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 Some physical parameters influence the electromyography signal (EMG). 
when the EMG signal is used to estimate the position of the elbow.  
An adaptable feature was important to reduce a variation on the parameters. 
The aim of this paper is to estimate the joint position of the elbow using EMG 

signal based on a dynamic function. The major contribution of this work is that 
the method proposed is capable of determining the elbow position using  
the non-pattern (NPR) recognition (PR) method. A Wilson amplitude 
(WAMP) which used a dynamic threshold was used to reduce the EMG signal. 
The dynamic threshold was generated from the root mean square (RMS) 
processor. With the dynamic threshold, the model could adapt to any variations 
on the independent variables. In order to confirm this opportunity, this work 
involved ten healthy male subjects to perform an experimental protocol.  
After a tuning and calibration process, the mean of RMS error and correlation 

coefficient are 9.83º±1.69º and 0.98±0.01 for a single cycle of motion, 
10.39º±1.82º and 0.97±0.01 for a continuous cycle of motion and 15.19º±1.92º 
and 0.94±0.02 for the arbitrary gesture. For conclusion, the performance of  
the prediction did not significantly depend on the varying cycle of gesture  
(p-value>0.05). This study has confirmed that the success of the non-pattern 
recognition-based prediction of elbow position is adaptable to any different 
subjects, loads, and speed of motion. 
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1. INTRODUCTION 
Electromyography (EMG) can represent the muscle activities of the human limb. The EMG is widely 

used in the myoelectric control in the exoskeleton and prosthetic for rehabilitation or assistive devices [1].  
As discussed in the literature review, the joint of the limb can be predicted using surface electromyography 
signal. In general, the EMG-based joint angle estimation algorithm is divided into two types, namely: pattern 
recognition (PR) and no-pattern recognition (NPR) based methods [2]. Commonly PR method used machine 
learning to train the system, however, in the NPR method, it used filtering technique or optimization method. 
Several efforts have been made to estimate a joint angle at the upper limb or lower limb based on the EMG 
signal in those two categories. Li suggested a PR approach for estimating the lower joint angle of the limbs 
(knee and hip) using the least square support vector machine (LS-SVM) [3]. Hill-based musculoskeletal models 
are often used to approximate the position of elbow (for flexion and extension motion) and force [4] using 
electromyography signal. Pau et al. resulted in a high performance on the prediction of the elbow position for 
a single cycle [5]. However, the mean RMSE decreased when the complexities of the movement increased  
(at the continuous and random movement). One tool in the pattern recognition category is artificial neural 
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network (ANN), which is often used to identify the characteristics of electromyography and to overcome a 
nonlinearity relationship between the EMG signal and the joint angle. Tang et al. created an EMG-signal based 
model for estimating the position of elbow using ANN with backpropagation algorithm [6]. Nonetheless,  
to improve the accuracy of the calculation for different loads, they combined the EMG signal and a load cell 
sensor as ANN inputs to identify load variations on the forearm. Previous studies mainly proposed a method 
for improving estimation accuracy based on machine learning with PR methods such as ANN, SVM  
and Genetic Algorithm [7]. However, the limitations of the pattern recognition method were that it only 
recognized the variables, such as speed, type of movement and subjects that had been trained and could not 
identify a new-added variable.  It was also still a problem how to develop a model that could estimate  
the elbow-joint angle for varying variables with only using the EMG signal and without using additional 
sensors, such as accelerometer [8] and force sensor [6] which were to increase the performance of  
the prediction. Besides using the PR approach, separate earlier studies used the NPR method to study  
the relationship between the EMG and the elbow location. The advantage of using this method is that  
the non-pattern recognition method does not require a training process to recognize the relationship between 
the EMG and angle, furthermore, it can be used generally for different variables. Lee et al. predicted a 
movement of a lifting task using a time-domain analysis [9]. They found that the mean correlation coefficient 
was about 0.82. However, they reported that the correlation coefficient was lower for a light object and high 
speed. Jang et al. used a spring-damper pendulum model to measure the shoulder joint for flexion movement 
based on an EMG signal [10]. By extracting the EMG signal into the function, Yu et al. used the EMG signal 
to predict the position of the elbow. A low-pass filter was added to find a smooth estimation. However, those 
previous studies did not evaluate the model with varying types of movements and speeds of motion [11].  
These variables were very important to be evaluated so that the model could approach the human elbow 
function naturally. 

There is some limitation mentioned in the previous research; therefore, when a different type of 
motion (continuous and random movements) is performed and the problem is solved in adaptation when  
the model is performed at different speeds and types of movements, a new method must be presented to answer 
the problem in precision. This paper presents the NPR approach for predicting the elbow position directly using 
the EMG signal extraction function and the filtering technique. The purpose of this paper is to propose a system 
for predicting the angle of the elbow joint, using muscle biceps. In addition, the proposed approach can be 
adjusted to any situations, such as varying speeds and movement types, using a dynamic threshold-based 
function of EMG. This paper is constructed into five sections. Section II explains the materials, the proposed 
method, and step to estimate the elbow-joint angle. Section III explains the study results and the conclusion. 
The findings of this work are shown in Section IV. Finally, Section V explains this study's conclusion. 
 
 

2. METHODS 

2.1.   Subjects 
In this study, we invited ten young people to participate in the data acquisition (Age range: 20-21 

years old, weight range: 50-70 kg). The experimental procedures were explained to the participant before  
the experiment was executed. An inform consent form was given to the subject so that they can read  
and understand the aim of this study. The experimental procedures were reviewed and approved by  
the Polytechnic of Health Surabaya Ethics Committee, Ministry of Health Indonesia. The participants were 
selected who had no injury and no prior muscle diseases problem. In the data recording, the subjects were 
trained to follow the sequence of the experiment with various tools and windows application programs. 
 
2.2.   Procedures 

Participants are in the upright position and wearing the exoskeleton in the data recording process 
Figure 1. The elbow movement was synchronized with the exoskeleton frame. A linear potentiometer was used 
to measure the real position of the elbow which it was used as standard value. Previously, the output of  
the potentiometer has been calibrated using a digital goniometer (Mini digital protactometer, SCMMC,  
SC810-100, China). Participants were prepared to move the elbow in the 0o to 145o bending and extension 
range. The movements were guided using a customized metronome program that was developed using a visual 
programming language based on Windows operating system. The metronome was used to direct the subjects 
by a trial form in single, continuous and spontaneous motions with varying motion duration (6 seconds,  
8 seconds, and 10 seconds). In this study, under three different periods, the subjects performed flexion  
and extension movements P1 (6s), P2 (8s), P3 (10s), and three different types of motion M1 (single cycle),  
M2 (continuous cycle) and M3 (random cycle). To prevent the effect of muscle fatigue, every subsequence of 
the trial, the subjects were given 5 minutes of rest time. 
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Figure 1. Modelling and calibration of elbow-joint angle estimation using WAMP parameter 
 

 

2.3.   Data recording 

The EMG signal was gathered using an AD620-based bio amplifier with a built-in preamplifier. An analog 

Butterworth filter with a cut-off frequency between 20 and 500 Hz was added. This is in according to the EMG 
characteristics [12]. To eliminate the power line noise which joint into the EMG signal, then, notch filter 50 

Hz was applied. In order to offset the EMG level, the summing amplifier was applied. Two pair standard 

disposable electrodes as used in the ECG data recording was used in the EMG data recording. The space 

between electrode pair, which placed on the surface of the biceps and triceps muscle, was 20 mm. Biceps  

and triceps are the muscles that are most active for these movements in the process of flexion and extension 

[13]. The potentiometer was placed in the spot between the upper arm and forearm of the exoskeleton frame 

which used to measure the real position of the elbow. 

 

2.4.   Data processing 

For every 100 samples, the recorded data (EMG and angle) were extracted using adjacent windowing 

techniques as recommended in the previous study recorded data (EMG and angle) [14, 15]. In the other part of 

our analysis, the efficiency of the extraction of time-domain features was assessed [16]. WAMP is  

the number of times the difference between two neighboring EMG samples exceeding the maximum value. 
The WAMP is defined in the following (1) [16]. 

 
Algorithm 1: WAMP Feature 

1. 
 
2. 
3. 
4. 
5. 
6. 
7. 

 

Start: N = 100; voltageth = RMS;  
        EMGW = 0;  
Input: EMG[k]   
Output: EMGW 
FOR k → 0 TO N-1 DO 
  difference = ABS (EMG[k] - EMG[k+1]) 
  IF (difference >= voltageth) 
    THEN EMGW = EMGW + 1 

End 
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where EMGW is the WAMP parameter obtained each of 100 samples, EMGi is the raw EMG signal for  

the i-samples, and The threshold shall be the amplitude needed to pass the signal to be registered. The WAMP 

Parameter Implementation was determined in accordance with Algorithm 1. The EMGW can represent an 

elbow-joint angle approximation. Generally, the threshold value was pre-defined with the values between 0.05 

and 0.3 mV as mentioned by previous studies [17]. The EMG signal-based threshold was produced in this 

study. Next, the threshold values were obtained from RMS. The next stage was to standardize the parameter 

of EMGW using (2).  
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where EMGN is the normalized WAMP features, EMGW is the WAMP parameter that is obtained from feature 

extraction process, EMGW (MIN) is the minimum value of the parameter, and EMGW (MAX) is the maximum value 

of the parameter. Because of the raw EMG data, an absolute function was used before the extraction  

of the element, so that the EMGW minimum value was always zero. In the offline data processing, the maximum 

of EMGW was obtained by selecting the data for every cycle. Further, in the real-time data processing,  

the maximum of the EMGW may be obtained by conducting some of trial before performing the proposed 

model.  In this stage, the normalized WAMP parameter can represent the elbow-joint angle estimation with 

some ripples and noises. Therefore, to smooth the EMGN, it needs a filtering process as recommended  

by previous researchers [10]. The LPF was produced digitally, based on Infinite Impulse Responses (IIR).  

The LPF equation was shown in (3). 
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where EMGL[k] is the filtered features for k-th sample. The a1, a2, b0, b1 and b2 are the LPF coefficients.  
The LPF cut-off frequency was chosen from 80 Hz to 100 Hz to get the best elbow-joint angle estimate. 

The EMGL[k] was the estimated angle with the normalized condition (ranged between 0 and 1).  

The actual angle was calculated in this analysis using a potentiometer that was used to test and calibrate the 

projected angle. The estimated angle is obtained by using two parameters to calibrate the output of the filtered 

functions, the maximum value of the measured angle (AMEA(MAX) ) and the gain constant (G) as written in (4). 

 

][..][ )( kEMGAGkA LMAXMEAEST   (4) 

 

where AEST[k] is the estimated angle, G is an adjustable constant to get the best output of the projected angle, 

AMEA (MAX) is the maximum value of the measured angle which is obtained from the maximum value  

of the movement of the elbow joint and EMGL[k] is obtained from (3). Figure 2 outlines steps of the process 

of tuning and calibration. The tuning technique was used to achieve maximum efficiency of calculation of  
the elbow-joint angle. The calibration stage is for the determined angle to be tested at the measured angle.  

The root mean square (RMS) processor used to produce a dynamic threshold for the WAMP features is  

the main part of this block diagram. The RMS processor calculated the energy of the EMG signal (5) so that 

threshold values can adapt to any variation of the EMG amplitude for different loads so that the accuracy  

of the estimation can be maintained. 
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Figure 2. The tuning and calibration process to achieve optimum elbow-joint angle estimation efficiency 
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where EMGi is the i-th sample and N is windows length for the feature extraction process. 
 

RMSCThreshold .  (6) 

 
The WAMP threshold was determined based on (6). The C constant was chosen in such a way that  

the performance is the highest. The C constant was chosen between 60% and 80% of the RMS value by 

experiments. The calibration depended on the measured maximum-angle (AMEA(MAX)) and gain factor (G).  

In this work, the AMEA(MAX) was chosen according to the experimental protocol in which the range of motion is 

between 0º and 145º Figure 1, therefore the AMEA(MAX) equal to 145. Gain factor (G) was selected between 1.0 

and 2.0. These values were determined by experiments in the first measurement of the EMG signal.  

 

 

3. RESULTS 

This section presented the result of this study. The EMG activity, result of the feature extraction using 

WAMP parameter with an adaptive threshold. Statistical analysis was also shown in order to get  

the performance comparison between parameters. 
 

3.1.   Estimate the position 

Figure 3 shows an example of the estimation from the subject. Figure 3(a) shows the surface EMG 

signal activities were based on the elbow joint angle movement. Following the extraction process,  

the characteristics yielded may match the position of the elbow Figure 3(c). Figure 4(d) shows that  

the predicted elbow joint angles. In this example, the RMSE of the estimated angle was 10.67º and Pearson’s 

correlation coefficient was 0.983. Another example, in Figure 4, was the approximate elbow joint angle for a 

cyclic random motion from subject A. In this case, RMS error and correlation were 13.38o  

and 0.958, respectively. 

 

 

  
  

  
 

Figure 3. (a) original of raw electromyography signal, (b) rectifying of EMG, (c) EMG feature, (d) 

smoothing feature 
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Figure 4. (a) original of raw electromyography (b) rectifying of EMG signal, (c) The EMG features, (d) 
The smoothing feature 

 

 

3.2.   Effect of independent variable on performance 

Figure 5 and Figure 6 showed the estimated performance results (RMS error and correlation) for all 

subjects. Each type of motion and period has a different performance (RMS error and correlation coefficient). 

As shown in Table 1, the mean RMS error for a single trial was 9.78±0.86. Table 1 presents that the mean RMS 

error for the continuous trial was 10.33º±0.46º Table 1. The mean RMS error for the random trial was 15.35º 

±2.21º. For a single trial the mean Pearson correlation coefficient was 0.98±0.004 Table 2. For the continuous 

trial the mean correlation coefficient was 0.97±0.003 Table 2. For the random trial the mean correlation 

coefficient (mean± standard deviation) was 0.94±0.017 Table 2. The test showed that the RMSE was normally 

distributed (p>0.05). 
From the ANOVA single-factor statistical analysis Table 1 and Table 2, It was shown that there was 

no significant difference between the coefficient of correlation (p > 0.05) between the movement periods.  

(P1: 6 seconds, P2: 8 seconds, and P3: 10 seconds) in the single and continuous tests. 

 

 

 
 

Figure 5. The boxplot of the variance of RMSE that classified based on the cycle of motion and type of 

motion: (a) single, (b) continuous, (c) random) for all subjects (10 participants) 
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Figure 6. The boxplot of the variance of mean correlation coefficient that classified based on the cycle of 

motion and type of motion: (a) single, (b) continuous, (c) random) for all subjects (10 participants) 

 

 
Table 1. Overview of coefficient of correlation for single, continuous, random process trial 

Subject Single Cycle Continuous Cycle  Random 

Cycle Period: 6s Period: 8s Period: 10s Period: 6s Period: 8s Period: 10s 

A 0.99±0.011 0.98±0.010 0.98±0.014 0.98±0.004 0.98±0.007 0.98±0.015 0.97±0.009 

B 0.98±0.004 0.98±0.005 0.98±0.003 0.98±0.006 0.98±0.005 0.98±0.005 0.95±0.006 

C 0.97±0.006 0.98±0.008 0.95±0.016 0.97±0.004 0.97±0.008 0.96±0.013 0.92±0.015 

D 0.98±0.004 0.98±0.006 0.97±0.01 0.97±0.012 0.97±0.007 0.96±0.007 0.93±0.009 

E 0.97±0.014 0.97±0.013 0.96±0.018 0.97±0.008 0.97±0.01 0.96±0.008 0.94±0.022 

F 0.99±0.005 0.98±0.004 0.98±0.016 0.98±0.004 0.98±0.004 0.97±0.008 0.95±0.009 

G 0.97±0.009 0.98±0.008 0.97±0.014 0.97+0.013 0.97±0.013 0.96±0.008 0.95±0.012 

H 0.99±0.003 0.99±0.002 0.99±0.007 0.98±0.01 0.99±0.003 0.99±0.003 0.95±0.007 

I 0.98+0.005 0.97±0.009 0.98±0.005 0.98+0.005 0.97±0.009 0.98±0.005 0.92±0.015 

J 0.98±0.006 0.98±0.008 0.96±0.01 0.97±0.008 0.97±0.004 0.95±0.01 0.92±0.01 

Average 0.98±0.008 0.98±0.006 0.97±0.012 0.98±0.005 0.98±0.007 0.97±0.013 
0.94±0.017 Total Av. 

0.98±0.004 
0.97±0.003 

p-value 0.1216 0.6965 - 

 

 

Table 2.  RMSE description for single, continuous, random cycle trial (RMSE in grades) 
Subject Single Cycle Continuous Cycle  Random 

Cycle Period: 6s Period: 8s Period: 10s Period: 6s Period: 8s Period: 10s 

A 8.13±3.2 9.29±2.81 8.43±3.26 9.95±1.09 10.53±2.17 10.04±3.11 10.48±1.71 

B 8.73±1.32 10.05±1.85 9.28±1.25 9.67±2.31 9.68±2.16 8.5±1.55 13.90±2.12 

C 10.07±1.2 8.06±1.83 13.37±2.29 11.27±0.73 10.7±2.11 12.89±1.8 16.21±1.31 

D 9.00±1.28 9.20±0.71 11.07±2.43 10.26±1.34 10.05±1.25 11.74±1.32 18.01±1.05 

E 9.46±2.32 9.44±1.83 11.35±2.78 10.45±0.93 10.37±1.28 11.0±1.34 15.38±2.37 

F 8.12±1.41 9.30±1.18 10.03±3.49 8.67±0.84 9.86±0.64 11.91±1.37 15.43±1.41 

G 13.55±2.01 10.53±2.44 12.31±3.51 9.95±1.09 10.53±2.17 10.04±3.11 15.13±1.70 

H 6.47±0.98 6.13±1.12 9.09±2.61 9.11±2.17 6.7±0.77 8.92±1.05 14.11±1.06 

I 9.09±1.10 10.58±1.91 8.48±1.36 9.09±1.1 10.58±1.91 8.48±1.36 17.93±1.16 

J 10.96±0.66 9.44±1.81 14.24±1.67 11.91±1.37 11.86±0.66 15.09±1.25 16.88±1.14 

Average 9.36±1.9 9.2±1.3 10.77±2.05 10.03±1.00 10.09±1.33 10.86±2.11 

15.35±2.21 Total Av. 9.78±0.86 10.33±0.46 

p-value 0.1163 0.4647 - 

 

 

4. DISCUSSION 

The elbow joint angle could be calculated in this analysis with a non-pattern recognition which is a 

non-machine learning process by extracting the EMG signal from biceps. The proposed method could adapt to 

varying period of motion with no significant difference of the performance (p>0.05). 

 

4.1.   EMG activity 

In this study, the EMG signal produced from biceps was more powerful than the signal from triceps. 

The marginal action of the triceps has been identified by past researchers. Previous researchers revealed in  

the sagittal plane of the elbow joint movement that the EMG signal produced from triceps showed negligible 

activity than that from biceps [18]. For this reason, the EMG signal produced from biceps was the only one 

concerned in this study to estimate the elbow joint angle. Figure 5 and Figure 6 display the RMSE variance for 

all topics in the box-plot diagram. The RMSE of the measured angle revealed a broader variation in the motion 
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time of 10 seconds (the standard deviation was 2.00º to 2.74º) if it is compared to that of 6 seconds and 8 

seconds (the standard deviation was 0.98º to 1.8º). This could be caused by a little activity of EMG signal when 

the movement was slow [19]. The best mean RMSE was obtained in the single-cycle trial for all of the period, 

loads and subjects within ranged between 9.10º±0.66º and 10.64º±1.73º. By increasing the complexities of  

the movement, in the random trial, the accuracy of the estimation was lower than that of single-cycle trial  

and continuous cycle trial. Pau [5] also found that the performance was decreased when the motion was more 

complex. The correlation coefficients for all variables (movement periods and types of movements) show, 

however, that the coefficients were higher than 0.9 (Table 1). This indicates that the method proposed is highly 

correlated with the angle measured. 

 

4.2.   Estimation 

The proposed model revealed that the estimate has a consistency (p>0.05) for all variables (subjects, 

movement period and movement type) using only the EMG signal. This was due to the fact that the WAMP 

threshold was obtained for each window duration based on the EMG intensity so that the EMG signal function 

could match the estimate. The proposed model is comparable with several previous studies in the same setting, 

which uses only the EMG signal for the estimation. Pau et al. proposed an estimation using myoelectric signal 

(from biceps and triceps) based on Hill musculoskeletal model[5]. The mean RMSE values obtained are 

6.53º±3.2º for a single cycle of motion, 22.0º±6.6º for continuous of motion and 22.4º ± 5.0º for random motion. 

However, in their study, to obtain the maximum performance, they optimized the performance using a Genetic 

algorithm which was a time-consuming process to obtain local minima. Tang et al. developed EMG to angle 

model that recognized a single cycle of motion (flexion and extension) with varying loads using the artificial 
neural network (ANN) [6]. The EMG signal was derived from four muscles and used as input to the ANN.  

The RMSE values were 7.86º±1.14º for intra-load (testing with the same load) and 26.73º±9.01º for inter-load 

(testing with the other load). The performance improved after they integrated the EMG signal and a force 

sensor as inputs to the ANN. Ko and Mak reported a difference accuracy (RMSE) between loaded and unloaded 

trials for flexion motion which is 13.71º±5.89º and 34.64º±7.79º respectively[20]. Triwiyanto et al. suggested 

the Kalman filter for estimation [21]. The RMSE values were ranged between 9.41º±2.53º and 15.02º±2.14º 

for three periods of motion (6s, 8s, and 12s). 

 

4.3.   Effect of independent variable on performance 

The performance of this proposed method depended on how the individual performed the motion in 

the direction of flexion and extension according to the experimental protocol. In this situation, the participants 

must not perform any other contraction (such as pronation and supination) besides the flexion and extension 
motion. Even though we have homogenized the participants but still each participant has its own EMG 

characteristic (the amplitude and pattern). This proposed approach was limited only to the identification of one 

degree of elbow-joint freedom (1 DOF). A new method needs developing so that it can recognize more than 

one DOF. Therefore, it needs an investigation of the muscle group that was related to the movements  

and motion direction of the limb. Muscle fatigue is a condition to be further addressed in the data collection 

process, as Basmajian and de Luca reported that muscle fatigue affected spectral parameters of surface 

electromyography signal [22, 23]. In this analysis, the muscle was assumed to be in a non-fatigue state. 

Therefore, to prevent muscle tiredness, the subjects were given some rest time in the data collection process 

for each trial. Though there have been many attempts to account for the impact of muscle tiredness [24, 25]. 

The creation of a model that can compensate for muscle tiredness in dynamic motion remains a  

challenging problem.  
 

 

5. CONCLUSION 

The main objective of this study is to build an electromyography signal method for predicting  

the elbow position based on non-machine learning, which directly uses the extraction and filtering technique 

in the time-domain function. We suggested that the threshold value be generated on the basis of the EMG 

energy (RMS) so that the model can be adapted to any changes in subjects and variables such movement periods 

and movement types. The effectiveness of the proposed method has statistically examined and it showed a 

good performance for a single, continuous and random movement with varying periods of motion.  

The statistical analysis showed that, for all subjects with different motion periods, there was mostly no 

significant difference in RMSE. The tuning method was achieved in a simple fashion by changing the constant 

G and C. In the future study, the approach can be expanded to include more degrees of freedom  
and the prosthetic or exoskeletal tools can be used as a control signal. 
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