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Abstract 
This paper focuses on the application of a robust Fractional Order PID (FOPID) stabilizer tuned 

by Genetic Algorithm (GA). The system’s robustness is assured through the application of Kharitonov’s 
theorem to overcome the effect of system parameter’s changes within upper and lower limits. The FOPID 
stabilizer has been approximatedduring the optimization using the Oustaloup’s approximation for fractional 
calculus and using the “nipid” toolbox of Matlab during simulation. The objective is to keep robust 
stabilization with maximum achievable degree of stability against system's uncertainty. This optimization 

will be achieved with the proper choice of the FOPID stabilizer’s parameters (kp, ki, kd, , and ) as 
discussed later in this article. The optimization has been done using the GA which limits the boundaries of 
the tuned parameters within the permissible region. The calculations have been applied to a single 
machine infinite bus (SMIB) power system using Matlab and Simulink. The results show superior behavior 
of the proposed stabilizer over the traditional PID. 
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1. Introduction 
Low or negative damping in a power system can lead tospontaneous appearance of 

large power oscillations. Severalmethods for increasing the damping in a power system 
areavailable such as static voltage condenser (SVC), highvoltage direct current (HVDC) and 
power system stabilizer (PSS). Operating conditions of a power system are continuallychanging 
due to load patterns, electric generation variations, disturbances, transmission topology and line 
switching [1]. 

Toenhance system damping; the generators are equipped with power system stabilizers 
that provide supplementary feedback stabilizing signals in the excitation systems [2]. The 
control strategy should be capable of manipulating the PSS effectively. The PSS should provide 
robust stability over a wide range of operating conditions, easy to implement, improves transient 
stability, low developing time and least cost [1]. Varioustopologies and many control methods 
have been proposed forPSS design, such as adaptive controller [3], robust controller [4, 5], 
extended integral controller [6], state feedback controller [7], fuzzy logic controller [8] and 
variable structure controller [9]. In [10] an adaptive fuzzy PSS that behaves like a PID controller 
that provides faster stabilization of the frequency error signal with less dependency on expert 
knowledge is proposed. In [11], an indirect adaptive PSS is designed using two input signals, 
the speed deviation and the power deviation to a neural network controller. 

The robust PSS has the ability to maintain stabilityand achieves desired performance 
while beinginsensitive to the perturbations. Among the variousrobustness techniques, H∞optimal 
control [12] andthe structured singular value (SSV or μ) technique [13] have received 
considerable attention. But, the application of μ technique for controller design iscomplicated 
due to the computational requirementsof μ design. Besides the high order of the resulting 
controller, also introduces difficulties with regard to implementation [14]. 

The H∞ optimal controller design is relatively simpler than the μ synthesis in terms of the 
computational burden [15-16].  

Since power systems are highly non-linear, conventional fixed-parameter PSSs cannot 
cope with wide changes of the operating conditions. There are two main approaches to stabilize 
a power system over a wide rangeof operating conditions; namely adaptive control [16-19] and 
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robust control [20-25]. However, adaptive controllers have generally poor performance during 
the learning phase; unless they are properly initialized. Successful operation of adaptive 
controllers requires the measurements to satisfy strict persistent excitation conditions; otherwise 
the adjustment of the controller‟s parameters fail [26]. 

The PSS proposed in this paper belongs to the class ofrobust controllers. It relies on the 
Kharitonov theorem and GA optimization. The use of the Kharitonov the oremenables us to 
consider a finite number of plants tobe stabilized. The resulting controller will be able tostabilize 
the original system at any operating point withinthe design range. We propose to tune the 
controller‟s parameters using the genetic algorithm optimization technique [26]. 

This article is organized as follow: In section 2, wepresent a brief introduction to 
fractional calculus and its approximation. Section 3 presents the GA. Section 4 illustrates the 
system under investigation. Section 5 presents the problem formulation and the problem 
solution is discussed in section 6. The design procedure of FOPID PSS is introduced in section 
7 with different loading and working conditions. Section 8 and some references are given in 
section 9. The paper has three appendices A, B, and C. 
 
 
2. Fractional Order PID Controller (PI

λ
D

δ
) Design 

Proportional-Integral-Derivative (PID) controllers are widely being used in industries for 
process control applications. Themerit of using PID controllers lie in its simplicity of design and 
good performance including low percentage overshoot and small settling time for slow industrial 
processes. The performance of PID controllers can be further improved by appropriate settings 
of fractional-I and fractional-D actions. 

In a fractional PID controller, the I- and D-actions being fractional have wider scope of 
design. Naturally, besides setting the proportional, derivative and integral constants Kp, Td and 
Ti respectively, we have two more parameters: the power of s in integral and derivative actions- 

λ and δrespectively. Finding [kp, ki, kd, , and ] as an optimal solution to a given process thus 
calls for optimization on the five-dimensional space. Classical optimization techniques cannot be 
used here because of the roughness of the objective function surface. We, therefore, use a 
derivative-free optimization, guided by the collective behavior of socials warm and determine 

optimal settings of kp, ki, kd, , and. 
The performance of the optimal fractional PID controller is better than its integer 

counterpart. Thus the proposed design will find extensive applications in real industrial 
processes. Traces of work on fractional PID controllers are available in the current literature [28-
36]. A frequency domain approach based on the expected crossover frequency and phase 
margin is illustrated in [29]. A method based onpole distribution of the characteristic equation in 
the complexplane was suggestedin [32]. A state-space design method basedon feedback poles 
placement can be viewed in [33].  

Moreover, researchers reported that controllers making use of factional order 
derivatives and integrals could achieve performance and robustness results superior to those 
obtained with conventional (integer order) controllers. The Fractional-order PID controller 
(FOPID) controller is the expansion of the conventional PID controller based on fractional 
calculus [19, 34]. 
The differential equation of the PI

λ
D

δ 
controller is described in time domain by 

 

 ( )       ( )      
 λ  ( )      

δ  ( )      (1) 

 
The continuous transfer function of the PI

λ
D

δ 
controller is obtained through Laplace transform as 

 

  ( )          
 λ      δ       (2) 

 
It is obvious that the FOPID controller does not only need the design three 

parameters    ,   and   , but also the design of two orders λ δ
 
of integral and derivative 

controllers. The orders λ δ
 
are not necessarily integer, but any real numbers, [27]. 
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3. Genetic Algorithm Operation 
To illustrate the working process of genetic algorithm, the steps to realize a basic GAare 

listed below [35-36]: 
Step 1: Represent the problem variable domain as a chromosome of fixed length; choose the 
size of the chromosome population N, the crossover probability Pc and the mutation probability 
Pm. 
Step 2: Define a fitness function to measure the performance of an individualchromosome in 
the problem domain. The fitness function establishes the basis forselecting chromosomes that 
will be mated during reproduction. 
Step 3: Randomly generate an initial population of size N: x1, x2,...,xN. 
Step 4: Calculate the fitness of each individual chromosome: f( x1),  f( x2), …,  f( xN).  
Step 5: Select a pair of chromosomes for mating from the current population. Parent 
chromosomes are selected with a probability related to their fitness. High fit chromosomes have 
a higher probability of being selected for mating than less fit chromosomes. 
Step 6: Create a pair of offspring chromosomes by applying the genetic operators. 
Step 7: Place the created offspring chromosomes in the new population. 
Step 8: Repeat Step 5 until the size of the new population equals that of initial population, N. 
Step 9: Replace the initial (parent) chromosome population with the new (offspring) population. 
Step 10: Go to Step 4, and repeat the process until the termination criterion is satisfied. 

A GA is an iterative process. Each iteration is called a generation. A typical number of 
generations for a simple GA can range from 50 to over 500. A common practice is toterminate a 
GA after a specified number of generations and then examine the best chromosomes in the 
population. If no satisfactory solution is found, then the GA is restarted [37]. 

The GA moves from generation to generation until a stopping criterion is met. The 
stopping criterion could be maximum number of generations, population convergence criteria, 
lack of improvement in the best solution over a specified number of generations or target value 
for the objective function. 

 

 
 

Figure 1. The computational flowchart of the GA 
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Evaluation functions or objective functions of many forms can be used in a GA so that 
the function can map the population into a partially ordered set. The computational flowchart of 
the GA optimization process employed in the present study is given in Figure 1. 

 
 
4. System Investigated  

A single machine-infinite bus (SMIB) system is considered for the present 
investigations. A machine connected to a large system through a transmission line may be 
reduced to a SMIB system, by using Thevenin‟s equivalent of the transmission network external 
to the machine. Because of the relative size of the system to which the machine is supplying 
power, the dynamics associated with machine will cause virtually no change in the voltage and 
frequency of the Thevenin‟s voltage (infinite bus voltage). The Thevenin equivalent impedance 
shall hence forth be referred to as equivalent impedance (i.e. Re+jXe) [37-38]. 
 
 

 
Figure 2. The block diagram for closed loop SMIB System 

 
 

Figure 2 shows the system under study which consists of a single machine connected 
to an infinite bus through a tie-line. The machine is equipped with a static exciter. The non-linear 
equations of the system are 
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The synchronous machine is described as the fourth order model. The two-axis 

synchronous machine representation with a field circuit in the direct axis but without damper 
windings is considered for the analysis. The equations describing the steady state operation of 
a synchronous generator connected to an infinite bus through an external reactance can be 
linearized about any particular operating point as follows: 
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'

65 qt EKKV          (7) 

 
The synchronous machine is described by Heffron- Philips model as described in Figure 2. The 
K-constants are given in appendix A.The data definitions are given in appendix B. The system 
data are illustrated in appendix C. 

The interaction between the speed and voltage control equations of the machine is 
expressed in terms of six constants k1-k6. These constants with the exception of k3, which is 
only a function of the ratio of impedance, are dependent upon the actual real and reactive 
power loading as well as the excitation levels in the machine [37-38]. 
The system equation can be expressed in the following state variable form [39-40]:  
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5. Problem Formulation 

The system can be represented by the block diagram proposed by deMello and 
Concordia [38] which can be cast as shown in Figure 2. The parameters of the model are load 
dependent, thus, they have to be calculated at each operating point. Analytical expressions for 
the parameters k1–k6, as derived in [15-16], are listed in appendix A. The parameters, k1–k6, 
are functions of the loading condition (P and Q). By varying P and/or Q to cover a wide range of 
system loading, the parameters K

1 
to K

6 
are computed.  

The use of the high-gain voltage regulators usually destabilizes the system. This effectis 
usually complemented compensated by the inclusion of a stabilizing signal generated by the 
PSS to provide the required damping. In most cases, the speed deviation signal Δωis used as 
an input to the PSS. 

To design the PSS, it is convenient to represent the system in the transfer function form 
as shown in Figure 3. An analytical expression for the transfer function is derived based on the 
obtained parameters by using Mason‟s rule. The resulting transfer function is 
 

  

 
(s)=

  

                     
       (10) 

 
The transfer-function coefficients expressed in terms of thek-parameters are: 
 

        

    (    ) 
                      

        (    )                   (11) 

      (                   ) 
         

 
The coefficients of the transfer function are load-dependent. So, the PSS has to be 

adjusted at different loads. To scan the whole range of operation, the load dependency may 
require the analysis of a large number ofpoints with a new model generated at each operating 
condition. 
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A proposed technique, based on the Kharitonov theorem and GA, is used to design a 
fixed parameters robust FOPID controller to stabilize the non-linear system over the specified 
range of operating conditions [Pmin, Pmax] and [Qmin, Qmax]. In this technique, the problem is 
transformed to simultaneous stabilization of a finite number of extreme plants. We will show in 
the next section that we need to stabilize exactly eight characteristic polynomials. 
 
5.1. Mathematical Tools and Problem Solution 
 
5.1.1. Kharitonov Theorem 

The Kharitonov theorem studies the robust stability of aninterval polynomial family [40]. 
A polynomial is said to be an interval polynomial if each coefficient aiis independent of the 
others and varies within an interval having lower and upper bounds that is, 
 

            
                (12) 

 
       

    
           (13) 

 
The Kharitonov theorem states that “An interval polynomial is robustly stable if and only if the 
following four Kharitonov polynomials are stable. 
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Assuming that the coefficient function ai depends continuously on the vector = [P Q]

T 
(machine 

loading P and Q), we define the bounds and simply construct the polynomial described by 
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Then the robust stability of polynomial (30) implies the robust stability of (12). 
 
5.1.2. Oustaloup’s Recursive Filter to Approximate FOPID 

Some continuous filters have been summarized in [41]. Among the filters, the well-
established Oustaloup recursive filter has a very good fitting to the fractional-order 
differentiators. Assume that the expected fitting range is (ωb, ωh). The filter can be written as 
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where the poles, zeros, and gain of the filter can be evaluated such that 
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Thus, the any signal y(t) signal can be filtered through this filter and the output of the 

filter can be regarded as an approximation for the derivative term of the FOPID with=or the 

integral counterpart with=-. The resulted transfer function of the FOPID is the sum of the 

proportional term    plus the filter approximation of the integral term (   
 ) plus the derivative 

term(   ). The result will be the approximated transfer function of the FOPID controller   ( ) 
as given by equation (2). 
In general   ( )can be assumed to be in the form: 

 

  ( )=
 ( )

 ( )
         (20) 

 
As shown in Figure 3, the closed loop characteristic equation can be written as 
 

1+  ( )  ( )           (21) 

 

Where   ( )  
  

 
(s) is the plant transfer function [18]. 

 
5.1.3. The 16 Kharitonov Polynomials 

Given the plant family with Kharitonov polynomials N1,…,N4 and D1,…, D4 for the 
numerator and denominator, respectively, we define the 16 Kharitonov plants as [42] 
 

  
 ( )  

   ( )

   ( )
                               (22) 

 
Where i=1,2,…,16. If the controller can stabilize all the 16 closed loop polynomials given as 
 

1+  
 ( )  ( )           (23) 

 
Then the closed loop system (33) is robustly stable, where                          . 

Applying the above mathematical tools to the single machine–infinite bus system 
(Figure 1), we have thevector   which is composed of two independent components. 
 

                (24) 
 

In the system under study, the numerator of the transfer function is a first order 
polynomial (bs). Thus, the coefficient b has two extreme values b

+
 and b

−
; that is,the 16 plants 

corresponding to (23) are reduced to 8plants only. 
 
 
6. Problem Solution 

To stabilize the system over the required ranges of P andQ, the following eight 
polynomials must be stable. 

We will use the genetic algorithm to find thevalues of kp, ki, kd, , and  that correspond 
to the following optimization problem 
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where   is a vector containing the real parts of the roots ofthe eight equations resulting 
from (25). This means thatthe parameters k, z and p must stabilize the eight polynomials in 
Equation (25). On the other hand, theswarm optimization algorithm attempts to push the 
closedloop poles to the left as far as possible by minimizing the maximum real part of the roots 
resulting from (25). The problem can be tackled using a different approach.  

If we divide the range of P and Q into small steps, theresulting grid will represent the 
possible operating points. 

For each point on the grid, a model can bederived. Applying the genetic algorithm 
optimization technique to stabilize such systems is possible. However, there is no guarantee 
that stability is preserved for intermediate points inside the grid. The proposed technique 
eliminates this short coming via the Kharitonov theorem. 
 
 
7. PSS Design for Different Machine Loadability 

The design objective, in this paper, is to implement the machine load ability, of the 
system under study, over the range Q ∈[−0.4, 0.4] and P ∈[0.2, 1.2]. The design procedure can 
be summarized as follows: 

 Develop the linearized model as shown in Figure 2. The machine parameters and the k-
parameter calculations are given in the Appendices A and C. 

 Based on the analytical expressions for            and b in (11), calculate the maximum 
and minimum values of the aforementioned parameters using any standard optimization 
technique. Note that   and   do not depend on the values of P and Q. 

 Using (29) and replacing    by   
 , construct the four Kharitonov‟s polynomials as in 

(15).Compute the roots  of  the 8 extreme polynomials and take the largest real part of the 
roots as the objective function to be minimized. 

 Use the GA to find a solutionfor the optimization problem (26) such that the rootsof (25) lie 
in the left hand side of the s-plane away from the imaginary axis as much as possible. Thus 
the shortest settling time of oscillations is achieved 

The above procedure is applied to the system under studyas follows: Consider the 
system transfer function (10). The extreme values of its coefficients are calculated as 
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         (  )      (27) 
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The results of the above calculations are 
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Then, the four Kharitonov polynomials are: 
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7.1. Design of a Robust PSS using GA 

The plant transfer function (10) is analyzed using eight extreme plants given by 
 

  ( )  
  

 
(s)=

   

  
                 (29) 
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(s)=

   

  
           

 
To reach the optimization goal, proper adjustment of the GA parameters are needed. 

This requires the determination of population size (N=100 is sufficient), the bit size for each 
binary parameter (16 is reasonable size), and the upper and lower bounds of the optimization of 
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FOPID PSS (for  ,   , and  ), [0 100] is an acceptable range  but for  and  [0 1.5] is found to 

be a proper choice in our case [43].  
The results obtained using the GA on FOPID PSS design procedure mentioned in this 

paper are delineated in Table 1. The same procedure can be successfully applied to the case of 

PID PSS considering the limits of  and  of the FOPID PSS as [1 1]. Results of this case are 
also shown in Table 1. 

The proposed PSS is tested over three operating condition. 
 
7.2. The Normal Loading Test 

The first operating point is P = 0.8 pu and Q = 0.3 pu represents the normal loading 
conditions. The system was exposed to a 0.20 p.u step increase in the input torque reference at 
0.5 s. The disturbance was removed at 15 s, .e. the signal duration is 14.5 s, and the system 
returned to the original operating point by the end of disturbance. The regulated system without 
a stabilizer is stable at this point [18]. However, the mechanical disturbance pushes the system 
close to the stability bound. Figure 3 shows the machine speed deviation and the machine 

power angle (). It is clear that if the power system stabilizer is not employed, the rotor angle 
oscillation will have a very slow damping behavior. On the other hand, the proposed FOPID 
stabilizer successfully suppresses and damps the oscillations in almost three seconds. The 
controller signal is shown in Figure 3. It is clear that the controller is utilizing the full control 

range limited by the maximum standard power system stabilizer signal 0.1 pu. 
 
 

 
 

Figure 3. System response to 0.2 pu torque disturbance at (P = 0.8, Q = 0.3) 
 
 

The Simulink models for the FOPID PSS applications are illustrated in Figures (4) and 
(5). The FOPID PSS block is represented by “NIPID” block of “ninteger” blockset of Matlab [44]. 
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Figure 4. Matlab/Simulink Model with FOPID PSS and Torque Disturbance Signal 
 
 

 
 

Figure 5. Matlab/Simulink Model of SMIB with FOPID PSS 
 
 

Table 1. GA estimated parameters for PID and FOPID PSS 
Controller            

PID 
(minimum=-1.3961) 

45.36 45.452 62.2 N/A N/A 

FOPID 
(minimum= -1.3849 

48.50 93.666 79.8 0.61 1.3 
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7.3. Overload Test 
In this test the machine was operating at P = 1.2 pu and Q = 0.2 pu. The machine 

speed deviation is unstable at this operating point [18]. Figure 6 shows the effectiveness of the 
proposed FOPID PSS to stabilize the system during over loading conditions [45]. 
 
7.4. Full Load with Leading Power Factor Test 

 
 

 
 

Figure 6. Δδ and    after adding FOPID PSS type in normal operation at (P = 1.2, Q = 0.2) 
 
 

 
 

Figure 7a. Δδ without Controller (P = 1, Q = −0.4) 
 
 

 
 

Figure 7b. Δδ and    due to a three line to ground fault at 3 s staying for 100 ms after adding 
FOPID PSS type  
(P = 1, Q = −0.4) 
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The second operating point is P = 1pu and Q = −0.4 pu. This point lies in the unstable 
region for the regulated system without a stabilizer as illustrated in Figure 7a. The system at this 
operating point was exposed to a three phase to ground short circuit at 3 seconds and this will 
stay only for 100 m-seconds and then cured. Figure 7b illustrates that the proposed FOPID 
stabilizer can damp the power angle and angular frequency oscillations within a short period of 
time with the same value of tuned parameters given in Table 1.  
 
 

 
 

Figure 8. Δδ and    after adding PID PSS type in normal operation (P = 0.8, Q = 0.3) 
 
 

 
 

Figure 9. Δδ and    after adding FOPID PSS type in normal operation (P = 0.8, Q = 0.3) 

 
 

Finally, for the more illustration, the effect of the PID and FOPID PSSs on the 
stabilization of the SMIB power system described here in is shown in Figures (8) and (9) for only 
the case of normal operation with P = 0.8 pu and Q = 0.3 pu without disturbance. It is clear that 
the damping effect of the FOPID PSS is noticeable compared with that of the PID PSS. The 
control effort in both PID and FOPID PSSs are shown in Figures 10a and 10b. Obviously, the 
control effort of the FOPID PSS is much less than that of the PID in both magnitude and mean 
square error. 
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Figure 10a. Control Effort of the FOPID PSS  

in normal operation (P = 0.8, Q = 0.3) 
Figure 10b. Control Effort of the PID PSS  

in normal operation (P = 0.8, Q = 0.3) 

 
 
Moreover, the minimum negative eigen value of the stabilized SMIB system using the 

PID and FOPID PSS is almost the same as shown in Table 1. The change of this value for the 
case of FOPID PSS with iteration is delineated in Figure 11.  
 
 

 

Figure 11. The Objective Function vs. Iterations in case of FOPID PSS 

 
8. Conclusion 

The design of a robust FOPID PSS using the Kharitonov theorem has been proposed. 
The k-parameters of the model are parameterized in terms of the operating point (P, Q). 
Accordingly, the coefficients „bounds of the transfer function relating the stabilizing control signal 
to the speed deviation have been calculated over the whole range of operating points. The 
design is based on simultaneous stabilization of eight extreme plants to achieve a satisfactory 
dynamic performance. The calculations are based on the GA optimization algorithm. Simulation 
results based on a non-linear model of the power system confirm the ability of the proposed 
compensator to stabilize the system over a wide range of operating points as illustrated with 
various examples. 
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The performance of the conventional PID PSS, designed with the same procedure, as 

compared with the FOPID PSS shows less oscillation damping of both the changes in angle  

and the angular speed . 
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Appendix A 
Derivation of k-constants 

All the variables with subscript 0 are values of variables evaluated at their pre-disturbance 
steady-state operating point from the known values of P0, Q0 and Vt0.  
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Appendix B 
Nomenclature 
All quantities are per unit on machine base. 
 
D 
M 
ω  

δ  

Id, Iq 

          

  
        

 
 

Efd 

KE 

Damping Torque Coefficient 
Inertia constant 
Angular speed 
Rotor angle 
Direct and quadrature components of   armature current 
Synchronous reactance in d and q axis 
Direct axis and Quadrature axis transient reactance 
Equivalent excitation voltage 
Exciter gain 
Exciter time constant 
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TE 

Tm and Te 

Tdo
‟ 

VdandVq 

K1 
K2 
K3 
K4 
K5 
K6      

Mechanical and Electrical torque 
Field open circuit time constant. 
Direct and quadrature components of  terminal voltage 

Change in Te for a change in δ  with constant flux linkages in the d axis 

Change in Te for a change in d axis flux linkages with constant δ  

Impedance factor 
Demagnetizing effect of a change in rotor angle 
Change in Vt with change in rotor angle for constant Eq

‟
 

Change in Vt with change in Eq
‟
 constant rotor angle 

 
Appendix C 

The system data are as follows: 
 
Machine (p.u): 
 

dx   = 1.6    
'

dx   = 0.32 

qx   = 1.55    '
0dT  = 6 s   (C1) 

D    = 0.0        M   = 10 s 
 
Transmission line (p.u): 
 
re = 0.0          xe = 0.4 (C2) 
 
Exciter: 
 
KE = 25.00    TE= 0.05 s      (C3) 
 
Nominal Operating point: 
 

0tV = 1.0       P0=0.8 (C4) 

Q0 = 0.3       δ0 = 45 
0
 

ω      
 
Others (C5) 
 
          
      

     
 
 


