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 The conjugate gradient method has played a special role in solving large-

scale unconstrained Optimization problems. In this paper, we propose a new 
family of CG coefficients that possess sufficient descent conditions and 
global convergence properties this CG method is similar to (Wei et al) [10]. 
Global convergence result is established under Strong Wolf-Powell line 
search. Numerical results to find the optimum solution of some test functions 
show the new proposed formula has the best result in CPU time and the 
number of iterations, and the number of gradient evaluations when it 
comparing with FR, PRP, DY, and WYL.  
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1. INTRODUCTION 

The optimization problem finds application in several fields, such as classical continuum physics, 

theoretical, mathematical & computational physics, particle and nuclear physics, physical chemistry, pure 

mathematics, mathematical physics, fluid dynamics, actuarial science, applied information economics, 

astrostatistics, biostatistics, business statistics, traffic routing in telecommunication systems (24.), cyber-

physical security (25.), intelligent transportation systems (26.) and smart grids(27.). Consider the 

unconstrained optimization problem.  

 
(𝑝);  𝑚𝑖𝑛{𝑓(𝑥); 𝑥 ∈ 𝑅𝑛  } (1) 

 

where 𝑓; 𝑅𝑛 → 𝑅 continuously differentiable. The nonlinear conjugate gradient (CG) method 
usually takes the following iterative formula 

 

𝑥𝑘+1 = 𝑥𝑘 +∝𝑘 𝑑𝑘        ∝𝑘> 0    k = 0; 1; 2; 3 (2) 

 

For solving (1), where 𝑥𝑘 is the current iterate point, k > 0 is a step length, and 𝑑𝑘 is a search 

direction defined by,  

 

𝑑𝑘 = {
−∇𝑓(𝑥𝑘) 𝑖𝑓 𝑘 = 1

−∇𝑓(𝑥𝑘) + 𝛽𝑘𝑑𝑘−1 𝑖𝑓 𝑘 ≥ 2
  (3) 
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Where 𝑔𝑘the gradient of 𝑓(𝑥) , 𝛽𝑘 ∈ 𝑅 is a scalar which determines the different conjugate gradient methods. 

(2) and (3). Well-known formulas for 𝐵𝑘 are called Conjugate-Descent (CD) (Fletcher 1997) [1], Fletcher-

Reeves (FR) (Fletcher and Reeves 1964) [2], Hestenses.Stiefel (HS) (Hestenes and Stiefel 1952) [3], 

Liu.Storrey (LS) (Liu and Storey 1992) [4], and Polak. Ribière.Polyak (PRP) (Polak and Ribière 1969; 

Polyak (1969) [5], and some modified formulas (Dai 2002 [6]; Dai and Yuan 2001 [7], 1995 [8], Qi et al. 

1996 [9], Wei et al. 2006b [10]). The convergence behavior of the different conjugate gradient methods with 

some line search conditions (Armijo 1966 [11], Al-baali 1985 [12], Dai 2001 [13], Dai et al. 1999 [14], Dai 
and Yuan 1996, Grippo et al. 1986 [15], Grippo and Lucid 1997 [16], Liu and Han 1995 [17]. 

The well-known formulas for 𝛽𝑘  are,  

 

𝐵𝑘
𝐶𝐷 =

 ‖(∇𝑓(𝑥𝑘)‖2

 ‖(∇𝑓(𝑥𝑘−1)‖2  [1]   (4) 

 

𝐵𝑘
𝐹𝑅 =

∇𝑓(𝑥𝑘)𝑇(∇𝑓(𝑥𝑘)−∇𝑓(𝑥𝑘−1))

𝑑𝑘−1
𝑇 (∇𝑓(𝑥𝑘)−∇𝑓(𝑥𝑘−1))

 [2] (5) 

 

𝐵𝑘
𝐻𝑆 =

∇𝑓(𝑥1)𝑇(∇𝑓(𝑥𝑘)−∇𝑓(𝑥𝑘−1))

𝑑𝑘−1
𝑇 (∇𝑓(𝑥𝑘)−∇𝑓(𝑥𝑘−1))

 [3] (6) 

 

𝐵𝑘
𝑃𝑅𝑃 =

∇𝑓(𝑥𝑘)𝑇(∇𝑓(𝑥𝑘)−∇𝑓(𝑥𝑘−1))

 ‖(∇𝑓(𝑥𝑘−1)‖2  [5] (7) 

 

𝐵𝑘
𝐷𝑌 =

∇𝑓(𝑥𝑘)𝑇∇𝑓(𝑥𝑘)

(∇𝑓(𝑥𝑘)−∇𝑓(𝑥𝑘−1)𝑇𝑑𝑘−1
 [7] (8) 

 

𝐵𝑘
𝐿𝑆 =

∇𝑓(𝑥𝑘)𝑇(∇𝑓(𝑥𝑘)−∇𝑓(𝑥𝑘−1))

dk−1
T  ∇𝑓(𝑥𝑘−1) 

 [4] (9) 

 

𝐵𝑘
𝑊𝑌𝐿 =

∇𝑓(𝑥𝑘)𝑇(∇𝑓(𝑥𝑘)−
‖∇𝑓(𝑥𝑘)‖

‖(∇𝑓(𝑥𝑘−1)‖
∇𝑓(𝑥𝑘−1))

∇𝑓(𝑥𝑘−1)𝑇(∇𝑓(𝑥𝑘−1)
 [10] (10) 

 

In order to find the step length (𝛼𝑘), we use Strong Wolf Powell (SWP) line search,  

 

𝑓(𝑥𝑘 +∝𝑘 𝑑𝑘) − 𝑓(𝑥𝑘) ≤  𝛿𝛼𝑘)∇𝑓(𝑥𝑘)𝑇𝑑𝑘  (11) 
 
|∇𝑓(𝑥𝑘 +∝𝑘 𝑑𝑘)𝑇 . 𝑑𝑘| ≤ −𝜎∇𝑓(𝑥1)𝑇𝑑𝑘 (12) 
 

Where (0 < 𝛿 <
1

2
) and (0 < 𝜎 < 1) 

From a bibliography point of view, the Nonlinear Conjugate Gradient methods can be improved by 

using novel techniques proposed in (20.), (21.), (22.), (23)". 
In this paper, we will present the new formula in section 2. In addition, the sufficient descent 

condition and the global convergence of the new method under the inexact line search (11) and (12), in the 

following theorem. Will be presented in section 3. Finally, we will discuss the numerical results and 

conclusion in sections 4 and five respectively.  

 

 

2. THE NEW FORMULA 

In this section, we propose the new 𝐵𝑘 which is extention of the 𝐵𝑘
𝑤𝑦𝑙

 [10] that we named 𝐵𝑘
𝑤𝑦𝑙𝑀

 ,  

 

𝐵𝑘
𝑤𝑦𝑙𝑀

=
∇𝑓(𝑥𝑘)𝑇∇𝑓(𝑥𝑘)−∇𝑓(𝑥𝑘)𝑇𝜑𝑘  𝑑𝑘−1 

 ‖(∇𝑓(𝑥𝑘−1)‖2  (13) 

 

Where 𝜑𝑘 =  
‖∇𝑓(𝑥𝑘)‖

‖(∇𝑓(𝑥𝑘−1)‖  
 and ‖. ‖ means the Euclidean norm 

 

 

3. CONVERGENT ANALYSIS OF WYLM METHOD 

In this section, we will show the convergent properties of 𝐵𝑘
𝑤𝑦𝑙𝑀

 using inexact line searches.  
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3.1.   Convergent Analysis Based on Inexact Line Search  
In this section, we will show the convergent analysis based on the inexact line search by means of 

strong Wolfe line search. We will also show that these CG coefficients will possess sufficient descent 

conditions and global convergence properties. Under this inexact line search (11) and (12). In the following 

theorem; we discuss the sufficient condition,  

 

 ∇𝑓(𝑥𝑘)𝑇𝑑𝑘 ≤ −𝐶 ‖(∇𝑓(𝑥𝑘)‖2 , 𝐶 > 0 (14) 
 

Where 𝑘 > 0 and 𝐶 ∈ (0, 1) under SWP line search. 

 

3.2.1.   Sufficient Descent Condition 
For the sufficient descent condition, we present the following Theorem, 

Theorem 1: If the sequences 𝑔𝑘and 𝑑𝑘 are generated by the methods (2), (3) and (13) with step 

length ∝𝑘 determined by (10) and (11) if 𝜎 ∈ (0,
1

4
), then the sufficient descent condition holds. 

Proof: We use proof by induction from (3). We know that for 𝑘 = 0 it is hold. Suppose that it is:  

 

∇𝑓(𝑥𝑘)𝑇𝑑𝑘 = −‖(∇𝑓(𝑥𝑘)‖2+𝐵𝑘
𝑊𝑌𝐿𝑀∇𝑓(𝑥𝑘)𝑇𝑑𝑘−1  

 

Divide ‖(∇𝑓(𝑥𝑘)‖2 indicated that;  
 
∇𝑓(𝑥𝑘)𝑇𝑑𝑘

 ‖(∇𝑓(𝑥𝑘)‖2 = −1 + 𝐵𝑘
𝑤𝑦𝑙𝑀 ∇𝑓(𝑥𝑘)𝑇𝑑𝑘−1

 ‖(∇𝑓(𝑥𝑘)‖2    

 

= −1 +
−𝜎∇𝑓(𝑥𝑘−1)𝑇𝑑𝑘−1

∇𝑓(𝑥𝑘−1)𝑇∇𝑓(𝑥𝑘−1)
(1 −

∇𝑓(𝑥𝑘)𝑇𝑑𝑘−1

‖∇𝑓(𝑥𝑘)‖‖∇𝑓(𝑥𝑘−1)‖
) (15) 

 

Using (12), we have,  

 
∇𝑓(𝑥𝑘)𝑇𝑑𝑘

 ‖(∇𝑓(𝑥𝑘)‖2 ≤ −1 +
−𝜎∇𝑓(𝑥𝑘)𝑇𝑑𝑘−1

 ‖(∇𝑓(𝑥𝑘)‖2
(1 −

∇𝑓(𝑥𝑘)𝑇𝑑𝑘−1

‖∇𝑓(𝑥𝑘)‖‖∇𝑓(𝑥𝑘−1)‖
) (16) 

 
∇𝑓(𝑥𝑘)𝑇𝑑𝑘

 ‖(∇𝑓(𝑥𝑘)‖2 ≥ −1 +
𝜎∇𝑓(𝑥𝑘−1)𝑇𝑑𝑘−1

 ‖(∇𝑓(𝑥𝑘)‖2
(1 −

∇𝑓(𝑥𝑘)𝑇𝑑𝑘−1

‖∇𝑓(𝑥𝑘)‖‖∇𝑓(𝑥𝑘−1)‖
) (17) 

 

And applying the Cauchy-Schwartz we get,  

 

0≤
∇𝑓(𝑥𝑘)𝑇𝑑𝑘−1

‖∇𝑓(𝑥𝑘)‖‖∇𝑓(𝑥𝑘−1)‖
≤ 2 (18) 

 

This implies that,  

 

−1 + 2
𝜎∇𝑓(𝑥𝑘−1)𝑇𝑑𝑘−1

 ‖(∇𝑓(𝑥𝑘)‖2 ≤
∇𝑓(𝑥𝑘)𝑇𝑑𝑘

 ‖(∇𝑓(𝑥𝑘)‖2 ≤ −1 − 2
𝜎∇𝑓(𝑥𝑘−1)𝑇𝑑𝑘−1

 ‖(∇𝑓(𝑥𝑘)‖2  (19) 

 

By repeating this process and the fact ∇𝑓(𝑥1)𝑇𝑑1 = −‖∇𝑓(𝑥1)‖2 ,  
 

− ∑ (2𝜎)𝑖 ≤𝑘−1
𝑖=0

∇𝑓(𝑥𝑘)𝑇𝑑𝑘

 ‖(∇𝑓(𝑥𝑘)‖2 ≤ −2 + ∑ (2𝜎)𝑖𝑘−1
𝑖=0  (20) 

 

Since ∑ (2𝜎)𝑖 <𝑘−1
𝑖=0 ∑ (2𝜎)𝑖∞

𝑖=0 =
1

1−2𝜎
  

 

As shown in (19) Can be written as:  

 

−
1

1−2𝜎
≤

∇𝑓(𝑥𝑘)𝑇𝑑𝑘

 ‖(∇𝑓(𝑥𝑘)‖2 ≤ −2 +
1

1−2𝜎
  (21) 

 

By making the restriction 𝜎 ∈ (0,
1

4
) we have ∇𝑓(𝑥𝑘)𝑇𝑑𝑘 < 0 so by induction, ∀𝑘 ∈

𝑁, ∇𝑓(𝑥𝑘)𝑇𝑑𝑘 < 0 holds.  

Now, we prove the sufficient descent property of 𝑑𝑘 if 𝜎 ∈ (0,
1

4
) 
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Set 𝜆 = 2 −
1

1−2𝜎
 then 0 < 𝜆 < 1, and (18) turns out to be 

𝜆 − 2 ≤
∇𝑓(𝑥𝑘)𝑇𝑑𝑘

 ‖(∇𝑓(𝑥𝑘)‖2 ≤ −𝜆 (22) 

 

Thus we obtain ∇𝑓(𝑥𝑘)𝑇𝑑𝑘 ≤ −𝛾‖∇𝑓(𝑥𝑘)‖2 Or γ =−2 +
1

1−2𝜎
 where 𝜆 ∈ (0, 1) 

The proof is completed.  

 

3.2.2.   Global Convergent Analysis 

The following assumption is needed in order to proceed with the proof of global  

convergence properties.  

Assumption 1 

(i) The function 𝑓 is bounded below on the level set 𝑅𝑛 and is continuous and differentiable in 

neighbourhood N of the level set Ω ={𝑥 ∈ 𝑅𝑛;  𝑓(𝑥)  < 𝑓(𝑥0)} at the initial point 𝑥0 

(ii) The gradient g(x) is Lipschitz continuous in N, so a constant L≥ 0 exists, such that that  

 
‖𝑔(𝑥) − 𝑔(𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖ : For all 𝑥, 𝑦 ∈ 𝑁  
Theorem2: Suppose Assumption 1 is true, consider any CG method of form (2) and (3), where ∝𝑘 

satisfied. SWP line search and the sufficient descent condition holds, then lim
𝑘→∞

‖∇𝑓(𝑥𝑘)‖ = 0.  

Proof 

Subtracting ∇𝑓(𝑥𝑘)𝑇𝑑𝑘 from both sides of (12) and using the Lipschitz condition we have 
 

−(1 − 𝜎)∇𝑓(𝑥𝑘)𝑇𝑑𝑘 ≤ (∇𝑓(𝑥𝑘) − ∇𝑓(𝑥𝑘−1))
𝑇

𝑑𝑘 ≤ 𝐿 ∝𝑘 ‖𝑑𝑘‖ 2 (23) 

 

Therefore, 

 

−
(1−𝜎)

𝐿

∇𝑓(𝑥𝑘)𝑇𝑑𝑘

‖𝑑𝑘‖ 2
≤∝𝑘 (24) 

 

With (11) we obtain: 

 

𝑓(𝑥𝑘) − 𝑓(𝑥𝑘 +∝𝑘 𝑑𝑘) ≥ −𝛿 ∝𝑘 ∇𝑓(𝑥𝑘)𝑇𝑑𝑘 ≥ −𝛿 
(1−𝜎)

𝐿

‖∇𝑓(𝑥𝑘)𝑇𝑑𝑘‖
2

‖𝑑𝑘‖ 2
 (25) 

 

Moreover, from the hypothesis (1), we have that {𝑓(𝑥𝑘)} is a decreasing sequence and has a limit in, 

which shows that lim
𝑘→∞

𝑓(𝑥𝑘+1) < +∞ and after (25) we have,  

 

+∞ > 𝑓(𝑥1) − lim
𝑘→∞

𝑓(𝑥𝑘+1) = ∑|𝑓(𝑥𝑘) − 𝑓(𝑥𝑘+1)| ≥ 𝛿
(1−𝜎)

𝐿
∑

(∇𝑓(𝑥𝑘)𝑇𝑑𝑘)2

 ‖𝑑𝑘‖2  (26) 

 

Then ∑
(∇𝑓(𝑥𝑘)𝑇𝑑𝑘)2

 ‖𝑑𝑘‖2 ≤ +∞  

 

Hence, lim
𝑘→∞

‖∇𝑓(𝑥𝑘)‖ = 0 Then proof is completed. 

 

 

4. NUMERICAL RESULTS AND DISCUSSIONS 

In this section, we present the results of our proposed method WYLM on comparison with CG 

methods FR, DY, WYL, and PRP. We will use some of test problems considered in Andrei [18] to analyze 

the efficient of 𝐵𝑘
𝑊𝑌𝐿𝑀 We considered ∈= 10−6;  𝜎 = 0.1; 𝛿 = 0.01 and the gradient value as stopping 

criteria. The tolerance ∈= 10−6 is selected for all algorithms to investigate the rapidity of iteration of these 
algorithms towards the optimal solution, We used Matlab R2010 the performance results are shown in 

Figures 1-6. We use the following algorithm,  

 

Algorithm 1: 𝐁𝐤
𝐖𝐘𝐋𝐌  

method 

Step 1: Choose an initial point 𝑥0 ∈ 𝑅𝑛  set k =  1. 𝜀 = 10−6 set 𝑑0 = −𝑔0 = −∇𝑓(𝑥0) 

Step 2: Compute 𝐵𝑘 based on (13). (15), (7), (8), or (10) 
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Step 3: Compute 𝑑𝑘 based on (3); if ‖∇𝑓(𝑥𝑘)‖ = 0, then stop.  

Step 4: Compute step length 𝛼𝑘 by one line search technique, let 𝑥𝑘+1 = 𝑥𝑘 +∝𝑘 𝑑𝑘  

Step 5: Updating new point based on. (2). 

Step 6: Convergent test and stopping criteria, if (𝑥𝑘)  < 𝑓(𝑥𝑘−1 ) and ‖∇𝑓(𝑥𝑘)‖ < 𝜖, then stop, otherwise 

go to Step 1 with 𝑘 = 𝑘 + 1 .  

 

 

Table 1.Test Problems used with the Strong Wolf Condition ∈= 10−6 ;  𝜎 = 0.1; 𝛿 = 0.01 
N0 Functions N Initial points 

1 Booth 2 (10, 10),(14,14),(40,40) 

2 Rosenbrock 2 (5,5),(25,25),(-12,-12) 

3 Goldstein-price 2 (2,2),(-11,-11),(-13,-13) 

4 Extended Powell 4 (7,7,7,7) ,(15,15,15,15) 

5 Tridiagonal 1 2 (2;2), (17,17),(100;100) 

6 Strait 2 (100,100), (50;50) 

7 Generalized Quartic 2 (10,10),(200,200),(17,17) 

 

 

Figures 1-3 list the performance of the above methods relative to iterations number, the number of 

gradient evaluations and the CPU time, respectively.  

 

 

  
 

Figure 1. Performance based en the number of 

iterations 

 

Figure 2. Performance based on the number of 

gradient evaluations 

 

 

 
 

Figure 3. Performance based CPU time 

 

 

Remark 1: Figures 1-3, shows that “WYLM” method has best performance since it solves about 

99% of the test problems successfully 
Example: Extended Rosenbrock function,  

 

𝑓(𝑥, 𝑦) = (1 − 𝑥)2 + 100(𝑦 − 𝑥2)2 , 𝑥 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = (1,1). 
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∇𝑓(𝑥, 𝑦) = (
−2 + 2𝑥 − 400𝑥𝑦 + 400𝑥3

200𝑦 − 200𝑥2𝑦
)  

 

 

 

Table 2. Extended Rosenbrock function 𝑓(𝑥, 𝑦) = (1 − 𝑥)2 + 100(𝑦 − 𝑥2)2, x optimal = (1, 1) Numerical 

results for 𝐵𝑘
𝑊𝑌𝐿𝑀 , WY L, DY, FR and PRP in terms of number iterations (NI) and CPU time 

Initial point WYLM WYL PRP FR DY 

 NI/CPU NI/CPU NI/CPU NI/CPU NI/CPU 

(1000,1000) 290/0/8948 Failed 8377/42.896843 Failed Failed 

(30, 30) 119/0.29190 1511/ 2.613863 8377/ 42.896843 3944/ 16.488 Failed 

(-1,-1000) 316/1.2419 2324/ 7.481274 Failed Failed Failed 

(-1,3) 88/1.993644 14532/ 75.441580 466/ 2.602825 420/ 2.6787 170/ 0.21942 

(0, 1) 124/0.425383 20000/ 118.46089 510/ 3.010145 88.0.215204 100/ 0.376978 

(1, 4) 224/0.809022 2000/113.847652 456/2.338696 130/ 2.086794 100 /0.376978 

(100, 100) 210/ 0.607405 Failed Failed 5840/ 25.106 Failed 

(-1, 7) 201/ 0.754304 20000/113.847652 527/ 6.118101 130 / 2.086794 219 / 0.442945 

 

 
Remark 2: in table 2, the WYLM method was successful in all attempts to achieve the optimal 

solution, while the other methods failed.  

 

 

Table 3. Summary of Results 
Méthod Ranking The success rate 

WYLM 1 100% 

PRP 2 75% 

FR 3 75% 

WYL 4 75% 

DY 5 50% 

 

 

Remark 3: Table 3, shows that “WYLM” has best performance since it solves about 100% of the 

test problems successfully.  

 

 

Table 4. Rosenbrock Function, Initial Point [-3 100] 
 WYLM WYL DY PRP FR 

NI 309 Failed 3505 Failed 2456 

CPU(s) 1,0048 Failed 13,2389 Failed 8,5297 

X optimal (1, 1)  (1, 1)  (1,1) 

 

 

Figures 4 and 5, list the comparison of WYLM method and DY, WYL, PRP, FR methods  

x0= [-3 100].  

 

 

  
 

Figure 4. Performance profiles based on the number of 

function evaluations 

 

Figure 5. Performance profiles based on the 

number of gradient evaluations 
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Remark 4: From the Figures 4-5, The WYLM method performs better than other methods by 

selecting a starting point with the Resenbrock function 𝑓(𝑥, 𝑦) = (1 − 𝑥)2 + 100(𝑦 − 𝑥2)2  
And she is best performance in terms of values gradients and functions and the number of iterations.  

 

 

5. CONCLUSION 

We present a new CG formula 𝐵𝑘
𝑊𝑌𝐿𝑀 that similar to WYL method and the global convergence 

properties are presented with several line searches. Results showed that the new coefficient satisfies the 
sufficient descent conditions and converge globally under strong Wolfe-Powell line search.it is proved that 

the algorithm is practical and effective to be used. Our numerical results have shown that our new method 

has the best performance compared to the FR, PRP, DY and WYL Methods 
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