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 Many non-parametric techniques such as Neural Network (NN) are used to 

forecast current reservoir water level (RWLt). However, modelling using 

these techniques can be established without knowledge of the mathematical 

relationship between the inputs and the corresponding outputs. Another 

important issue to be considered which is related to forecasting is the 

preprocessing stage where most non-parametric techniques normalize data 

into discretized data. Data normalization can influence the the results of 

forecasting. This paper presents reservoir water level (RWL) forecasting 

using normalization and multiple regression. In this study, continuous data of 

rainfall (RF) and changes of reservoir water level (WC) are normalized using 

two different normalization methods, Min-Max and Z-Score techniques. Its 

comparative studies and forecasting process are carried out using multiple 

regression. Three input scenarios for multiple regression were designed 

which comprise of temporal patterns of WC and RF, in which the sliding 

window technique has been applied. The experimental results showed that 

the best input scenario for forecasting the RWLt employs both the RF and the 

WC, in which the best predictors are three day’s delay of WC and two days’ 

delay of RF. The findings also suggested that the performance of the RWL 

forecasting model using multiple regression was dependent on the 

normalization methods. 
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1. INTRODUCTION  

Forecasting RWL is crucial for reservoir’s operator in making decision on the reservoir water 

release (RWR) of a particular reservoir. It is a challenging and complex task, especially during flood and 

drought occurances due to unpredictable inflow such as RF [1]. Thus, a few researches have focused on non-

structural approaches predicting reservoir inflows [2]. However, during flood or drought, the decision on 

RWR is not only based on the availability of water inflows, but also on the previous release, demands, time, 

etc. Besides daily RF, several researches also considered changes in the RWL (WC) as an input in the 

multipurpose reservoir forecasting model [2]. RF (hydrological data) and reservoir WC are found to be 

correlated in the flood prediction model [3]. 

Many literature conducted on the RWR operation have utilized RF data and RWL as inputs [4], and 

have applied different methods and techniques of Artificial Intelligence and machine learning[5–8]. Only a 

small number of researches conducted on RWR decisions highlighted on the time delay between the RF and 

the increase of RWL. 
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In [9] discretized data are normalized using Min-Max technique. In this study, the results showed 

eight days’ time lag relating to upstream RF and RWL with an ANN model of 24-15-3. Later, the model 

recommended five days’ time lag with 8-23-2 ANN model with a 0.007085% error. Type 2 SVM regression 

has been used by [2] to forecast the daily RWL of the Klang reservoir, Malaysia. The study employed Z-

Score technique for data normalization and found out that the best input variables are combination of both RF 

and RWL, which were used to determine the best time lag which are two days of RF and with 1.64% error. 

Autoregressive Integrated Moving Average (ARIMA) model was developed in [4] for predicting the Kainji 

Dam, Nigeria daily water levels using a ten-year record. The study resulted in a model with a relative error of 

0.039% had the best prediction. In [10] ANN with feedforward back propagation was concluded as the 

suitable predictor for real-time water level forecasting of the Sukhi Reservoir, India. The inputs are the daily 

data of inflow, RWL, and RWR where the best time lag is ten days with a 0.82% error. NN was also 

employed in [11] to predict RWL and concluded a 5-25-1 NN model as the best architecture. The study 

found out that five days’ observations of RWL are significant for the RWR decision with a 0.038756% error. 

A NN architecture of 4-17-1 in forecasting the change of RWL stage was proposed in [3]. The input patterns 

were the changes and stages of RWL instead of the real value of RWL. The research showed that the changes 

in the stages of RWL were influenced by the two days of delay. However, modelling using NN techniques 

can be established without knowledge of the mathematical relationship between the inputs and the 

corresponding outputs. Whereas multiple regression is used to explore the relationship between one 

continuous dependent variable (DV) and a number of independent variables (IVs) or predictors (usually 

continuous). It can determine how well a set of variables is able to predict a particular outcome [12–18]. This 

study applied multiple regression in order to identify which IVs (slices of RWL and RF) can best be the input 

predictors to predict DV (RWLt). 

Another important issue to be considered which is related to forecasting is during the preprocessing 

phase where most non-parametric techniques normalize data into discretized data. Data normalization can 

influence the results of forecasting. Normalization can be performed at the level of the input features or at the 

level of the kernel [19]. In many applications, the available features are continuous values, where each 

feature is measured in a different scale and has a different range of possible values. In such cases, it is often 

beneficial to scale all features to a common range by standardizing the data. Previous studies mentioned 

above, have not reported any comparative study done on the normalization method used in their research. In 

[19–22], normalization process has increased the classification accuracy while in certain datasets, 

normalization may not demonstrate significant advantages [23] .  

In RWL forecasting, the data is in the form of temporal sequences, where time (month, day or 

hours) is critical [24]. The changes in the patterns of the data can influence certain decision-making. The 

Temporal Data Mining (TDM) technique is required to uncover the values of the attributes involved from 

temporal sequences representing temporal information related to certain decisions by the algorithm 

formulation. The significant time delay between the cause of event and the actual event needs to be captured 

accurately. Several studies reported on the use of temporal data in forecasting [3], [11], [25–33]. 

This paper presents reservoir water level (RWL) forecasting using normalization and multiple 

regression. In this study, continuous data of RF and changes of reservoir water level (WC) are normalized 

using two different normalization methods, Min-Max and Z-Score techniques. Its comparative studies and 

forecasting process are carried out using multiple regression. Three input scenarios for multiple regression 

were designed which comprise of temporal patterns of WC and RF. The sliding window technique has been 

used to capture the delay in temporal data. The experimental results showed that the best input scenario for 

forecasting the RWLt employs both the RF and the WC, in which the best predictors are three day’s delay of 

WC and two days’ delay of RF. The findings also suggested that the performance of the RWL forecasting 

model using multiple regression was dependent on the normalization methods. Root Mean Square (RMSE), 

Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) have been used as the 

parameters to measure the forecast results based on the actual data analysis. 

 

 

2. RESEARCH METHOD  

Figure 1 depicts the approach that has been used in conducting the research. The reservoir data 

which consist of RF and RWL from 1997 until 2006, have been collected from the Department of Irrigation 

and Drainage (DID), which is in charge of monitoring and managing the Timah Tasoh reservoir. This 

reservoir is one of the largest multipurpose reservoirs situated in the northern Peninsular of Malaysia.The 

data consists of operational and hydrological data. The operational data has the daily RWLs measured in 

metre (m) unit while the hydrological data has the daily RF readings measured in milimetre (mm), recorded 

from five gauging stations. 
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Figure 1. The process flow for RWL forecasting 

 

 

In the data preparation stage, the attributes are described and records with missing values were 

interpolated. This study used the RWL as the output whiles the changes of the reservoir water level (WC) and 

RF were used as the input. These WC will be calculated using equation [3](1): 

 

1 ttt RWLRWLWC  (1)
 

 

where WCt is the change of RWL at current time t, RWLt is the RWL at current time t and RWLt-1 is the 

RWL at one previous day t-1.  The RF data are averaged by the number of stations that have RF based on 

[30] (2):  

 

rainwithstationsofnumber

raintotal
RFAverage

____

_
_   (2) 

 

Next, the change-point detection technique is applied, where records which consist of gate opening 

decision only are extracted [34] while records with gate closing decision were removed. A total of 501 

records were detected from ten years of reservoir operation (1997–2006).  

The RF and WC data used in this study is temporal data with the time delayed event. The changes in 

RWL are the impact of several sequences events of RF. In order to capture the temporal information of WC 

and RF, sliding window technique is applied [34]. Figure 2 shows the pseudo-code for the sliding window 

where n is the size of the window. In this study, n is taken as the value of seven to investigate on the effect of 

seven previous event on current RWL [35] as showed in Table 1 and Table 2. 

 

__________________________________________ 

   for time t to end of file 

   read data at time t 

   get data at (t-1)…(t-n) 

   add into window slices set 

    __next______________________________________ 

 

Figure 2. Steps for Sliding Window 

 

 

Table 1. Sliced Reservoir WC 
Date RWLt WCt-1 WCt-2 WCt-3 WCt-4 WCt-5 WCt-6 WCt-7 

12-Feb-97 29.275 0.020 0.035 0.055 0.035 0.025 0.150 0.005 

13-Feb-97 29.335 0.060 0.020 0.035 0.055 0.035 0.025 0.150 

14-Feb-97 29.335 0.000 0.060 0.020 0.035 0.055 0.035 0.025 

. . . . . . . . . 

. . . . . . . .  
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Table 2. Sliced RF 
Date Average_RF RFt-1 RFt-2 RFt-3 RFt-4 RFt-5 RFt-6 RFt-7 

12-Feb-97 20.250 7.330 5.380 13.00 0.000 46.250 24.500 10.000 

13-Feb-97 13.875 20.250 7.330 5.380 13.000 0.000 46.250 24.500 

14-Feb-97 8.250 13.880 20.250 7.330 5.380 13.000 0.000 46.250 

. . . . . . . . . 

. . . . . . . .  

 

 

In the next stage, the reservoir WC and RF are normalized, where the attribute data is scaled so as to 

fall within a small specified range. In a real application, because of the differences in the range of attributes’ 

values, one attribute might overpower the other. Normalization prevents the outweighing attributes with a 

large range. The goal is to equalize the size or magnitude and the variability of these attributes. There are 

many types of data normalization, however only two techniques are used to make a comparison in this study; 

Z-Score and Min-Max Normalization. 

In Z-Score normalization, the values for the attributes of reservoir WC and RF are normalized based 

on the mean and standard deviation. The equation for such transformation is given as follows (3):  

 

SD

ZZ
Znew


  (3) 

 

where Z is the mean of attribute and SD is the standard deviation of the attribute. This method of 

normalization is useful if the actual minimum and maximum values of the attributes are unknown. The 

advantage of this statistical norm is that it reduces the effects of outliers in the data. Table 3 and Table 4 

showed the normalized WC and RF using Z-Score technique. 

 

 

Table 3. Z-Score of Reservoir WC 
Date zRWLt zWCt-1 zWCt-2 zWCt-3 zWCt-4 zWCt-5 zWCt-6 zWCt-7 

12-Feb-97 0.694 0.266 0.292 0.393 0.148 0.017 1.310 -0.204 

13-Feb-97 0.908 0.627 0.156 0.207 0.337 0.116 0.003 1.349 

14-Feb-97 0.908 0.086 0.519 0.067 0.148 0.314 0.108 0.010 

. . . . . . . . . 

. . . . . . . .  

 

 

Table 4. Z-Score of RF 
Date zRFt zRFt-1 zRFt-2 zRFt-3 zRFt-4 zRFt-5 zRFt-6 zRFt-7 

12-Feb-97 0.433 -0.463 -0.617 -0.192 -1.039 1.938 0.556 -0.351 

13-Feb-97 0.022 0.298 -0.503 -0.642 -0.191 -1.038 1.979 0.605 

14-Feb-97 -0.340 -0.077 0.254 -0.527 -0.688 -0.201 -1.045 2.049 

. . . . . . . . . 

. . . . . . . .  

 

 

The second technique is Min-Max Normalization. This method rescales the attributes or outputs 

from one range of values to a new range of values. The attributes are rescaled to lie within a range of 0 to 1 

or from -1 to 1. The rescaling is accomplished by using the following equation (4): 

 

minmax

min

MM

MM
Mnew






 (4) 

 

where M is the actual value of an attribute. This method has the advantage of preserving exactly all 

relationships in the data. Table 5 and Table 6 showed the normalized WC and RF using Min-Max technique. 

 

 

Table 5. Min-Max of Reservoir WC 
Date mRWLt mWCt-1 mWCt-2 mWCt-3 mWCt-4 mWCt-5 mWCt-6 mWCt-7 

12-Feb-97 0.5838 0.2735 0.2863 0.3034 0.2947 0.2863 0.3918 0.2694 

13-Feb-97 0.6185 0.3076 0.2735 0.2863 0.3116 0.2947 0.2863 0.3918 

14-Feb-97 0.6185 0.2564 0.3076 0.2735 0.2947 0.3116 0.2947 0.2863 

. . . . . . . . . 

. . . . . . . .  
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Table 6. Min-Max of RF 
Date mRFt mRFt-1 mRFt-2 mRFt-3 mRFt-4 mRFt-5 mRFt-6 mRFt-7 

12-Feb-97 0.1387 0.0502 0.0368 0.0890 0.0000 0.3846 0.2037 0.0831 

13-Feb-97 0.0950 0.1387 0.0502 0.0368 0.1081 0.0000 0.3846 0.2037 

14-Feb-97 0.0565 0.0951 0.1387 0.0502 0.0447 0.1081 0.0000 0.3846 

. . . . . . . . . 

. . . . . . . .  

 

 

Multiple regression is used to explore the relationship between one continuous dependent variable 

(DV) and a number of independent variables (IVs) or predictors (usually continuous). It can determine how 

well a set of variables is able to predict a particular outcome. The regression equation (5) takes the following 

form: 

 

nn XBXBXBAY  ....` 2211
 (5) 

 

where Y` is the predicted value on the DV, A is the intercept, the Xs represent the various IVs, and the Bs are 

the coefficients assigned to each of the IVs during regression.  

The ouput for this study is the RWLt and the inputs are reservoir WC and RF. This study designed 

three different input scenarios for multiple regression in order to identify which input scenarios (IVs) can best 

be the input predictors to forecast RWLt (DV). The first scenario considers the daily RF between time (t-1) 

and (t-7) as the sole input, while the second scenario considers both the RF (at t-1 – t-7) dan reservoir WC (at 

t-1 – t-7) as inputs. The third scenario uses the reservoir WC only between time (t-1) and (t-7) as inputs. 

Equations (6), (7) and (8) represent the first, second and third scenarios, respectively.  

 

RWLt = fRF(t-i)     i = {-1, -2, -3, -4, -5, -6, -7} (6) 

 

RWLt = f (RF(t-i), WC(t-j)) i = {-1, -2, -3, -4, -5, -6, -7}      j = {-1, -2, -3, -4, -5, -6, -7} (7) 

 

RWLt = fWC(t-i)     i = {-1, -2, -3, -4, -5, -6, -7} (8) 

 

 

3. RESULTS AND ANALYSIS  

In this section, the results of the study are discussed based on inputs scenario and data normalization 

technique.The best input scenario is determined before proceeding further into the forecasting calculation. 

Based on statistical test in Table 7, the forecasted values obtained by employing second input scenario 

achieve the best results from other two scenarios. The scenario employs more input data, thus providing a 

better forecasting estimation. It has greater R2 which is 0.319 as compared to the first and second scenario 

which has R2 values equal to 0.193 and 0.279 respectively. The second input scenario also has smaller 

standard error of estimate (SEE) for both normalization methods. The SEE for Min-Max Technique is 

0.13588, and SEE for Z-Score technique is 0.833856. Therefore, this second input scenario will be used as 

the best inputs for further data runs.  

 

 

Table 7. Statistical Test for Three Input Scenarios 
Input Scenario R R2 SEE (Min-Max Technique) SEE (Z-Score Technique) 

First 0.440 0.193 0.14673 0.90548 

Second 0.565 0.319 0.13588 0.83856 

Third 0.528 0.279 0.13872 0.85607 

 

 

The sliding window technique has been successfully applied on RWL data to extract and segment 

the temporal data and preserved the delay. The study used multiple regression to find out that the best time 

lag for forecasting RWLt is three days’ delay of reservoir WC and two days of RF. Based on this finding, two 

set of regression model for RWLt are developed in order to investigate which normalization techniques 

produces less error. The first regression model used the Min-Max while the second model used Z-Score 

normalization technique as shown in equation (9) and (10): 

 

RWLt = (0.175) + (0.375)mWCt-2 + (0.228)mWCt-3 + (0.358)mWCt-4 + (0.172)mRFt-1 +  (0.183)mRFt-2 (9) 

 

RWLt = (0.00) + (0.218)zWCt-2 + (0.129)zWCt-3 + (0.197)zWCt-4 + (0.123)zRFt-1 + (0.132)zRFt-2 (10) 
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Two sets of data based on two different data normalization were tested using the two regression 

model developed. Four statistical formula are selected to evaluate the forecasting efficiency in this study, 

namely Root Mean Square (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and the 

Correlation Coefficient (R). The comparison of statistical evaluation on two normalization techniques is shown 

in Table 8. The results showed that the obtained values of RMSE, MAPE and MAE by using Min-Max 

technique are 0.14125, 0.24191 and 0.11122 respectively. While using the Z-Score technique the results are 

0.87165, 6.90884 and 0.68677 respectively. All the RMSE, MAE and MAPE values obtained using Min-Max 

data normalization are closer to 0 than using Z-Score technique, indicating that the Min-Max techniques is 

better than Z-Score. However, the Z-Score technique provides slightly greater correlation coefficient values 

(R = 0.48858), than the Min-Max technique (R = 0.48856). In overall, forecasting using Min-Max data 

normalization techniques yield less error than using the Z-Score technique. The predicted output using Min-

Max normalization is more reliable than that of the Z-Score normalization technique. 

 

 

Table 8. Comparison of Statistical Evaluation for Normalization Technique 
Normalization Technique RMSE MAPE MAE R 

Min-Max 0.14125 0.24191 0.11122 0.48856 

Z-Score 0.87165 6.90884 0.68677 0.48858 

 

 

4. CONCLUSION  

This paper has presented reservoir water level (RWL) forecasting using normalization and multiple 

regression. The research on the comparison of input scenario for multiple regression concludes that the best 

input scenario for multiple regression is the second input scenario which consists of combination data of RF 

and WC.  

The sliding window technique has been successfully applied on RWL data to extract and segment 

the temporal data and preserved the delay. The study used multiple regression to find out that the best time 

lag for forecasting RWLt is three days’ delay of reservoir WC and two days of RF.  

The comparative studies on the two different normalization methods of the Timah Tasoh reservoir 

data using multiple regression showed that data normalized using Min-Max technique can enhance the 

reliability of the forecasting model for RWLt. Forecasting using Min-Max techniques yield less error than 

using the Z-Score technique and the predicted output is more reliable. The experimental results showed that 

the prediction of the RWLt using MLR was dependent on the normalization methods used.  

In the future, other input variables such as sediment, volume of water release and spatial effect can 

be explored to improve the forecasting model of RWLt. The comparison of other various statistical 

normalization methods such as median, sigmoid and statistical column normalization can also be measured. 
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