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 It is widely accepted that electrochemical batteries ensure superior energy 

storage and reliability of power supply. This paper proposes to discuss the 
dynamic performance of the Lead Acid Storage battery and to develop an 
Electrical Equivalent circuit and study its response to sudden changes in the 
output. A detailed explanation of the discharging process for lead-acid 
storage batteries and the factors affecting the rate of chemical reactions is 
provided. The objective of the study is to find the reduction in terminal 
voltage due to the change in reaction rate and to evolve a simple dynamic 
model for discharge of the battery.  
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1. INTRODUCTION  
There are numerous energy storage systems in use now. The electrochemical storage systems are 

preferred both in power installations and electric mass transportation as they are both convenient and 

economical [1]. 

Ever since the lead acid storage battery was introduced in the middle of the 19th century there has 

been ongoing research on this commercially viable product. It has numerous and extensive utility in starting, 

lighting and ignition in electric vehicle applications. In an age of power supplies with frequent interruptions, 

the lead acid storage battery proved to be a dependable standby resource. Further, it is also used as a method 

for control and storage of energy generated from renewable resources. Though solar applications through the 

lithium ion batteries are replacing lead acid batteries in some areas, the latter still enjoy a larger market share 

due to their cost-effectiveness [2-3]. 

A Lead Acid electrical model is proposed [4]. This model has a voltage source, self-discharge 

resistance and RC network with three time constants. It can be used only for very low frequency operations. 
However the electrical and chemical parameters are not properly mapped in this model. Hence it does not 

include data regarding rate of chemical reactions varying with state of charge, depth of discharge, depth of 

charge, state of health, battery storage capacity, internal resistance, physical temperature and shelf life. 

Research has been done to obtain improved mathematical models for the Lead acid storage battery 

and Lead acid storage battery mathematical model is proposed in [5]. This model has non-linear components 

and takes into account such parameters like self-discharge, battery storage capacity, internal resistance, 

overvoltage and environmental temperature. The performance of the lead-acid storage battery with 

temperature compensation is tracked accurately. However, this model does not take into account the rate of 

chemical reactions varying with state of charge, depth of charge and discharge time constant and state  

of health.  
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In [6], describes a model for evaluating the lead acid battery ampere hour capacity. The affect of 

ampere hour capacity at different rates of charge and discharge, at different end voltages and at different 

temperatures can be explained and simulated by this electrical model. The verification of this electrical model 

is done by obtaining parameters from the model simulation and then comparing with experimental results. 

This model does not include rate of chemical reactions varying with state of charge, depth of charge and 

discharge, state of health and time constant of battery.  

A charge and discharge modelling was presented in [7] which includes rate of chemical reactions 

varying with rate of charge/discharge cycles, battery float measurements, voltage and current variation with 
charge and discharge time. The current source in this model represents gassing current of electrolysis, which 

causes a major part of the energy losses in lead batteries. The effect of impedance on diffusion, double layer 

and electrolyte components is shown in this model. The voltage on capacitor in this model represents the 

degree of conversion of the active electrode material. This model does not include rate of chemical reactions 

varying with state of charge, state of health, depth of charge and discharge, environmental temperature,  

time constant and age/shelf life of battery.  

A new dynamical model for the battery is described in [8]. This model takes into account battery 

thermal capacitance, electrolyte temperature, thermal resistance between the battery and its environment, 

environmental temperature and source thermal power, i.e., the heat that is generated internally in the battery. 

This model can give estimation of state of charge of battery and rate of charge and discharge process of 

battery for various applications. This model does not supply detailed information on how to identify the 

several parameters of the proposed models, and it defines a whole family of models, but does not discuss 
which model of the family is adequate for a given purpose.  

An accurate modelling of lead-acid batteries still remains a difficult task. The above issues are 

solved in a new model presented in [9]. A battery-charging model to study AC transient dynamics of battery 

at high frequency is presented in [10]. This model takes into account state of charge, rate of charge and 

discharge. This model does not include temperature effect, depth of charge, depth of discharge and  

self-discharge resistance. In [11-23], deal with various developments in the dynamic modelling of lead acid 

batteries. Notwithstanding that the accurate battery parametric identification under dynamic conditions still 

remains a problem.  

The lead acid batteries for grid based photovoltaic systems need an accurate, intuitive,  

and comprehensive electrical battery model which can sense the battery response under dynamic conditions. 

Simple electric models for this battery using a voltage source in series with a resistance have been used to 
develop energy management systems in distribution with renewable energy integration. But this model does 

not reflect the response of the battery to sudden change in output both during charging and discharging.  

Detailed behaviour of the lead acid battery under such conditions requires a dynamic model which is 

different from the steady state model. That dynamic electrical model should give the battery response relating 

to the battery voltage and current with the rate of change of chemical reactions taking place inside the battery 

due to sudden change in load. This paper explains the basic chemical reactions that take place inside the 

battery during charging and discharging and how the rate of change of these reactions affects its dynamic 

response. Development of an electrical equivalent circuit which will simulate the dynamic characteristics of 

the battery based on chemical reactions is also explained.  

 

 

2. DISCHARGING PROCESS BY CONNECTING A ELECTRICAL LOAD EXTERNALLY 

Assuming that the two new electrodes Lead (Pb) and the Lead dioxide (PbO2) are placed in dilute 

sulphuric acid (H2SO4 + H2O) electrolyte solution in the ratio of water: acid= 3:1 with electrical load 

connected externally as shown in Figure 1. Following reactions take place [1-2]. 

 

 

Negative 
Electrode: 

Porous Lead

Positive 
Electrode: Lead 

dioxide

 Electrolyte: 
Sulphuric acid 6 

molar

H2O H2SO4

Pb PbO2

LOAD

 
 

Figure 1. Lead acid battery construction 
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During discharge process, the chemical energy stored is converted into electrical energy. Due to the 

flow of current through the load, the following chemical reactions take place [1-2].  

 

A. At negative electrode plate (Pb) (Anode-Oxidation process) 

Pb→ Pb+2 + 2e− 

Pb+2 + SO4
−2 → PbSO4 

--------------------------------- 

Pb + SO4
−2 → PbSO4 + 2e− 

--------------------------------- 

The energy released from the above reaction 

 E0 > -0.356eV or E0 < 0.356eV. 

Ered
0 (Anode) < 0.356 V or Ered

0  > -0.356 V 

Ered
0  is the standard reduction electrode potential at Pb electrode. 

 

B. At positive electrode plate (PbO2) (Cathode-Reduction process) 

PbO2 + 4H+ + 2𝑒− → Pb+2 + 2H2O 

Pb+2 + SO4
−2 → PbSO4 

-------------------------------------------------------- 

PbO2 + 4H+ + SO4
−2 + 2e− → PbSO4 + 2H2O 

-------------------------------------------------------- 

The energy released from the above reaction E0 < 1.685 eV. 

Ered
0 (Cathode) < 1.685 V. 

Ered
0  is the standard reduction electrode potential at PbO2 electrode. 

 

C. Overall reaction 

Pb + SO4
−2 → PbSO4 + 2e− 

PbO2 + 4H+ + SO4
−2 + 2𝑒− → PbSO4 + 2H2O 

--------------------------------------------------- 

Pb + PbO2 + 2H2SO4 → 2PbSO4 + 2H2O 

---------------------------------------------------- 

The net amount of energy released in the above reaction will be lesser than 2.041eV i.e. E0< 2.041eV and the 

potential difference between the plates decreases i.e. Vbatt < 2.041 V. 

 

D. During discharging process of a Lead acid storage battery 

1) Both plates (Pb & PbO2) are coated or covered with PbSO4 (lead sulphate). 

2) Due to the formation of PbSO4 layer on the electrodes, the active area of electrode plates decreases. As a 

result, the reaction rate falls which implies the potential difference between the plates decreases i.e. Vbatt 

< 2.041 V.  

3) Also due to the formation of water at the cathode plate during the chemical reaction, specific gravity of 

sulphuric acid solution falls and this makes the acid weaker. The pH of the acid increases and the 

concentration of H+ ions decrease. 

4) These two factors namely sulphation at electrodes and formation of water at cathode plate affect the ionic 

production in the electrolyte solution and the rate of chemical reactions. 

5) Further the ions inside the electrolyte solution face resistance during movement causing energy loss 

which results in rising the temperature of electrolyte. This affects the rate of chemical reactions. 

6) When equilibrium is reached, the electron balance takes place between positive and negative electrodes. 

The terminal voltage will be lesser than the open circuit voltage i.e. Vbatt < 2.041 V due to the internal 

resistive drop. 

7) Further due to the reduction of active surface area of electrodes and the dilution of electrolyte solution, 

the rate of chemical reaction decreases and finally comes to an equilibrium state. Accordingly the 

terminal voltage also decreases. 

8) Active electrode surface area for Pb and PbO2 plates where the electron exchange takes place goes on 

reducing due to the formation of PbSO4 layers on the surface of the electrodes. This reduces the reaction 

rate causing decrease of the potential difference between the two electrode plates. The rate of decrease of 

the reaction rate is nonlinear being governed by the exponential law. This decides the state of charge and 
depth of charge in the battery.  
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3. FACTORS AFFECTING RATE OF CHEMICAL REACTION 

The rate of chemical reaction [1-3] varies with the following conditions: 

1. Temperature 

2. Molar Concentration of reactants 

3. Active Surface area of electrode plates  

4. Capacity of the battery 

5. SOC (State of Charge)  

6. Open circuit voltage of the battery  
7. Time Constant  

In chemical kinetics, a reaction rate constant or reaction rate coefficient K quantifies the rate of 

chemical reaction. For a relation between reactants A and B to form product C i.e. aA + bB → cC, we have 

reaction rate [2-3]. 

 

‘r’=K[T][A]𝑚[B]𝑛 (1) 

 

Where: 

‘a’ and ‘b’ are called stoichiometric coefficients.  

‘K[T]’ is the rate constant which is a function of temperature. 
[A] and [B] are the molar concentrations of reactants A and B in moles per unit volume of the solution. 

‘m’ and ‘n’ are called the partial orders of the Reaction reactants [A] and [B] which can be determined 

experimentally based on the reaction mechanism in a chemical reaction and are not generally equal to the 

stoichiometric coefficients. 

From (1) it can be concluded that Reaction rate ‘r’ is directly proportional to the product of 

concentration of active reactants A and B i.e. r ∝ [A]𝑚[B]𝑛. So during discharging process of a lead acid 

storage battery, the reaction rate r falls slowly and thus the concentration of reactants decreases slowly.  

Since the electrode plates lose active molar mass and surface area. 

By Modified Arrhenius equation, the rate constant [2-3] 

 

K[T]=DT𝑛𝑒−Ea/RT (2) 

For n→ -1< n < 1 
 

Where: 

‘D’ is the frequency factor or pre-exponential factor which gives collision frequency of molecules in a 

chemical reaction. 

‘Ea’ is the activation energy, which is the minimum energy at which the chemical reaction occurs. 

‘R’ is the universal gas constant = 8.3144598 JK−1mol−1 

‘T’ is the temperature in Kelvin. 

Substituting (2) in (1) the reaction rate  

 

‘r’=DT𝑛𝑒−Ea/RT[A]𝑚[B]𝑛 (3) 

 
So, from (2) and (3) it can be concluded that reaction rate ‘r’ is directly proportional to rate constant 

K[T] and in turn depend upon temperature i.e. r ∝ K[T]. So, during discharging process of a battery,  

the reaction rate r falls slowly with decrease in rate constant K[T] and temperature T. By thumb rule it can be 

concluded that at constant room temperature (25℃), for every 10℃ raise in temperature, the reaction rate r 

doubles in any chemical reaction.  

The cell potential can be determined by using the Nernst equation.  

 

𝐸𝐶𝑒𝑙𝑙=𝐸𝑐𝑒𝑙𝑙
0 + 

0.05916 𝑉

𝑍
log10

[𝐶𝑎𝑡ℎ𝑜𝑙𝑦𝑡𝑒]

[𝐴𝑛𝑜𝑙𝑦𝑡𝑒]
 (4) 

 

Where: 

‘𝐸𝐶𝑒𝑙𝑙’ is the cell potential in V. 

‘𝐸𝑐𝑒𝑙𝑙
0 ’ is the standard cell potential in V.  

‘Z’ number of moles of electrons transferred in the cell reaction or half-reaction. 

From (4) it can be concluded that cell potential falls with decrease in concentration of ions in 

solution. So during discharging process of a battery, the reaction rate ‘r’ falls and the state of charge goes 

down along with the decrease in concentration of ions which imply that the potential difference between the 

plates decrease. Indirectly it also means that the internal voltage ‘E’ is also a function of the state of charge. 
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The reduction in the battery voltage ‘E’ as the battery discharges and the time constant can be experimentally 

determined. 

Assume ‘𝑆𝑂𝐶(𝑡)’ is the total quantity of state of charge available in the battery after time ‘t’ and 

‘𝑆𝑂𝐶0’ is the initial quantity of state of charge of a battery, then the exponential decay formula [1-3] given as 

 

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶0𝑒
−𝑡

𝜏  = 𝑆𝑂𝐶0𝑒−𝐾[𝑇]𝑡 (5) 

 

Where ‘𝐾[𝑇]’ is the rate constant = 
1

𝜏
 = decay constant 

‘𝜏’ is the rate of change of chemical reactions inside the battery. The effects due to the change of reaction rate 

‘r’ are Capacity of the battery, SOC, Open circuit voltage of the battery and Time Constant. These effects are 

explained in (6).  

Thus from (1) the reaction rate: 
 

 ‘r’= 
[A]𝑚[B]𝑛

𝜏
 (6) 

 
From (6) it can be concluded that during discharge process of a lead acid storage battery, the 

reaction rate ‘r’ falls and thus the concentration of reactants decrease slowly. The reaction rate ‘r’ falls due to 

the formation of PbSO4 layers on both plates. Thus the potential difference between the plates falls. As the 

open circuit voltage ‘𝐸0’ is a function of SOC i.e. 𝐸0(𝑆𝑂𝐶), the SOC also falls. The capacity of the battery 

decreases. The ‘𝐸0’ also varies with SOC and changes dynamically with respect to time. As the reaction rate 

falls, the time constant ‘𝜏’ slowly increase proportionately until it reaches steady state or equilibrium state 

and becomes constant. This explains the dynamics of lead acid battery.  

 

 

4. DEVELOPMENT OF SIMPLE DYNAMIC ELECTRICAL CIRCUIT MODEL  

4.1.   Internal Chemical Reactions of the Battery 

The charging and discharging mechanisms taking place inside the battery are discussed in detail in 

the previous sections. During discharging the electrodes are coated with a thin layer of PbSO4 and during 

charging this coating reverts to PbO2 on anode plate and Pb on the cathode plate. Rate at which these 

reactions take place are given in (1), (2), (3) and (6) in the Section 3. It can be seen that the rate of chemical 

reactions mainly depend upon the active surface area of electrodes, density of the electrolyte and the inside 

temperature of the battery. For a given design of the battery these internal parameters remain more or less 

constant during the operating life of the battery if operation is within the specified ratings [1-3].  

The chemical reactions are nonlinear function of the battery current (rate of charge movement between 
electrodes). 

 

4.2.   Internal Resistance of the Battery 

During ionic conduction between electrodes inside the electrolyte, the charges face resistance to 

their movements and this causes energy loss resulting in heat generation and potential drop between the 

electrodes. This is usually referred to as internal resistance and remains fairly constant if the temperature rise 

and change of density of the electrolyte are within the specified limits. This potential drop is proportional to 

current in the external circuit. In addition to this voltage drop, there is a drop in potential at the interface of 

the electrode surface and electrolyte. This is the potential difference necessary to emit or absorb electrons 

between the electrodes and electrolyte. This surface potential drop is a nonlinear function of the current 

flowing in the external circuit. Equilibrium state is reached when the electrons entering the positive electrode 
are equal to the electrons leaving the negative electrode which is called Dynamic Equilibrium during 

discharging. The direction of electronic flow is opposite of that during charging. This state of equilibrium 

takes some time from the previous operating condition. It is because the required change in the chemical 

reactions needs some time to settle. This is what is referred earlier as rate of change of chemical reactions. 

Over the operating range of the battery this rate more or less is proportional to the current. Therefore 

whenever the external circuit resistance is changed during discharge operation, the current change 

exponentially from the previous level to the new level. Time constant ‘𝜏’ is associated with this change 

which is reflected in the reaction (1), (2), (3) and (6) given earlier. As already mentioned, this time constant 

‘𝜏’ is a nonlinear function of current over the operating range of the battery [8-9]. But for small perturbations 

‘𝜏’ can be considered as constant. 
 

4.3.   Steady State Electrical Equivalent Circuit for a Battery 

When once the new equilibrium state is reached, the total potential drop between the electrodes is 

proportional to the external circuit current and is represented by the internal resistance R=Rc + Re (7).  
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Where ‘Rc’ is the resistance offered by the electrolyte to ionic movement which is constant and ‘Re’ is the 

drop at the interface of the electrodes and electrolyte which is a nonlinear function of the current. Till the new 

steady state is reached ‘Rc’ remains same but ‘Re’ will be changing during this period when the chemical 

reactions have not reached the equilibrium state. Parameters ‘Rc’ and ‘Re’ depend on the design of electrodes 

and the state of the electrolyte used. So for a given battery the values are to be determined experimentally. 

Figure 2 shows a simple steady state electrical equivalent circuit for the battery with a variable external load 

resistance ‘RL’ connected between the electrodes. Fully charged battery is used and its steady state 

characteristic ‘V’ vs ‘I’ as shown in Figure 3. The steady state values of ‘Rc’ and ‘Re’ for different discharge 

currents can be found from the Figure 3. 

 

 

 

V

Rc Re

RL

+

-

I

E0
+
-

 
 

Figure 2. Steady state electrical equivalent circuit for 

a battery 

‘E0’(Volt)Open Circuit Voltage

‘V’(Volt)Terminal Voltage

Discharge Current ‘I’(Ampere)

V1 V2

I1 I2

 
 

Figure 3. Steady State characteristic ‘V’ vs ‘I 

 

 

4.4.   Dynamic Electrical Equivalent Circuit for a Battery 

When the current ‘I’ is suddenly changed from ‘ I1 ’ to ‘ I2 ’ ( I2 >  𝐼1 ) in Figure 3, then the voltage 

drop from ‘ V1 ’ to ‘ V2 ’ (steady sate values) takes place slowly with a variable time constant ‘𝜏’.  

The dynamic variation of ‘V’ and ‘I’ for a sudden change in the load resistance ‘RL’ at ‘t1’ is shown in 

Figures 4(a) and 4(b). The time constant ‘𝜏’ can be calculated from these dynamic characteristics 

The dynamic equivalent circuit of the battery incorporating the transient characteristic is shown in 

Figure 5. The time constant ‘𝜏’ is given by ‘𝜏’= ReC  (8). 
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Figures 4. Dynamic characteristics 
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Figure 5. Dynamic Electrical equivalent circuit for a battery 
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‘E0’ is the internal open circuit voltage, ‘Rc’ is the internal resistance representing the resistance 

offered by the electrolyte to ionic movement and ‘Re’ is the steady state resistance representing the interfacial 

potential drop at the electrodes, ‘C’ is the capacitance, ‘V’ is the battery terminal voltage, ‘RL’ is the variable 

load resistance.  

 

 

5. EXPERIMENTAL PROCEDURE AND RESULTS 

The test system contains the test battery 12V, 7.2Ah, 86.4watt-hr SLA/AGM, DMM (Digital Multi 

meter) as Ammeter and Voltmeter, Load Rheostats of 12Ω/8A and 50Ω/5A, Shunt resistor of 

fixedmresistance 1Ω and up to 10W, Switch and DSO NB106C(Digital Storage Oscilloscope) as shown in 

Figure 6. All the tests are done at room temperature (17 – 25 degree Celsius). The battery has an open circuit 

voltage ‘E0’= 13.38V and internal resistance ‘Rc’= 0.03Ω. 

The potential drop inside the battery Vi =E0 − V (9). The steady state characteristic of voltage and 

current as shown in Figure 7. The variation of ‘Vi’ with ‘I’ is shown in Figure 8. It is nonlinear curve showing 

that ‘R’ is dependent on current ‘I’. The variation of ‘R’ with current ‘I’ is shown in Figure 9. 

 
 

12Ω/8A Load 
Rheostat

50Ω/5A Load 
Rheostat DMM (Digital 

Multimeter)

12V, 7.2Ah, 86.4 Watt-hr SLA/AGM Lead Acid 

Storage battery

Fixed Shunt Resistance 1Ω and 
upto 10 watts

Switch DSO NB106C(Digital 

Storage Oscilloscope)

 
 

Figure 6. Experimental Setup 

 

 

 
 

Figure 7. Graph Between Eo,V vs I 

 

 

 
 

Figure 8. Graph between Vi vs I 

 
 

Figure 9. Graph between ‘R’ vs ‘I’ 
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Figures 10(a) and 10(b) shows the variation of discharge current ‘I’ and the terminal voltage ‘V’ for 

sudden change in the external load resistance ‘RL’. The current and voltage take some time to settle to the 

new equilibrium state. The time constant ‘𝜏’ for the changes taking place during the dynamic conditions is 

obtained from Figure 10(a). The time constant ‘𝜏’ represents the rate of change in chemical reactions taking 

place inside the battery due to sudden changes in discharge current ‘I’. The reaction rate ‘r’ reduces the active 

molar mass and surface area of electrode plates and decrease in ionic concentration in electrolyte solution of 
a battery and also cause temperature rise inside of the battery which were explained in (1), (2) and (3). The 

time constant ‘𝜏’, open circuit voltage and SOC of the battery are the effects due to change of reaction rate ‘r’ 

which were explained in (4), (5) and (6). It should be noted that the Parameters ‘E0’, ‘Rc’, ‘Re’ and ‘𝜏’ are 

battery specific and depend on the design of electrode structure, electrolyte density and temperature which 

were explained in previous Section 4. For a given design, then parameters can be assumed to be fairly 

constant when the battery is operated within the specified ratings. For small changes in the discharge current 

‘I’, the variation in ‘Re’ can be neglected and then ‘𝜏’ can be assumed to be constant. As the value of ‘C’ as 

shown in dynamic electrical equivalent circuit in Figure 5 is obtained as C = 
𝜏

Re
 (10). The battery terminal 

voltage ‘V’ decreases from 𝑉1=11.89V to 𝑉2=11.54V with addition of sudden load current from 𝐼1=2.2A to 

𝐼2=3.2A, then time constant ‘𝜏’ value is 0.49µsec as shown in Figures 10(a) and 10(b). The value of ‘Re’= 

0.596 ohm is obtained by averaging the resistances at 𝐼1=2.2A and 𝐼2=3.2A.  

The value of ‘C’=0.8221𝜇F is obtained from (10). Figures 11(a) and 11(b) shows the simulation results for a 

small step change in the steady state discharge current. The time variations of ‘V’ and ‘I’ obtained through 

simulations closely resembled the experimental results as shown in Figures 10(a) and 10(b).  
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Figure 10(a). Dynamic characteristic of ‘V’ vs time‘t’ 

 

 

 
 

Figure 10(b). Dynamic characteristic of ‘I’ vs time‘t’ 
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Figure 11(a). Battery terminal voltage ‘V’ vs time‘t’ 

 

 

 
 

Figure 11(b). Battery Load current ‘I’ vs time‘t’ 

 

 

6. CONCLUSION 

Dynamic performance of energy storage systems using Lead Acid Storage battery is obtained 

through simulation study. The required parameters for the dynamic electrical equivalent circuit are obtained 

through tests on the Lead Acid Storage battery. The significance of these parameters and the assumptions 

made are explained. The Proposed Equivalent Circuit Model of the Lead Acid Storage Battery shows the 

complete transient behavior of the battery by adding the parallel combination of resistance 'Re' and capacitor 
'C' in the ciruit model. The proposed model also gives the relation between the electrical time constant and 

chemical composition of the battery. Because of the rate of change of chemical reactions taking place inside 

the battery for any sudden change in the external load resistance ‘RL’, the new steady state will be reached 

after some time delay with a fixed time constant ‘𝜏’. Therefore the battery system is not capable of 

responding immediately with the step changes in the output current. During discharging process of a lead 

acid storage battery, the reaction rate ‘r’ falls and thus the concentration of reactants decrease slowly.  

The reaction rate ‘r’ falls due to the formation of PbSO4 layers on both electrode plates. Thus the potential 

difference between the plates reduces. As the open circuit voltage 'E0' is a function of SOC, the SOC also 

falls. As the reaction rate decreases, the ‘E0’ follows with time constant ‘𝜏’ which slowly increase 

proportionately until it it attains equilibrium and becomes constant.  

 

 

FUTURE SCOPE 

The future research in the Dynamic Model of the Battery Energy Storage System must include the 

factors such as Rate at which Power output can be changed, Maximum and Minimum Levels of SOC, 

Permissible Rate of Change of Current and Temperature dependence parameter. 
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