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 This article, present a new contribution to the control of wind energy 
systems, a robust nonlinear control of active and reactive power with the use 
of the Backstepping and Sliding Mode Control approach based on a doubly 
fed Induction Generator power (DFIG-Generator) in order to reduce the 
response time of the wind system. In the first step, a control strategy of the 
MPPT for the extraction of the maximum power of the turbine generator is 

presented. Subsequently, the Backstepping control technique followed by the 
sliding mode applied to the wind systems will be presented. These two types 
of control system rely on the stability of the system using the LYAPUNOV 
technique. Simulation results show performance in terms of set point 
tracking, stability and robustness versus wind speed variation. 
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1. INTRODUCTION  

Currently, DFIG-based variable speed wind turbines are most commonly used in wind farms 

because of its high efficiency, energy quality and the ability to control the power supplied to the grid, as well 

as the ability to operate in a ± 30% speed range around the synchronous speed, thanks to the design of the 

three-phase static converters for a portion of the ± 30% nominal power, which makes it possible to reduce the 

losses in the electronic power components and the overall increase of the system. However, the disadvantage 
of the DFIG-based wind turbine is that it is very sensitive to load disturbances, turbine rotational speed 

variation, and variation in internal and external system parameters. Likewise, the double-fed Induction 

generator is characterized by a nonlinear and multi-variable mathematical model with a strong coupling 

between the input variables. [1]i.e it is not possible to independently control the voltage or current. For this 

reason, many implementation works of linear models-based approaches have been applied, but the linear 

controller approach has quickly shown its limits, that is why research is oriented towards non-linear 

techniques to increase the robustness and precision of the systems to be controlled. The main idea of this 

approach is to analyze the stability of the nonlinear system without solving the differential equations of this 

system. It is a very powerful tool for testing and finding sufficient conditions for the stability of different 

dynamic systems. The study presented in this article aims to optimize the energy performance of a wind 

turbine to maximize captured wind energy while reducing the problems mentioned above and improving 

control performance by reducing response time. This optimization is able to minimize the costs of generating 
electricity. Among these techniques, we find the sliding mode control known for its robustness to changes in 

external parameters and disturbances, but the disadvantage of this type of control lies in the CHATTERING 

phenomenon which makes it possible to destabilize the system. The second technique is the non-adaptive 
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BACKSTEPPING control which gives the stability of the nonlinear system, the good tracking ... etc, but 

which is sensitive to parametric variations [2], [3]. 

In this article, we will carry out a comparative study between the Sliding Mode control techniques 

and BACKSTEPPING in order to improve the performances of the wind system.We will start by exposing a 

monetization of the wind turbines. Then, a study of the operating point and maximum power tracking 

technique will be presented. Subsequently, we present a DFIG model in the "dq" framework and the general 

principle of controlling both power converters based on the Backstepping and the Sliding Mode control 

strategy.  

 

 

2. WIND SYSTEM MODELLING  

The wind system is mainly composed of the wind turbine, gearbox, the doubly fed induction 

generator whose stator is directly connected to the grid and the rotor is connected via the Rotor Side 

Converter (RSC) and the Grid Side Converter (GSC) as shown in Figure 1. 

 

 

 
 

Figure 1. Global wind energy conversion system  

 
 

2.1.   Wind Turbine Model  

The power generated by the wind turbine is modeled from the following [4-8]:  
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2.2.  Standalone DFIG Model  

The Doubly Fed Induction Generator DFIG model using Park transformation is presented by the 

following [4-18], [20]:  
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2.3.   Filter (R,L) Model 
The GSC Converter is connected to the DC-BUS and the Grid via a filter (Rf, Lf). It has two roles: 

sustaining the DC- BUS voltageconstance regarding the amplitude and the rotor power directionand 

maintaining a unit power factor at the link point to the grid [21]. The filter model in the referential (d, q) is 

given by (3):  
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3. Non-Linear Controllers Synthesis  

The main objective of the DFIG-based WECS control is to maintain a constant stator voltage 

amplitude and frequency when the wind speed is changed. For this reason, the presence of a controller is very 

necessary. Many control techniques are developed in the literature for such systems. However,  

the implementation of these controllers seems very complicated. In this work, two non-linear controllers are 

developed:  

a) SLIDING MODE controller.  

b) BACKSTEPPING controller.  
 

3.1.   Sliding Mode Controller Design  

The variable structure system (VSS) is a system whose structure changes during its operation. It is 

characterized by the choice of a structure and a switching logic. This latter allows the system to switch from 

one structure to another at any time by the choice of a function, which separates the state space into two 

parts, and an appropriate switching logic. The Sliding mode technique is a special case of (VSS). It consists 

of forcing the system state trajectory to attain a hyper surface in finite time and then stay there. This latter 

presents a relation between the system state variables which defines a differential equation, and consequently, 

determines the system dynamics if it remains on the hyper surface. The evolution of a system subject to a 

control law no longer depends on the system or the external disturbances, but on the properties of the hyper 

surface. The system will therefore be robust to uncertainties (specific to the system) and disturbances 
(external to the system) but will be totally insensitive [19], [25-28]. 

 

3.1.1 RSC Control using Sliding Mode Controller 

The sliding surface proposed by J.SLOTINE is given by [29]:  

 

 
1

( )
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We take n =1, we obtain:  
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The derivative of sliding surface is given by:  
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During the sliding and permanent mode, we have:  
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The expression of the equivalent command becomes:  
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Therefore, the stabilizing control is given by the following equation:  
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3.1.2 GSC Control using Sliding Mode Controllers  

We consider the SLOTINE‟s sliding mode surface. For n = 1, we obtain:  
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The derivative of the sliding surface is given by:  
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In the sliding and permanent mode, we obtain the expression of the equivalent command supplied as follows:  
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The stabilizing control is expressed by:  
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3.2.   Backstepping Controller Design  

The principle of Backstepping control is based on the decomposition of the entire control system, 

which is generally multivariable and of high order into a cascade of first-order control subsystems. For each 

subsystem, a so-called virtual control law is calculated. The latter will serve as a reference for the next 

subsystem until obtaining the control law for the complete system. Moreover, this technique has the 
advantage of preserving the non-linearity‟s useful for the performance and the robustness of the control, 
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unlike the linearization methods. The determination of control laws that follows from this approach is based 

on the use of control Lyapunov functions [22-24]. 

 

3.2.1 RSC Control using BACKSTEPPING Controller  

The synthesis of this control can be achieved in two steps :  

Step 1: Calculation of reference rotor currents:  

In this step, we define the error between the active and reactive stator powers and their references.The errors 

of the stator power are defined by:  
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The derivative of the errors is given by:  
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We first choose the candidate function of '' LYAPUNOV ''associated with the active and reactive stator 

power errors, in the following quadratic form:  
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Its derivative is given by:  
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By replacing the error by their expression, we obtain:  
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In order to ensure the stability of the subsystem according to LYAPUNOV, the derivative of V1 must be 

negative. So, we choose it in the following form: 
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With:1, 𝑘2 are positive constants.  

Equalizing the two equations, we obtain the virtual command Ird and Irq defined by:  
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Irdref and Irqref will be considered as reference to the following subsystem.  

Step 2: Calculation of rotor voltages:  

In this last step, it has been possible to deduce the true control law Vrq and Vrd which makes it 
possible to reach the design objectives for the global system. The errors of the rotor currents are defined by:  
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The derivative of the errors is given by:  
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The extended LYAPUNOV function is defined by: 
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Its derivative becomes as follows:  
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In order to ensure the stability of the system according to LYAPUNOV, the devivative of V2 must be 

negative. So, we choose it in the following form:  
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Equalizing the two equations, we obtain:  
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Which gives the expression global real command Vrd and Vrq defined by:  
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Hence, the asymptotic stability of the origin.  

 

3.2.2 GSC control using Backstepping controllers  
The powers exchanged between the Grid Side Converter and network are expressed by [21]:  
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The expression of the filter currents is presented by the following equation:  
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According to these equations, we notice that the active and reactive powers are linked by the filter currents. 
So, it is sufficient to control the currents of the filter; the direct component Iqf controls the active power of 

the filter Pf and the quadratic component Idf controls the reactive power of the filter Qf.The errors of the 

filter currents e5 and e6 are defined by:  
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The derivatives of the errors are given by:  
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We choose the candidate function of '' LYAPUNOV '' associated with the filter current errors, in the 

following quadratic form:  
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Its derivative is given by:  
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So as to ensure the stability of the subsystem according to LYAPUNOV, The derivative of V3

 must be 

negative. So, we choose it in the following form:  
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With:5, 𝑘6 are positive constants.  

By doing the equality between the two equations, we get:  
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Which gives the expression of the actual global command Vfd and Vfq defined by:  
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4. RESULTS AND DISCUSSION  
To gauge the performance of the wind system based on the Doubly Fed Induction Generator,  

we tested the operation of the wind system by two types of control: the sliding mode technique and the 

BACKSTEPPING one in order to control the powers generated by the DFIG. To carry out this work,  

two tests were performed using MATLAB / Simulink:  

a) Test 1: Tracking and regulation tests for SMC and Backstepping Controller.  
b) Test 2: The robustness tests regarding the variation parameters.  

The results obtained for the various simulation tests, are respectively exposed on the following Figures:  

 

4.1.   Tracking and Regulation Tests 

In this case, we consider the aerodynamic power according to the MPPT strategy as a reference for 

the stator active power of the DFIG and zero as a reference of the stator reactive power to guarantee a unit 

power factor on the stator side to optimize the quality of the energy reverted on the grid.  
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Figure 2. The wind speed [m/s]  

 

 

 

 

 

 
 

Figure 3. Tracking test using SMC 

 

 

 

 
 

Figure 4. Tracking test using BS 

 

 

From these figures we can note that the references of the powers are well followed by the generator 

for both controller without coupling effect between the two axes with a low response time for Sliding Mode 

controller (Table.1). The active stator power Ps is negative means that the Grid receives the energy produced 
by the DFIG. The reactive stator power is null which gives a unit power factor. The stator voltages are a 

sinusoidal form with a fixed frequency 50Hz which implies a clean energy exchanges between the stator and 
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the Grid. Using the FFT (Fast Fourier Transform). The total harmonic distortion (THD=2.36%) for 

backstepping is reduced compared to sliding mode (THD=3.99%) due to chattering phenomenon.  

 

 

Table 1. Summarization table of the response time SMC and Backstepping Controller 
Response time SMC Controller Backstepping Controller 

Active Power Ps 0.0858 0.09 

Reactive Power Qs 0.0535 0.0549 

Dc-Bus 0.5494 0.6573 

 

 

 
 

Figure 5. Spectrum harmonic for SMC 

 
 

Figure 6. Spectrum harmonic for Backstepping 

 

 

4.2.   Robustness Tests 

The previous test was done considering the fixed machine parameters, but these parameters can be 

influenced by several physical phenomena such as the temperature which allows the increase of the 

resistance values, the saturation of the inductors etc... In addition, the identification of these parameters is 

expressed in infidelities owing to measuring devices and the adopted methodology. Therefore, it is interesting 

to compare the performance of both systems regarding this phenomenon.To test the performance of each 

controller against model uncertainties affecting system stability, we replace the parameters of the system 
used in the DFIG by the following equation: 

    , ,0 ,.8 1.8n ns r s rR R L L 
 

 

 

 

 
 

Figure 7. Robustness test using SMC 

 

 
 

Figure 8. Robustness test using Backsteping 
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5. CONCLUSION  

This work presents a nonlinear power control of doubly-fed induction generator integrated in the 

Wind System. First, the model of the doubly fed induction generator under the park referential is presented. 

Secondly, a control strategy using sliding mode and backstepping is shown. The simulation results 

demonstrate the performance of the controllers. It is clear that the disadvantage of sliding mode is the 

chattering phenomenon that generates the harmonics and helps to stress the mechanical part, while the 

problem of the backstepping is not robust against the machine variation parameters. All this leads us to think 

of other improvements such as moving to a higher order sliding mode to eliminate the chattering 

phenomenon and the adaptive backstepping control to make the system robust, or to hybridize the two 

techniques of control. 
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