTLZ2 5 
1.441510e-03 

2.746606e-05 

1.368030e-03 

1.465777e-03 

1.421138e-03 

(3.995864e-05) 

1.380836e-03 

(1.518529e-03) 

DTLZ2 10 
2.384243e-03 

(3.145295e-05) 

2.333402e-03 

(2.418701e-03) 

2.369540e-03 

(2.957656e-05) 

2.330149e-03 

(2.406577e-03) 

 

 

Both HHMO and NDSHHMO perform almost equal in solving DTLZ2 with five and ten objectives 

problems. For solving the ZDT6 problem, the performance of the NDSHHMO is slightly better than the 

HHMO. For other problems, namely, ZDT3, ZTD4 problems and the DTLZ2 problem with three objectives, 

NDSHHMO performed significantly better than the HHMO. However, in solving the ZDT1 and ZDT2 
problems, based on the average IGD value, HHMO shows slightly better performance as compared to 

NDSHHMO. 

Li, et al. [40] proposed R-metrics based on the MCDM approach, which include R-IGD and 

hypervolume with R-Metric (R-HV). These metrics adapt the existing metrics, namely, IGD [39] and 

hypervolume (HV) [41] to evaluate the quality of a set of non-dominated solutions obtained by a reference 

point-based multi-objective optimization algorithm. The HV metric is used when the optimal Pareto solutions 

are unknown, where the larger value of HV indicates a better result. Mathematically, the HV is described by 

Equation (7). 

 

HV(𝐴) = (∪𝑎∈𝐴 [𝑓1(𝑎), 𝑟1] × [𝑓2(𝑎), 𝑟2] × …× [𝑓𝑘(𝑎), 𝑟𝑘]) (7) 

 
HV is denoted as the hyper-volume of a space that is dominated by a set of solution A and is 

bounded by a reference point, 𝑟 = (𝑟1 , 𝑟2, 𝑟3 , … 𝑟𝑘) ∈ 𝑅𝑘 . (S) is the Lebesgue measure of a set S [42]. The R-
metric first filters out the non-dominated solutions, then determines the pivot point and the preferred region 

and eliminates the solution outside the preferred region. Using the achievement scalarization function, the 

compromise solution is transformed according to the degree of satisfaction of the preference 
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information. The R-metrics are calculated using the sets approximated Pareto fronts (PFapprox.) generated by 

each algorithm [40]. Table 3 shows the mean, SD, best and worse R-metrics values obtained by the HHMO 

and NDSHHMO algorithms. 

 

 

Table 3. Results of Mean, Standard Deviation, Best and Worst R-IGD and R-HV Values Over 10 

Independent Runs for Both HHMO and NDSHHMO Algorithms 
Algorithm HHMO NDSHHMO 

R-metrics Problem m 
Mean 

(SD) 

Best 

(Worst) 

Mean 

(SD) 

Best 

(Worst) 

R-IGD 

ZD1 2 
5.750499e-02 

1.629131e-03 

5.370099e-02 

5.943255e-02 

3.086646e-02 

(8.668946e-04) 

2.916731e-02 

(3.180344e-02) 

ZDT2 2 
3.582150e-02 

1.223893e-02 

2.162508e-02 

6.550052e-02 

2.526445e-02 

(5.869044e-04) 

2.429212e-02 

(2.629707e-02) 

ZDT3 2 
1.564317e-01 

1.232284e-01 

1.133154e-01 

4.850325e-01 

8.126304e-02 

(8.941625e-04) 

7.990480e-02 

(8.219142e-02) 

ZDT4 2 
1.595845e-01 

2.151564e-01 

5.389915e-02 

5.684010e-01 

3.200888e-02 

(2.148493e-04) 

3.178943e-02 

(3.245914e-02) 

ZDT6 2 
5.203782e-01 

(2.565047e-01) 

3.375339e-02 

(6.513960e-01) 

2.653745e-02 

(6.092902e-04) 

2.536410e-02 

(2.727200e-02) 

DTLZ2 3 
1.493500e-01 

1.384537e-02 

1.251975e-01 

1.645151e-01 

1.258225e-01 

(6.984063e-03) 

1.132261e-01 

(1.348985e-01) 

DTLZ2 5 
2.241562e-01 

2.027524e-03 

2.208843e-01 

2.269642e-01 

1.977805e-01 

(4.233870e-03) 

1.918947e-01 

(2.041274e-01) 

DTLZ2 10 
6.902470e-01 

1.938679e-03 

6.850544e-01 

6.920374e-01 

6.933113e-01 

(2.822722e-03) 

6.890396e-01 

(6.966718e-01) 

R-HV 

ZD1 2 
3.876157e+00 

7.576768e-03 

3.890523e+00 

3.865809e+00 

3.964742e+00 

(3.223440e-03) 

3.961318e+00 

(3.971095e+00) 

ZDT2 2 
3.856566e+00 

5.710995e-02 

3.884824e+00 

3.690229e+00 

3.864925e+00 

(2.247994e-03) 

3.861443e+00 

(3.868524e+00) 

ZDT3 2 
3.607186e+00 

3.538229e-01 

3.729507e+00 

2.663683e+00 

3.797716e+00 

(6.756720e-03) 

3.790436e+00 

(3.809657e+00) 

ZDT4 2 
3.595390e+00 

5.860350e-01 

3.882197e+00 

2.470387e+00 

3.960615e+00 

(7.989916e-04) 

3.958948e+00 

(3.961462e+00) 

ZDT6 2 
2.887313e+00 

(7.063620e-01) 

2.515327e+00 

(4.227197e+00) 

4.265944e+00 

(2.698068e-03) 

4.262028e+00 

(4.270751e+00) 

DTLZ2 3 
5.181027e+00 

1.258370e-01 

5.420532e+00 

5.062406e+00 

5.287903e+00 

(4.667065e-02) 

5.224974e+00 

(5.378672e+00) 

DTLZ2 5 
3.258571e+01 

9.250290e-02 

3.276106e+01 

3.246725e+01 

3.438223e+01 

(2.987349e-01) 

3.399767e+01 

(3.490270e+01) 

DTLZ2 10 
7.486208e+02 

3.149022e+00 

7.539277e+02 

7.442124e+02 

7.365107e+02 

(3.038939e+00) 

7.311533e+02 

(7.419556e+02) 

 

 

The results in Table 3 imply that the NDSHHMO has superior performance in solving MOPs under 

test. According to mean R-IGD values, NDSHHMO outperforms HHMO in solving the ZDT1, ZDT2, ZDT3 

and ZTD4 problems. In solving DTLZ2 with 3, 5 and 10 objectives, NDSHHMO shows competitive 

performance compared with HHMO, except for DTLZ2 with 10 objectives. The results of HHMO are 

slightly better than NDSHHMO. Figure 5 shows the final solution set obtained by HHMO and NDSHHMO 

algorithms. 

The distribution of the solution obtained by both the HHMO and NDSHHMO algorithms (refer to 

Figure 5(a-p)) are clustered near the reference points. However, in the ZDT6 problem, HHMO moved 
towards the reference point instead of PFtrue. The same occurred in the ZDT3 problem, the distribution and 

the convergence of solutions obtained by NDSHHMO is much better than HHMO. For the ZDT2 and ZDT4 

problems, the solution obtained by NDSHHMO has better spread than the HHMO. For ZDT1 the 

convergence of the solution obtained by NDSHHMO is slightly less, as the mean IGD value indicates, than 

that obtained by HHMO. However, according to the R-metrics, the convergence of the solution obtained by 

HHMO is significantly less than that obtained by NDSHHMO. In solving DTLZ2 with 3, 5 and 10 

objectives, both algorithms showed good distribution and convergence. However, based on the R-IGD and R-

HV values, NDSHHMO showed better convergence and distribution compared to HHMO. From the 

experimental results on eight benchmark functions, it can be found that NDSHHMO has advantages in terms 

of speed, convergence and distribution compared with the HHMO algorithm. According to the R-metrics, the 

solutions obtained by NDSHHMO are closer to the PFtrue compared to those of HHMO. 
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(f) 

 

(n) 

 

  
(g) 

 
(o) 

 

  
(h) (p) 

 

Figure 5. Convergence of non-dominated solutions obtained by (a-h) NDSHHMO and (i-p)  

HHMO algorithms 

 

 
 

7. CONCLUSION  

The NDSHHMO algorithm is proposed to overcome the limitations of HHMO. The fast non-

dominated sorting has been integrated with the original HHMO to improve the convergence toward the true 

Pareto front. This has helped in maintaining the population diversity and enhancing the search ability of the 

algorithm. The performance of the proposed algorithm is evaluated using different MOPs. The proposed 

algorithm is not only suitable for high-dimensional functions, but can also effectively deal with MOPs with 

more than three objectives. The proposed algorithm is expected to be used for other optimization problems, 

such as, structural design engineering optimization problems. Future work can focus on the use of NDS to 

improve the performance of other SI-based multi-objectives optimization algorithms.  
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