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 Radial Basis Function Neural Network (RBFNN) is very prominent in data 
processing. However, improving this technique is vital for the NN training 

process. This paper presents an integrated 2 Satisfiability in radial basis 
function neural network (RBFNN-2SAT). There are two different types of 
training in RBFNN, namely no-training technique and half-training 
technique. The performance of the solutions via Genetic Algorithm (GA) 
training was investigated by comparing the Radial Basis Function Neural 
Network No-Training Technique (RBFNN- 2SATNT) and Radial Basis 
Function Neural Network Half-Training Technique (RBFNN- 2SATHT). 
The comparison of both techniques was examined on 2 Satisfiability problem 

by using a C# software that was developed for this experiment. The 
performance of the RBFNN-2SATNT and RBFNN-2SATHT in performing 
2SAT is discussed in terms of root mean squared error (RMSE), sum squared 
error (SSE), mean absolute percentage error (MAPE), mean absolute error 
(MAE), number of the hidden neurons and CPU time. Results obtained from 
a computer simulation showed that RBFNN-2SATHT outperformed 
RBFNN-2SATNT.  
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1. INTRODUCTION 

Neural-symbolic integration combines both the connectionist system and symbolic artificial 

intelligence (AI) systems. Symbolic AI is inspired by human thinking and formalises it by means of logic 

languages for knowledge representation and reasoning. Neural-symbolic structures are AI systems that can 

realise the symbolic processes within artificial neural networks. An artificial neural network (ANN), also 

known as connectionist systems, has received precise attention because of its capacity to evaluate complex 

non-linear data set. Neural networks (NN) are AI structures that include some mathematical and graphical 

models. ANN has been successfully applied to solve various applications, such as classification, function 

approximation, and optimisation [1]. According to connectivity, the NN has two main topologies. The first 

topology is recurrent network, such as the Hopfield Neural Network (HNN) where the neurons belong to the 

same layer and send their output to neurons of the next and previous layers. The second topology is the 
feedforward network, such as the Radial Basis Function Neural Network (RBFNN) where neurons that 

belong to the same layer receives inputs from neurons of the previous layer and send their values only to 

neurons of the next layer. Moody and Darken [2] used RBFNN by viewing the design as an approximation 

problem in a high dimensional space. Billings and Zheng [3] proposed RBFNN configuration with Genetic 

Algorithms (GA). It was demonstrated that the GA can automatically determine appropriate RBFNN 
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structures and parameters according to objective functions. Singh and Singh [4] utilised RBFNN with GA in 

satellite image classification. Delgado et al. [5] proposed the application of multivariate statistical analysis by 

combining GA with RBFNN, taking into account the statistical significance between independent and 

dependent variables and their correlation. Han et al. [6] developed an efficient self-organising recurrent 

RBFNN for nonlinear system modelling. Mohammadi et al. [7] provided a generic hardware solution for 

classification by using RBFNN on a reconfigurable data path that overcomes the major drawback of fixed-

function hardware data paths. The proposed method offers limited flexibility in terms of application 

interchangeability and scalability, which puts no limitation on the dimension of the input data.  
Logic programming began in the early 1970s as a foundation to many applications, such as artificial 

intelligence. The ability to extract knowledge from the logic programming makes ANN very suitable to 

develop an artificial intelligence system [8]. The strength of both paradigms makes the integrated system to 

become more “intelligent” and reduces major drawbacks of both paradigms [9]. Pinkas [10] expanded the 

idea of logic programming by integrating the competent propositional knowledge or logical mapping system 

via a symmetric connectionist network. Pursuing that, Abdullah [11] proposed a method to compute the 

synaptic weight of the network correspond to the propositional logic entrenched to the system. Hölldobler et 

al. [12] proved that the logic programming can work effectively with recurrent neural network. Sathasivam 

and Abdullah [13] deployed the Wan Abdullah method in order to compute the synaptic weights for the Horn 

Logic Programming in Hopfield Neural Network. Kasihmuddin et al. [14] deployed the advantage of the 

genetic algorithm to deal with learning complexity in the Hopfield neural network in doing logic k-SAT. 

Pursuing that, Kasihmuddin et al. [15] in their paper provided a solid evidence of the robustness of genetic 
algorithm to be used in other satisfiability problem by incorporated Hopfield neural network with genetic 

algorithm in solving MAX-kSAT problem. In their paper, Alzaeemi et al. [16] developed agent based 

modelling (ABM) using a genetic algorithm in the Hopfield neural network. Observed that genetic algorithm 

enhance the performance of doing logic programming in Hopfield network. The result has shown the 

effectiveness and acceleration features of genetic algorithm in doing MAX-2SAT in Hopfield network. 

Hamadneh et al. [17] presented the logic programming in RBFNN in a single operator logic, Horn 

satisfiability, and 3SAT in RBFNN. Hamadneh et al. [1] successfully represented 3SAT programming in 

RBFNN. The problem in RBF neural networks is the number of hidden neuron in the hidden layer and how 

can compute the parameters of the hidden layer? [24]. The proposed work is able to increase the efficiency of 

the network and minimise the required number of hidden neurons by using logic programming 2SAT to 

compute the all parameters in the hidden layer by give the input data in the training set. No pursuit was done 
to integrate 2SAT in RBFNN. In this paper, the advantages of the RBFNN and logic programming 2SAT in 

two training techniques, which are no-training and half-training, will be highlighted. Inevitably, RBFNN 

worked well with 2SAT to accommodate the number of input neurons in the input layer and reduce the 

number of hidden neurons in the hidden layer of RBFNN. This paper describes the implementation of 2SAT 

in RBFNN via no-training and half-training techniques.  

 

 

2. RESEARCH METHOD 

2.1.   2 Satisfiability (2SAT) Logic 

2 Satisfiability or abbreviated as 2SAT problem is defined as a problem to determine the 

satisfiability of sets of clauses which are comprised of strictly 2 literals per clause. 2SAT problem can be 
expressed in the 2CNF form. The three components of 2SAT problem are as follows: 

a. Consist of a set of m variables: 1 2, ,..., mv v v
. 

b. Consist of a set of literals. A literal is a variable or a negation of a variable.  

c. A set of n distinct clauses: 1 2, ,..., nl l l
. Each clause consists of only literals combined by only  that is 

logical AND. Each of the variable can only take a bipolar value, which is 1 or 0 that exemplifies the 

idea of true and false. The goal of 2SAT problem is to decide whether there exists an assignment of 

truth values to the variables that make the P become satisfiable. The general formula for 2SAT problem 

is as follows: 

 

, 2
1 1 1

n k n
P l where l A B ki i i ji i j
     
  

 (1) 
 

In this study. 2SAT is the main impetus since the focus of the logic programming is to ensure the 

programme only considers 2 literals per clause per execution. It was substantiated by various research  

[18-20] that numerous combinatorial problems can be formulated by using the 2SAT paradigm. The choice 
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of 2 literals per clause in satisfiability problem reduces the logical complexity in discovering the relation 

between variables in the neural network or solver. These fundamental reasons make 2SAT paradigm become 

a relevant approach to represent logical rules in neural network.  

 

2.2.   Radial Basis Function Neural Network (Rbfnn) 

RBFNN is a neural network that was first used in 1989 [2]. Radial Basis Function Neural Network 

algorithm has been proven to be useful and beneficial in many industrial applications [21]. RBFNN is 

different from other networks, possessing several distinctive features due to its universal approximation 

ability, more compact topology and faster learning speed [22-23]. RBFNN typically has three layers: an input 

layer, a hidden layer, and an output layer. The input layer is made up of source neurons that connect the 
network to its environment. The hidden layer receives the input information, followed by specific 

decomposition, extraction, and transformation steps, to generate the output data [24]. The neurons in the 

hidden layer are associated with centres and widths that determine the behavioural structure of the network. 

The output layer in RBFNN provides the responding of the network to the activation pattern of the input 

layer that works as a summation unit. The parameters of a RBFNN are the centres, widths, constant input 

weights, and output weights. The hidden layer parameters are the centres and widths. The output weights are 

linked between the hidden and output layers. 

The first phase of the learning procedure is to determine the hidden parameters [25]. The second 

phase involves output weights. There are different techniques for training RBFNN [26], such as no-training 

technique and half-training technique. Calculations for the equation of the activation functions for the 

processing on RBFNN [27] are as follows: 
 

 
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'

1
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 (2) 

 

where i is the activation function of RBFNN in hidden neuron I, 

'
jiw

is the constant input weight 

between the input neuron, j and the hidden neuron I, ic
is the centre of the hidden neuron I, i  is the width of 

the hidden neuron I, N is the number of the input neurons, jx
is an input value in i ,  Structure of RBFNN 

indicates the Euclidean norm on the input space as follows and Structure of RBFNN as shown  

in Figure 1.  
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Figure 1. Structure of RBFNN 
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Accordingly, the output of RBFNN technique has the following form [31]: 

 

 
1

( )

j

i i

i

F x w x



 (4) 

 

where iw
is the output weight between the hidden neuron and the output neuron,  F x

is the actual 
output value of an output neuron.  

 

2.2.1.   Satisfiability Radial Basis Function Neural Network 

The objective of doing logic programming 2SAT in RBFNN is to find the truth value of the input 

values in RBFNN for the clauses. The general form of the logic programming 2SAT is [17]: 

 

2
1 1

k n

SAT i j
i j

P A B
 

  
 (5) 

 

where, ,k n . iA
and jB

are atoms. To embed the logic programming 2SAT in RBFNN, the 
training data set for each clause must be determined. The general form to calculate the training data for each 

clause in 2SAT is given by the following equation: 

 

1

( ) ( ); , {0,1}i j i j

i j

x I A I B where A B



   
 (6) 

 

The logic programming of 2SAT in RBFNN, is by using binary input neurons
{0,1}

in Table 1 to 

exemplify the possible input data values and output target data values for 2SAT in RBFNN. By using the 

embedding method, input data value for (7) is shown in Table 1.  

For example, the following 2SAT that has three clauses in the RBFNN training:  

 
,P A B

D C

E F

 




 (7) 

 

 

Table 1. The Input Data Form and the Training Data of 2SAT in (7) 
Clause ,A B   D C  E F

 
DNF A B   C D    E F  

 
Input the value of data form x   x A B    x D C    x E F   

 

Input data in the training set ix  

0 1 2 -1 0 1 -1 0 1 

Output target data iy  0 1 1 0 1 1 0 1 1 

 

 

2.4.   Radial Basis Function Neural Network 2 Satisfiability via No-Training Technique (RBFNN-

2SATNT) 

For no-training techniques in RNFNN-2SAT, all parameters, such as the centres, the widths, and 

output weights are calculated and fixed. The RBFNN-2SAT training in this technique is by metaheuristic 
algorithms to minimise the error in output weight between hidden neurons and output neurons. The algorithm 

for RBFNN-2SAT by using the no-training technique is as follows: 

Step 1: Calculate the training data for each clause in 2SAT by taking the centres as training data of 

input values. 

Step 2: Initialise the input weight 

' { 1,1}jiw  
between input neuron and hidden neuron beside 1 for 

atom and -1 for the negative atom. 
Step 3: Calculate the widths by using the following equation according to the paper [28]. 
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max

2 i

d

m
 

 (8) 

 

where, im
is the number of the literals per clauses and maxd

is the maximum distance between the 
centres of the hidden layer.  

Step 4: Calculate the RBFNN-2SAT Gaussian activation function values by using (2). 

Step 5: Obtain the output weight by using the output linear (4) of RBFNN-2SAT. 

 

 

Table 2. The Values of the Activation Function in RBFNN-2SAT which Represents the Clause ,A B   

Input values ( ix )  ,0,0.074i x   ,1,0.074i x   ,2,0.074i x  Output target value iy  

0 1 1.3525e-6 3.3675e-24
 0 

1 1.3525e-6 1 1.3525e-6 1 

2 3.3675e-24 1.3525e-6 1 1 

 

 

Table 3. The Values of the Activation Function in RBFNN-2SAT which Represents the Clause D C  

Input values ( ix )  , 1,0.074i x    ,0,0.074i x   ,1,0.074i x  Output target value iy  

-1 1 1.3525e-6 3.3675e-24
 0 

0 1.3525e-6 1 1.3525e-6 1 

1 3.3675e-24 1.3525e-6 1 1 

 

 

Table 4. The Values of the Activation Function in RBFNN-2SAT which Represents the Clause E F  

Input values ( ix ) ( , 1,0.074)i x   ( ,0,0.074)i x  ( , 1, 0.074)i x  Output target value iy  

-1 1 1.3525e-6 3.3675e-24
 0 

0 1.3525e-6 1 1.3525e-6 1 

1 3.3675e-24 1.3525e-6 1 1 

 

 

Table 5. The Output Weights of RBFNN-2SATNT that Represents 2SAT using the No-Training Technique 

11W  21W  31W  12W  22W  32W  13W  23W  33W  

-1.3525e-06 1 1 1 -1.3525e-06 1 1 -1.3525e-06 1 

 

 

In the no-training technique, the hidden neuron centre values in hidden layers should be equal to the 

training data value that was obtained from 2SAT. Structure of the RBFNN-2SAT with the hidden parameters, 
by using no-training technique as shown in Figure 2.  

 

 

 
 

Figure 2. Structure of the RBFNN-2SAT with the hidden parameters, by using no-training technique 
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2.5.   Radial Basis Function Neural Network 2 Satisfiability via Half Training Technique (RBFNN-

2SATHT) 

Half-training is a hybrid learning that involves two phases. The first phase is called unsupervised 

learning, and the second phase is called supervised learning. By determining the parameters (the centres, 

widths, and output weights) in RBFNN-2SAT by using k-means clustering algorithm. 

The first phase of unsupervised training from k-means clustering was used to determine the centre 

and the width [17]. Then the second phase is called supervised learning algorithm to adjust the output 

weights by using Genetic Algorithm (GA).  
 

2.5.1.   k-means Clustering Algorithm 
 The k-means algorithm partitions a collection of N vectors into clusters. The k-means clustering 

algorithm is to determine the hidden parameters (the centres and the widths) in half-training technique by 

Hamadneh et al. [17]. Equation (10) finds the cluster centres by minimising the distance function: 

 

 ,j i j id x c x c 
 (9) 

 

where, 
 ,j id x c

 is the distance between the centre ic
 and data point jx

. The new optimal centres 

will be obtained by (10): 

 

1
i i

i

c x
m

 
 (10) 

 

where, ic
is the centre, im

is the number of the literals per clauses. After calculating the centres by 

using the k-means clustering algorithm, the width for each hidden neuron is calculated by (12) in  

the paper [17]: 

 

 
2

2 1
,i j i

i

d x c
m

  
 

 (11) 

 

where, i is the width of hidden neuron, im
is the number of the literals per clauses. The Gaussian 

activation function values by using Equation are as shown in Table 7 and Structure of the RBFNN-2SAT 
with the hidden parameters, by using half-training technique as shown in Figure 3.  

 

 

Table 6. Training Set of the 2SAT, and the Radial Basis Function Values by using Gaussian Function 

i
 

Input value

ix  

Output target 

value iy  
 ,0.5,1.125i x

 

 ,1,1i x

 

 ,1.5,1.375i x

 

 ,0,0.074i x

 

 ,0.5,1.375i x

 

1 0 0 0.8948 0.6065 0.4412 0.84208 0.9131 

2 1 1 0.8948 1 0.9131 0.9131 0.9131 

3 2 1 0.367879 0.6065 0.9131 0.4412 0.4412 

4 1 1 0.8948 1 0.9131 0.9131 0.9131 

5 1 1 0.8948 1 0.9131 0.9131 0.9131 

 

 

 
 

Figure 3. Structure of the RBFNN-2SAT with the hidden parameters, by using half-training technique 
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2.5.2.   Genetic Algorithm in RBFNN-2SAT 
Genetic Algorithm (GA) is one of the well-known and widely used metaheuristic solution 

algorithms for optimisation problems. GA has the ability to minimise multi-objective optimisation problems 

[29-30]which is very vital in this study. GA investigates the entire search space by locating the global 

solution and locally reaching the optimal solution.  

In this section, the RBFNN-2SAT in both techniques. In RBFNN-2SAT by using no-training 

technique will be optimised by GA through minimising the error produced from the training. In RBFNN-

2SAT by using half-training technique, the network is required to find the output weight by solving the linear 

equation that consists of RBFNN-2SAT output. In this case, GA can be used in RBFNN-2SAT to improve 

the solution of the RBFNN-2SAT half-training technique output weight and minimising the error. The 
solution (output weight) in RBFNN-2SAT generated by GA is called a chromosome. 

Step 1. Initialisation. The population of chromosomes will be initialised.  

Step 2. Evaluation. Computes the objective function value for each chromosome produced in 

initialisation by the following equation: 

 

   i i if x w x y   (12) 
 

where, iw
is the output weight between the hidden neuron and the output neuron ,  i x

is the 

Gaussian activation function in RBFNN. iy
is the output target value.  

Step 3. Selection: The fittest chromosomes have higher probability to be selected for the next 

generation. To compute the fitness probability, the fitness of each chromosome must be computed to avoid 

divide by zero problem, and the value of objective function is added by 1.  

 

  
1

1
ifit

f x



 (13)  

 

 ifit
is the fitness and  f x

is the objective function. The probability ( ip
) for each chromosomes is 

formulated by: 

 

0

i
i n

i

i

fit
p

fit






 (14) 

 
Step 4: Crossover: The number of cross-populations is determined according to the crossover rate. 

During crossover, information of the parent’s chromosome will be exchanged to produce new chromosomes. 

Step 5. Mutation: Number of chromosomes that have mutations in a population is determined by the 

mutation rate parameter. In mutation phase, the information of the chromosomes will randomly change one 

value of the chromosomes (the output weight) to improve the solution (output weight) of RBFNN.  

Step 6: Termination: If the given evolution termination criteria are met, the calculation is stopped, 

otherwise go to Step 2 with i=i+1 (GA will undergo up to 10000 iterations (Generations) to improve the 

chromosomes (output weights) until the output of RBFNN becomes less or equals to target output.). 

 

 

3. EXPERIMENTAL SETUP 

In this study, the proposed GA with 2SAT in the Radial Basis Function Neural Network-2SAT No-
Training (RBFNN-2SATNT) and the Radial Basis Function Neural Network-2SAT Half Training (RBFNN-

2SATHT). The experiment was run for various numbers of neurons (NN) from 6 up to 96, depending on the 

number of literals per clause (NC1, NC2, NC3). The network complexity increases as the number of neuron 

(NN) increases. The population size was 50, the crossover rate was 1, the mutation rate was 1, and the 

maximum number of GA generation was 10000. In addition, simulations were performed on Microsoft 

Visual C# 2010 Express software. The experiments were done by using Microsoft Window 7 Professional 

64-bit, with the specification of 500GB hard disk, 4096MB RAM, and processor 3.40GHz. 
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4. RESULTS AND DISCUSSION: 

The result of the RBFNN-2SATNT and RBFNN-2SATHT are summarised in Figure 4 to Figure 7. 

Based on these Figures, RBFNN-2SATHT outperforms RBFNN-2SATNT in terms of errors (RMSE, SSE, 

MAPE, and MAE). When the number of neurons increased, RBFNN-2SATHT was able to sustain more 

neurons. Theoretically, the increase in the number of hidden neurons leads to an increase in the rate of errors 

due to the centres as a subset of the input values of the training with RBFNN-2SATNT. It is also can be 

deduced that, most solutions in RBFNN-2SATNT have lower fitness and require more iterations compared to 

RBFNN-2SATHT. RBFNN-2SATHT is the best model because it has lower values of RMSE, SSE, MAPE 
and MAE. Figure 8 illustrates the number of hidden neuron result for RBFNN-2SATNT  

and RBFNN-2SATHT. 

 

 

  
 

Figure 4. RMSE value for all RBFNN-2SAT models 

 

Figure 5. SSE value for RBFNN-2SAT models 

 

 

  
 

Figure 6. MAPE value for RBFNN-2SAT models 

 

Figure 7. MAE value for RBFNN-2SAT models 

 

 

Based on Figure 8, magnitude of the number of the hidden neuron for RBFNN-2SATNT 

dramatically increased as the number of 2SAT clauses increased. RBFNN model that acquired the least value 
of the hidden neurons was considered as the best model among all neural network models. According to 

Panchal et al., [24], the lowest value of the hidden neuron indicated the best model for a given number of 

neurons. When the network has many neurons in the hidden layer, over fitting may result (the weights 

became extremely large because the hidden neurons in the hidden layer were highly correlated with each 

other). This means the capacity of the processing system was not enough to train all the neurons in the hidden 

layer. Based on the results, RBFNN-2SATHT has the least value of the hidden neuron compared to RBFNN-

2SATNT. In this case, RBFNN-2SATHT in comparison with RBFNN-2SATNT is considered the best 

technique in the RBFNN-2SAT model.  

Figure 9 illustrates the computation time or CPU time result for RBFNN-2SATNT and RBFNN-

2SATHT. The computation time or CPU time is defined as the time taken for a RBFNN-2SAT to generate 

the best solutions, including the training process. According to Figure 9, the computation time for the 

RBFNN-2SATHT was faster than RBFNN-2SATNT. RBFNN-2SATNT took a longer time for the network 
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to specify the number of hidden neurons and the output between the hidden layer and output layer, as the 

network spends more time in the training state. Hamadneh et al. [17] mention RBFNN by no training 

technique took longer time due to the value of the centres are equal to the values of the training data. Also, 

many neurons in the hidden layer cause the appearance of fake output weight as shown in RBFNN-2SAT by 

no-training technique that will increase the time it takes to train the network. However, when RBFNN-2SAT 

by half-training technique was implemented, the computation time was faster. In Figure 9, RBFNN-2SATHT 

is faster because the centres were not restricted to be the input of data points and width of the hidden layer 

that was calculated by using k-means clustering.  

 

 

  

 

Figure 8. No. Hidden neuron for RBFNN-2SAT 

models 

 

Figure 9. CPU Time for RBFNN-2SAT models 

 
 

 

5. CONCLUSION 

The paper presents 2SAT logic programming in RBFNN. The power of this technique can be seen 

clearly when computing the stability by using the RBFNN. In this study, the principal components were 

RBFNN, GA, and 2SAT. To determine the RBFNN parameters and calculate the errors represented, the two 

techniques were proposed namely, RBFNN-2SATNT and RBFNN-2SATHT. Results showed that the half- 

training technique (RBFNN-2SATHT) was more powerful and more effective than the no-training technique 

(RBFNN-2SATNT), due to the number of hidden neurons was typically much less than the number of data 

points, and the centres were not restricted to be data points. 

 
 

ACKNOWLEDGMENT 

This research is supported by Universiti Sains Malaysia and Fundamental Research Scheme (FRGS) 

(6711689) by Ministry of Higher Education Malaysia. 

 

 

REFERENCES 
[1] N. Hamadneh, et al., “Optimization of microchannel heat sinks using prey-predator algorithm and artificial neural 

networks,” Machines, vol. 6(2), pp. 26-36, 2018.  
[2] J. Moody, and C. J. Darken, “Fast learning in networks of locally-tuned processing units,” Neural computation, vol. 

1(2), pp. 281-294, 1989.  
[3] S. A. Billings, and G. L. Zheng, “Radial basis function network configuration using genetic algorithms,” Neural 

Networks, vol. 8(6), pp. 877-890, 1995.  

[4] A. Singh, and K. K. Singh, “Satellite image classification using genetic algorithm trained radial basis function 
neural network, application to the detection of flooded areas”. Journal of Visual Communication and Image 
Representation, vol. 42, pp. 173-182, 2017.  

[5] De Leon-Delgado, et al, “Multivariate statistical inference in a radial basis function neural network,” Expert 
Systems with Applications, vol. 93, pp. 313-321, 2018.  

[6] H. G. Han, et al, “Nonlinear system modeling using a self-organizing recurrent radial basis function neural 
network,” Applied Soft Computing, vol. 71, pp. 1105-1116, 2018.  

[7] M. Mohammadi, et al, “A hardware architecture for radial basis function neural network classifier,” IEEE 

Transactions on Parallel and Distributed Systems, vol. 29(3), pp. 481-495, 2018.  
[8] J. W Lloyd,” Foundations of logic programming,” Springer Science & Business Media, 6 Dec 2012.  
[9] W.A.T.W. Abdullah, “The logic of neural networks,” Physics Letters A, vol. 176(3), pp. 202-206, 1993.  



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 18, No. 1, April 2020 :  459 - 469 

468 

[10] G. Pinkas, “Symmetric neural networks and propositional logic satisfiability”. Neural Computation, vol. 3(2), pp.  
282-291, 1991.  

[11] W. A. T. W. Abdullah, “Logic programming on a neural network,” International journal of intelligent systems, vol. 

7(6), pp. 513-519, 1992.  
[12] S. Hölldobler, et al, “Approximating the semantics of logic programs by recurrent neural networks,”  

Applied Intelligence, vol. 11(1), pp. 45-58, 1999.  
[13] S. Sathasivam, and W. A. T. W. Abdullah, “Logic mining in neural network: reverse analysis method,” Computing,  

vol. 91(2), pp. 119-133, 2011.  
[14] M. S. M. Kasihmuddin, et al., “Genetic Algorithm for Restricted Maximum k-Satisfiability in the Hopfield 

Network,” International Journal of Interactive Multimedia & Artificial Intelligence, vol. 4(2), 2016.  
[15] M. S. M. Kasihmuddin, et al., “Robust Artificial Bee Colony in the Hopfield Network for 2-Satisfiability 

Problem,” Pertanika Journal of Science & Technology, vol. 25(2), pp. 453-468, 2017.  

[16] S. A. Alzaeemi, et al, “Use of Genetic Algorithm for Hopfield Neural Network to do Logic Programming,” In Bio-
Genetics Journal, vol. 5(1), pp. 101-113, 2017.  

[17] N. Hamadneh, et al, “Learning logic programming in radial basis function network via genetic algorithm,” Journal 
of Applied Sciences (Faisalabad), vol. 12(9), pp. 840-847, 2012. 

[18] S. Mukherjee, and S. Roy, “Multi terminal net routing for island style FPGAs using nearly-2-SAT computation,” In 
VLSI Design and Test (VDAT), 2015 19th International Symposium on, (pp. 1-6). IEEE, 2015.  

[19] S. Even, et al, “On the complexity of time table and multi-commodity flow problems,” In 16th Annual Symposium 
on Foundations of Computer Science, (pp. 184-193). IEEE, October, 1975.  

[20] R. Miyashiro, and T. Matsui, “A polynomial-time algorithm to find an equitable home–away 
assignment,” Operations Research Letters, vol. 33(3), pp. 235-241, 2005.  

[21] M., Tayyab, J., Zhou, R., Adnan, C., Meng, & A. Zahra, (2016). Streamflow prediction by applying generalized 
regression network with time series decomposition method. Indonesian Journal of Electrical Engineering and 
Computer Science (IJEECS), 4(3), 611-616.  

[22]  P. Kang, and Z. Jin, “Neural network sliding mode based current decoupled control for induction motor 
drive”. Information Technology Journal, vol. 9(7), pp. 1440-1448, 2010.  

[23] H. Zayandehroodi, et al, “Automated fault location in a power system with distributed generations using radial 

basis function neural networks,” Journal of Applied Sciences (Faisalabad), vol. 10(23), pp. 3032-3041, 2010.  
[24] G. Panchal, Ganatra, et al, “Behaviour analysis of multilayer perceptronswith multiple hidden neurons and hidden 

layers,” International Journal of Computer Theory and Engineering, vol. 3(2), pp. 332, 2011.  
[25] M. T. Vakil-Baghmisheh, and N. Pavešić, “Training RBF networks with selective 

backpropagation,” Neurocomputing, vol. 62, pp. 39-64, 2004.  
[26] D. C. Dhubkarya, and D. Nagaria, “Implementation of a radial basis function using VHDL” Global Journal of 

Computer Science and Technology, vol. 10(10), 2010.  
[27] N. Mahmod, N. A. Wahab (2017). Fouling Prediction Using Neural Network Model for Membrane Bioreactor 

System. Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), 6(1), 200-206.  
[28] Y. S. Hwang, and S. Y. Bang, “An efficient method to construct a radial basis function neural network classifier,” 

Neural networks, vol. 10(8), pp. 1495-1503, 1997.  
[29] K. A. De Jong, and W. M. Spears, “Using genetic algorithms to solve NP-complete problems,” In ICGA Journal  

(pp. 124-132), June 1989.  
[30] W. Jia, et al, “A new optimized GA-RBF neural network algorithm,” Computational intelligence and neuroscience, 

2014, vol. (44), pp. 1-6, 2014.  
[31] Y. U. Zhijun, (2013). RBF neural networks optimization algorithm and application on tax 

forecasting. TELKOMNIKA Indonesian Journal of Electrical Engineering, 11(7), 3491-3497.  

 

 

BIOGRAPHIES OF AUTHORS 

 

 

Shehab Abdulhabib Alzaeemi received a Bachelor Degree of Education (Science) from Taiz 
Universiti in 2004 and Master of Science (Mathematics) from Universiti Sains Malaysia in 

2016 and now student PhD in Universiti Sains Malaysia. He was fellow under the Academic 
Staff Training System of Sana'a Community College from 2005-2014. His research interests 
mainly focus on neural network, logic programming, and data mining. 

   

 

Mohd Shareduwan Mohd Kasihmuddin is a lecturer in School of Mathematical Sciences, 
Universiti Sains Malaysia. He received his Ph. D from Universiti Sains Malaysia. His current 
research interests include Metaheuristics method, neural network development, artificial 
inteligence and logic programming. 

    



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Radial basis function neural network for 2 satisfiability programming (Shehab Alzaeemi) 

469 

 

Mohd. Asyraf Mansor is a lecturer in the School of Mathematical Sciences, Universiti Sains 
Malaysia. He received his Ph.D from Universiti Sains Malaysia. His current research interests 

include evolutionary algorithm, satisfiability problem, neural networks, logic programming and 
heuristic method. 

   

 

Saratha Sathasivam is an Associate Professor in the School of Mathematical Sciences, 
Universiti Sains Malaysia. She received her MSc and BSc(Ed) from Universiti Sains Malaysia. 
She received her Ph.D at Universiti Malaya, Malaysia. Her current research interest are neural 
networks, agent based modeling and constrained optimization problem.. 

   

 

Mustafa bin Mamat is a Professor in the Faculty of Informatics and Computing, Universiti 
Sultan Zainal Abidin. His current research interests include computational mathematics, 
convergence analysis and evolutionary algorithm. 

 


