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 Hybrid ARQ (HARQ) is among the optimum error controls implemented in 

Wireless Sensor Network as it reduces the overhead from retransmission and 

error correcting codes. The advancement in WSN includes the usage of high 

number of nodes and the increase in traffic with large data transmitted among 

the nodes had concerned the need for a new approach in error control 

algorithm. This paper proposed the multiple error correction based on HARQ 

process to aid the changes in channel with proper error correction assignment 

towards optimising the performances of WSN in terms of bit error rates, 

remaining energy, and latency for different types of congestion and channel 

conditions. In this study, we have developed the channel adaptation 

algorithm that can adapt to sudden changes and demonstrated the optimal 

error correcting codes as well as adjustment on the transmit power for the 

given channel condition and congestion presented. From the result analysed, 

the optimisation between the remaining energy and Bit Error rates happened 

on the basis of adapting to these different channel condition and congestion 

to minimize redundancies appended. From the result obtained, we concluded 

that by using multiple error correction algorithm with the aid of adjustment 

on the transmit power, the remaining energy can be optimised together with 

Bit Error rates and the excessive redundancies can be reduced. 
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1. INTRODUCTION  

The Wireless Sensor Network (WSN) is very crucial in monitoring field such as habitat monitoring, 

environmental, agricultural, military, and tracking field. Recently, there are some emerging applications of 

WSN in big data [1],[2] and internet of things (IoT) [3],[4]. The existing technology of WSN critically 

benefits in terms of cost, scalability, and also provide supports towards human-work constrained when 

monitoring dangerous places such as natural disasters and unfriendly environments [5].  

As WSN is energy-constrained and error-prone, researchers have established many methods and 

ways to overcome these problems. Researches back then provided the method to reduce energy consumption 

through calibrating or adjusting the transmission power such as by estimating the Signal to Noise Ratio 

(SNR) [6] and Received Signal Strength Indicator RSSI [7] using Kalman Filter (KF) in order to adjust the 

transmission power. The important aspect of high error rates in a network cannot be cast aside although 

minimizing the energy usage using transmission power control (TPC) is an effective method to maintain the 

lifetime as high error rates cause retransmission to flood the network and this consumes more energy. Thus, 

the problem of high energy usage needs to be tackled alongside with high error rates. In addition, some 
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techniques in implementing error correction schemes such as HARQ indirectly reduce error rates and 

possibly reduce the energy consumption by reducing the flooding of retransmission in a congested network. 

There are related studies on the effect of HARQ with BCH in Coded Division Multiple Acess (CDMA) WSN 

towards the error rates and energy consumption [8],[9].  

The authors reported on high Bit Error Rates (BER) at low hop count. Thus, the architecture or node 

deployment contributes to the increase in error rates or packet corruption in the presence of interferences and 

noises particularly when the nodes are located within the transmission range of other nodes. Practically, the 

nodes are usually deployed in a non-uniform manner following the geographical structure. Thus, there can be 

variations of node densities in one monitoring area. Moreover, apart  from interferences and signal fading, 

the channel condition might change over time due to reflections and refractions of signals and also might be 

contributed from the hardware itself. Thus, the implementation of existing error correction schemes might not 

be reliable as different levels of congestions might present in one monitoring area with sudden changes of 

interferences and noise over time. The work of [10] introduced the multi-coding schemes for WSN where 

different coding schemes were implemented at the nodes and the sink. Based from this literature, it was 

demonstrated that the multi-coding schemes increased the lifetime of a network. However, further studies on 

the optimal codeword length and error correcting capability that corresponds to the presence of noises are 

needed in order to fully optimize the energy usage and error rates in a network.  

Different coding schemes and error correcting capability will append different number of 

redundancies to the transmitted bits. Based on our previous studies [11]-[13], we demonstrated that high 

redundancy consumed too much energy in decoding the transmitted data. Meanwhile, a network with bad 

condition and high error rates might not able to handle large number of erroneous bits due to the relatively 

low error correcting capability. Thus, in this paper, we proposed the approach to optimize the energy usage 

with BER by modifying the Hybrid ARQ (HARQ) process aided with multi-coding schemes and power 

control that can adapt to the changes in channel condition that were estimated as SNR using KF. Our 

proposed algorithm merits on its capability to adapt to the changes in SNR in which every SNR range 

describe different error correction used and transmit power calibration to minimise the higher redundancies 

when these excessive redundancies are not needed in better SNR condition and vice versa. Transmit power 

calibration aided to reduce the interferences and noises in noisy channel when SNR is low as the ratio of 

noises will rise the BER sharply. We presented the comparisons between our proposed algorithm towards the 

increase in performances with the existing error correction used in Section 3 in which we able to reduce high 

BER in low SNR condition and maintain remaining energy in high SNR condition. 

 

 

2. RESEARCH METHOD 

The development of Multiple Error Correction (MEC) consists of several methods. First, we 

proposed the MEC algorithms based on the Hybrid ARQ (HARQ) process. Second, we aided the algorithm 

by calibrating the transmit power according to the MEC assigned for different error correcting codes at 

different SNR range. Lastly, we integrated Kalman Filter (KF) to estimate the SNR values for incoming 

transmission in order to avoid wrong assignment of error correcting codes towards the sudden changing 

environment of CDMA WSN.  

Figure 1 shows the chronological development of our proposed algorithm. We also carried out three 

different preliminary experiments comprising the simulation of CDMA WSN with no error correction, with a 

range of low error correcting capability, and with a range of high error correcting capability. We selected 

BCH and RS codes as the error correcting codes in our algorithm based on the preliminary experiments 

where BCH and RS codes optimized the performance of CDMA WSN compared to the Convolutional Codes 

[11],[12]. Some studies also agreed that the RS [14] and BCH codes [15] are among other optimum error 

correcting codes which provide reliability during transmission. From our preliminary testing [11]-[13], we 

observed that in a low SNR condition with high BER, the use of low error correcting capability might not be 

able to solve the problem of high BER. Meanwhile, the use of high error correcting capability caused the 

problems of increment in energy consumption as well as latency. We also found that medium error correcting 

capability for the high SNR condition might be able to optimize BER performance as well as the remaining 

energy. Besides that, the use of codeword length corresponding to the number of generated bits in the 

network is also critical. Higher numbers of codeword lengths (more than 127) promote more energy usage.  
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Figure 1. Chronology of the development of Multiple Error Correction (MEC) 

 

 

From this observation, we concluded that there is the need to use multiple coding schemes for 

different range of SNR. We also considered some of other related works [16] which demonstrated that the 

multi-coding is more energy-efficient. Based on this deduction, we proposed the SNR classification 

algorithm in adapting to the changes of channel condition. This algorithm follows the existing process of 

HARQ in which we modified the algorithm to be injected with MEC module and transmit power module. We 

also integrated Kalman Filter (KF) to estimate the SNR values to avoid assigning wrong error correction due 

to sudden changes in a noisy channel. Some field tests [17]-[19] observed that the signal impairments is time-

varying. In a time-varying condition, there is a need to continuously track the changes within the channel as 

signals frequently attenuated, reflected, and refracted. In addition, the hardware itself might be a contributing 

factor to the changes in SNR as different nodes gives out different SNR. Thus, channel estimation is 

substantial to ensure that proper error correcting codes assigned to a defined SNR range which corresponds to 

the sudden changes in SNR when there are transmissions between nodes in any given time. KF is among the 

common state estimator with advantages such that low complexity compared to other filters [20] and its 

capability to provide better estimation for Gaussian and linear models, and limited non-linearity. We 

integrated KF prior to generating data and after the decoding process. In order to minimize the computational 

overhead of KF equation, we modified the ACK/NACK message which append the SNR value of the 

estimation initiated to the transmitted bits from the sender. This is to acknowledge the receiver on the 

previous estimation value and to prepare the transmission if there are sudden changes in SNR value so that 

the possibility in assigning wrong error correcting codes is reduced if the sender initiates another 

transmission.  

 

2.1. SNR Classification towards the Adaptation to the Changes in Channel Condition 

We divided the methodology into two following solutions based on the unsolved problems of high 

BER and the problems from high energy usage and high latency due to the implementation of high error 
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correcting capability (Figure 1). In method 1, we proposed the channel adaptation algorithm based on HARQ 

process and classified the range of SNR. We calculated the range of SNR for our predefined topologies of 

random uniform node distribution and random non-uniform node distribution. A random uniform node 

distribution consists of layered topology with random node scattering around the sink with uniform distance 

of 10 m between each node. Meanwhile, the random non-uniform distribution consists of layered topologies 

where the distance between nodes varied between 10–100 m. The SNR was calculated following the 

standardised equation below [21]: 

 

𝑆𝑁𝑅 (𝑑𝐵) = 𝑃𝑠𝑖𝑔𝑛𝑎𝑙 − 𝑃𝑛𝑜𝑖𝑠𝑒 (1) 

 

where 𝑃𝑠𝑖𝑔𝑛𝑎𝑙 denotes the received signal power while 𝑃𝑛𝑜𝑖𝑠𝑒 denotes the noise power in which that 𝑃 is 

measured in units of power (Watts or milliwatts). Extending the formula, the signal power can be obtained 

using Friis Transmission equation as shown in Equation (2) [22]: 

 

P𝑠𝑖𝑔𝑛𝑎𝑙 =  
(PT GT GR)(λ2)

(4πR)2  (2) 

 

where PT is transmit power, GT is the gain of transmit antenna, GR is the gain of receiving antenna, and R is 

the distance between sender and receiver. The noise power, 𝑃𝑛𝑜𝑖𝑠𝑒 is calculated following Equation (3) [23]. 

 

N0 = kTs B (3) 

  

where k denotes the Boltzmann constant, Ts denotes the system temperature, and B denotes the bandwidth. 

From the calculation, we obtained the actual SNR that follows our predefined architecture and 

parameters as shown in Table 1 (Section 2.3). We extracted and applied the calculated values into the pre-

built system identification model using MATLAB. From the extracted data, we obtained the matrices from 

the best fit model using the input-output model from the system identification tool; matrices A (-

0.236468303496098), B (0.113429553384058), and C (3.59450124244613). Table 1 shows the extracted 

information of actual SNR alongside with the estimated SNR obtained using Kalman Filter equation as 

shown in Equation (4) and Equation (5). 

 

Xk  =   Axk−1 +   Buk−1 + wk−1 (4) 

 

𝑌𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘 (5) 

 

where A is the state transition model applied to the previous state xk−1, B is the control-input model applied 

to the control vector uk−1, and w is the process noise. 𝐻𝑥𝑘 denotes the observation model which maps the 

true state space into the observed space and 𝑣𝑘. 

Table 1 shows the actual SNR obtained with the estimated SNR values after we have calculated the 

measurement and innovative gain from KF equation. We then divided the SNR range into five distinct 

groups: SNRlw (SNR lowest) with the range of SNRv ≤ 5, SNRl (SNR low) with 6 ≤ SNRv ≤ 20, SNRm (SNR 

medium) with 21 ≤ SNRv ≤ 35, SNRh (SNR High) with 36 ≤ SNRv ≤ 50, and SNRhg (SNR highest) where 

SNRv ≥ 51. Based on previous studies and real-time testing [24], most studies agreed that the link is in a 

good quality when the SNR value is more than 40 dB. Thus, we set the benchmark of SNR in high condition 

(SNRh) which is considered as good link quality. According to the study [25], SNR value below 5 dB is 

considered as bad link quality as the Packet Delivery Ratio (PDR) is zero. According to some studies, SNR 

alone is not sufficient to indicate congestion when high number of nodes present in one monitoring area. 

Thus, we implemented the congestion detection based on increasing node density as a network will be 

congested when node density increases above certain point. A network is assumed to be congested when 

there are more than 32 nodes in one given area based on a previous study [26]. The PDR and throughputs 

started to decrease indicating congestion as the node density reaches 45. Therefore, we noticed that the 

network started to congest when it reached 48 nodes for our pre-defined topology (300 m x 300 m) of the 

monitoring area. We extended the classes from previous SNR range mentioned where we indicated that the 

network is extremely congested (EC) when the node density is more than 27.9253, medium congested (MC) 

when the range of node density is between 16.7552 and 22.3402, and non-congested (NC) when the node 

density is less than 11.1701. 
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Table 1. The values of actual SNR and estimated SNR with increasing distance between nodes 
Distance (m) Transmit Power (dBm) Actual SNR (dB) Estimated SNR (dB) 

10 0 41.9764 41.9843 

20 0 31.4403 31.4482 

30 0 25.2771 25.2850 

40 0 20.9043 20.9122 

50 0 17.5124 17.5203 

60 0 14.7411 14.7490 

70 0 12.3979 12.4058 

80 0 10.3682 10.3761 

85 0 9.4467 9.4546 

90 0 8.5779 8.5858 

100 0 6.9764 6.9843 

 

 

2.2. Selection of the Optimal Error Correcting Codes and Transmit Power 

Method 2 was divided into three sub-methods of Method 2.1, Method 2.2, and Method 2.3. 

Following the classification of SNR range in Method 1, we simulated the error correction codes of BCH and 

RS with a variety of error correcting capabilities such that 1 ≤ t ≤ 10. We implemented two types of error 

correcting codes (BCH and RS codes) following the range of codeword length, n denoted as 15 ≤ n ≤ 127 for 

random uniform distribution and 63 ≤ n ≤ 127 for random non-uniform node distribution. The idea is to 

simulate each error correcting code in obtaining the most optimal code with corresponding codeword length 

and error correcting capability in order to adapt to different channel conditions. For instance, our proposed 

algorithm implemented high error correcting capability for lower SNR to significantly reduce the too high 

BER whereas for a good network condition, we implemented a much lower error correcting capability. The 

reason is that when the SNR condition is good (good BER performance), too high error correcting capability 

might not be necessary as retransmission is enough to solve the errors. This reduces the overhead of encoding 

and decoding processes of the ECC as well as the latency caused by the computation of that ECC.  

Table 2 and Table 3 show the lists of tested BCH and RS with respective codeword length and error 

correcting capability. The codes were simulated with CDMA WSN to study the effects of BER and 

remaining energy as well as latency and to find the most optimal error correcting codes for every range of 

SNR that had been classified. We also added the transmit power calibration to our proposed algorithm to 

maximize remaining energy and reduce noises in congested area (Method 2.2). In a condensed network 

where the nodes are so close with each other and having a good range of transmission coverage, 

implementing high transmit power might not be necessary. 

 

 

Table 2. The List of Simulated BCH codes 
Error Correcting 

Codes 
n k 

Error Correcting 

Capabilities, t 

BCH 

7 4 1 

15 5 3 

31 26 1 

31 16 3 

31 11 5 

63 57 1 

63 45 3 

63 24 7 

63 18 10 

127 120 1 

127 92 5 

127 64 10 

255 247 1 

255 179 10 

511 502 1 

511 466 5 

511 421 10 
 

Table 3. The List of Simulated RS codes 
Error Correcting 

Codes 
n k 

Error Correcting 

Capabilities, t 

RS 

7 3 1 

15 11 2 

15 5 5 

31 27 2 

31 13 9 

31 11 10 

63 59 2 

63 45 9 

63 43 10 

127 123 2 

127 113 7 

127 107 10 

255 251 2 

255 235 10 

511 507 2 

511 499 6 

511 491 10 
 

 

 

In addition, in this condensed network, the nodes might be interfering with the transmission range of 

another nodes [8],[9]. This promotes the increase in interferences and noises and yet the reduction of transmit 

power might be able to reduce the Multiple Access Interference (MAI) from the CDMA architecture. In a 

condensed network where generally the high number of nodes with high transmit power might lead the MAI 

to peak [27],[28], causing the packet to be corrupted and increase the BER. The reduction in transmit power 

might be able to slightly increase the remaining energy [29] and theoretically might be able to reduce MAI as 
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well. However, we also suggested that the transmit power reduction must be optimal as too much reduction 

of transmit power will also causes packet drop as the signal power decreases whereas the distance between 

nodes in the non-random uniform distribution increase to 100 m. The transmit power can be calculated by 

using the Friis Transmission equation shown in Equation (2). Equation (6) denotes the simplified equation to 

obtain transmit power from the received signal power:  

 

𝑃𝑡 = Pr 𝑥 (4𝜋𝑑2) (6) 

 

where Pr is the received signal and 𝑑 is the distance between nodes.  

 

2.3. Measurement Models 

Table 4 shows the parameters defined for testing and simulation of the proposed work. We 

implemented the minimum distance of 10 m for uniform distribution and 100 m for non-uniform distribution. 

Non-uniform distribution is referred to as the distance between nodes (might not be the same from one node 

to another) resulting in different levels of node density present within one monitoring area.  

 

 

Table 4. Parameters defined for simulation model 
Parameter Value 

Min. dist. between two nodes 

Noise 

Transmit Power (pt) 

 

Monitoring area (meter2) 

Path loss parameter (α)  

Payload, Header 

NACK/ACK (𝑛𝑏)  

 

Error Detection 

Error Correction 

Number of Nodes 

Number of Bits (bits) 

10 m 

AWGN 

Power allocation depending on SNR estimation (-10 

dBm to 0 dBm) 

300 m x 300 m 

3.5 

128,256 bit/pkt 

8 bits (additional 6 bits as NACK/ACK were appended 

with SNR and update value from the receiver) 

CRC-30 (CDMA compliance) 

Proposed MEC (variation on the BCH and RS ECC) 

4,16,32,48,64,80 

10000, 20000, 30000, 40000, 50000 

 

 

The application of 100 m (as the maximum distance between nodes) supports the common sensor 

nodes such as MicaZ and TelosB with the transmission range up to 100 m. We added Additive White 

Gaussian Noise (AWGN) and Rayleigh Fading to study the impacts between these two interventions. The 

power allocation was calibrated according to the SNR range as well as error correction schemes.  

We developed our measurement model to measure the performances of CDMA WSN in terms of 

remaining energy, BER, and latency. The following equations were used to obtain the measurement results. 

The expression of remaining energy including decoding energy can be denoted as: 

 

E𝑛𝑒𝑟𝑔𝑦Ecc = Hop x Nopacket x (Nobits + (Nobits x 0.75) + E𝑛𝑒𝑟𝑔𝑦Dec (7) 

 

where Hop corresponds to number of hops of the predefined layered architecture, Nopacket is the number of 

packets involved in the transmission, Nobits is number of generated bits which for research (10000 bits), and 

EnergyDec is the decoding energy calculated in as shown in equation (8). 

 

E𝑛𝑒𝑟𝑔𝑦Dec = (2nt + 2t2)(E𝑛𝑒𝑟𝑔𝑦addition + E𝑛𝑒𝑟𝑔𝑦multiplication) (8) 

 

where n denotes the codeword length of the selected error correcting codes and t is the error correcting 

capability of that error correcting codes. We tabulated the tested codes in which were used in the calculation 

of decoding energy in Table 2 and Table 3. We also modelled the BER formulation in BPSK modulation as 

follows:  

 

BER =  
1

2
 (1 − √

Eb
N0

Eb
N0

+1
) (9) 

 

Latency is calculated following Equation (10), where 𝐷𝑒𝑙𝑎𝑦𝑃𝑟𝑜𝑝𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 is the propagation delay. 

Propagation delay refers to the time taken between departure of data from the sender and arrival of data at the 
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receiver. Meanwhile, 𝐷𝑒𝑙𝑎𝑦𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 is the transmission delay or also known as the packetization delay in 

which can be defined as the amount of time required to transmit all of the packet's bits into the link. Usually, 

the transmission delay is affected by data-rate of the link. Propagation delay was calculated by dividing the 

distance between sender and receiver with propagation speed of the media. The transmission delay was 

calculated by dividing the length of packet in bits with the transmission rate of the predefined network. 

 

Latency = DelayPropagation + DelayTransmission (10) 

 

2.4. Optimal Error Correction Schemes for the proposed Multiple Error Correction (MEC) 

Table 5 shows the settings of optimal error correction schemes for the proposed Multiple Error 

Correction (MEC) algorithm. This setting is optimal if the architecture follows our predefined topologies in 

which the default number of bits is 10000 bits with increasing number of nodes (between 4 and 80 nodes). In 

this study, the CDMA architecture implemented Multi-Carrier (MC-CDMA) channel access method and 

BPSK modulation as tabulated in Table 4. From the simulation results acquired, the BCH codes with 

codeword length of 127 cannot outperform RS codes with the same codeword length when the network 

condition is extremely congested due to redundancy added by the BCH codes is higher than the RS codes. In 

some studies, more redundancies might lower the BER. However, in our case, too high redundancy appended 

to the transmitted bits in a congested network flooded the network causing more bits to be corrupted. Thus, 

we observed that RS code with codeword length of 127 is optimum for an extremely congested condition. 

For a medium congested condition, we applied BCH codes for both, high SNR and the highest SNR with 

good link condition where BER is relatively low. Higher appended bits might not corrupt the bits as much as 

when the SNR is low. For a non-congested condition, we applied retransmission for higher SNR with low 

BER present in the network as the retransmission is enough to correct the erroneous bits. This is also to add 

up that there were only a few nodes that might interfere with the transmission range in which if there were 

collisions or interference that can corrupt the bits, the errors might not be too significant compared to the 

condition with higher node density. 

 

 

Table 5. Optimal error correcting codes for MEC 

SNR classes extension 
Error Correcting 

Codes 

Codeword length, 

n 

Information Bits, 

k 

Error Correcting 

Capability, t 

Condition: EC 

Case 1: ECSNRlw 

    

RS 127 113 7 

Case 2: ECSNRl RS 127 115 6 

Case 3: ECSNRm RS 127 117 6 

Case 4: ECSNRh RS 127 119 4 

Case 5: ECSNRhg RS 127 121 3 

Condition: MC 

Case 1: MCSNRlw 

    

RS 63 53 5 

Case 2: MCSNRl RS 63 51 6 

Case 3: MCSNRm RS 63 49 7 

Case 4: MCSNRh BCH 63 36 5 

Case 5: MCSNRhg BCH 63 24 7 

Condition: NC 

Case 1: MCSNRlw 

    

BCH 127 64 10 

Case 2: NCSNRl RS 127 121 3 

Case 3: NCSNRm BCH 31 11 6 

Case 4: NCSNRh RS 31 17 7 

Case 5: NCSNRhg Retransmission with IR 

 

 

Table 6 shows the optimal transmit power corresponding to different classes and congestion present 

based in our abovementioned architecture. The transmit power with high SNR were significantly reduced to 

20% for extremely congested condition, 40% for medium congested, and 50% for non-congested. In the 

extremely congested condition, the transmit power was not reduced too much as compared to the non-

congested condition in order to avoid increment in the noise present. This is because the signal power will 

reduce the transmit power calibrated. The lower power will be peak the noise, which lead to the increment in 

BER. For non-congested condition, the transmit power can be reduced until 50% as having high SNR indicate 

high signal power with low noise power.  
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Table 6. Optimal transmit power for MEC 
SNR classes extension Transmit power calibration 

Condition: EC 

Case 1: ECSNRlw 

 

Maintain 

Case 2: ECSNRl Maintain 

Case 3: ECSNRm Reduction by 10% 

Case 4: ECSNRh Reduction by 10% 

Case 5: ECSNRhg Reduction by 20% 

Condition: MC 

Case 1: MCSNRlw 

 

Maintain 

Case 2: MCSNRl Reduction by 10% 

Case 3: MCSNRm Reduction by 20% 

Case 4: MCSNRh Reduction by 30% 

Case 5: MCSNRhg Reduction by 40% 

Condition: NC 

Case 1: NCSNRlw 

 

Reduction by 10% 

Case 2: NCSNRl Reduction by 20% 

Case 3: NCSNRm Reduction by 30% 

Case 4: NCSNRh Reduction by 40% 

Case 5: NCSNRhg Reduction by 50% 

 

 

3. RESULTS AND ANALYSIS 

We collected the results based on the experiment of MEC in terms of increment in node density and 

compared the non-channel adaptation using the existing error correction schemes. Figure 2 shows the average 

remaining energy against SNR between MEC with BCH (127, k) t = 10, RS (127, 121) t = 3, BCH (31, k) t = 

7, and RS (31, k) t = 7. The existing RS (31, k) t = 7 have the highest constant remaining energy throughout 

the SNR. The highest remaining energy for MEC is obtained when the SNR is at the good condition. Even 

though RS (31, k) t = 7 had the highest remaining energy in a non-congested condition, the higher 

redundancy added by this code was not practical for higher node density.  

 

 

 
 

Figure 2. Average Remaining Energy against SNR 

 

 

In addition, MEC cannot reduce BER as further reduction of the remaining energy was too much 

due to drawbacks between the capabilities of error corrections that added redundancies with more 

complexities and required higher energy when better error correction is used. However, MEC optimized the 

remaining energy in high SNR as too powerful error correction schemes were not necessary. Instead, the 

retransmission was enough to handle the errors which do not used too much energy as compared to ECC due 

to decoding and computation overhead. However, for low SNR (where BER is relatively very high), it is 

substantial to correct the errors to reduce too many resend packets from the sender. A higher number of 
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flooded retransmissions in the network not only uses energy but also resources as well which might render 

the network causing malfunction. The remaining energy for low SNR was lesser compared to other SNR 

range as higher error correction capability was used. Thus, we can conclude that the optimisation between 

remaining energy and BER by means of adaptation to the channel condition itself. In low SNR, the remaining 

energy might not be able to be boosted as much as when the SNR is high. This low error correcting capability 

codes might not able to handle the high error rates if lower error correcting capability is used in low SNR 

where BER is high.  

Figure 3 shows the comparison of average latency against SNR between MEC and existing codes. 

The existing coding schemes have constant latency throughout the SNR due to the absence of channel 

adaptation. The latency changed with SNR range due to the changes in error correction used throughout the 

SNR as shown in the figure. The latency corresponded to the appended bits in the network where higher 

appended bits or redundancy causes higher latency as large number of bits prolonged the decoding time of 

the received information. In this study, BCH recorded higher latency due to its complexity and higher 

number of redundancies. However, this corresponds to the fact that BCH have better error correction 

capability that the RS code. For instance, BCH (31, k) outperformed RS (31,k) with the same t = 7 in terms 

of BER even though the latency was too high. However, the use of multi-coding might able to optimize the 

latency as the latency will not always be high throughout the SNR. When high redundancy is not needed, the 

latency will be reduced by using much lower capability codes that appended much lower redundancy.  

 

 

 
 

Figure 3. Average Latency against SNR 

 

 

Figure 4 illustrated the average BER against increasing node density. The MEC showed the lowest 

BER compared to existing schemes for the non-congested condition of less than 11.1701 node density when 

SNR reaching 30 dB. The reason is that BCH (31, k) was implemented for medium SNR in non-congested 

environment as such redundancy significantly solve the BER and does not flood the network in the non-

congested environment. However, for higher node density, BCH (31, k) was impractical because of too high 

redundancy. However, the existing RS (127, k) did not outperform BER of MEC for non-congested condition 

(≤ 11.1701). 

Figure 5 shows the average remaining energy against node density. The network achieved the 

highest remaining energy in congested condition for medium SNR as we used medium error correcting 

capability which optimised the need between remaining energy and redundancy added to the network. There 

was much higher error correcting capability used for low congested condition as the remaining energy was 

slightly lower than the existing RS (31, k). However, in comparison to Figure 4 where BER of MEC was at 

its lowest when node density at 11.1701, the higher remaining energy of RS proved that the existing RS did 

not optimize the BER and remaining energy. Meanwhile, there was slight increment in the remaining energy 

from 628946.33 J for node density between 16.7552 and 22.3402.  
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Figure 4. Average BER against Node density (for SNR=30) 

 

 

 
 

Figure 5. Average Remaining Energy against Node density 

 

 

Figure 6 shows the Percentage increment in remaining energy of MEC against SNR compared with 

BCH (127,k) for t=7, RS (127,k ) for the same t and the comparison of increment in remaining energy 

between existing RS and BCH. From the graph, it can be observed that as the SNR increased, the percentage 

increment in remaining energy also increased. Besides that, the percentage of increment of remaining energy 

of MEC is higher than the existing RS (127, k) and BCH (127, k) when SNR achieving between 20 dB and 

50 dB.  

It is also pointed out that the RS (127, k) has a higher percentage of increment during the low SNR 

of 20 dB because MEC has more powerful error correction schemes which used more energy. However, the 

difference between the percentage increment of MEC and RS is quite small. This also corresponds to the 

graph in Figure 4 which demonstrated that during the lowest SNR, MEC achieved better BER than the 

existing RS which results in lower remaining energy. Thus, a conclusion was made where MEC had 

optimised the performances between the BER and remaining energy and for the lowest SNR and for highest 

SNR, MEC performed more towards optimisation of remaining energy and latency.  
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Figure 6. Percentage increment in remaining energy of MEC against SNR 

 

 

4. CONCLUSION  

This paper developed the algorithm towards adapting the changes in channel condition and 

congestion by classifying SNR into several ranges in order to optimise the performances between remaining 

energy and BER. Our proposed algorithm merits on its capability to adapt to the changes in SNR and 

optimise the performance of remaining energy and BER in low SNR as well as high SNR in which every 

SNR range describe different error correction used and transmit power calibration to minimise the higher 

redundancies when these excessive redundancies are not needed in better SNR condition. Transmit power 

calibration aided to reduce the interferences and noises in noisy channel when SNR is low. For example, 

when SNR was at its highest, we assumed the network condition was good and retransmission was likely 

more sufficient to correct the corrupted bits compared to error correcting codes. While, when SNR is low, the 

noise ratio usually fluctuated and causes the BER to rises which in need for higher error correcting capability. 

Relating to our analysis, we had obtained lower BER during low SNR compared to the existing method in 

which the error correction was constant throughout the increasing SNR. While, we are able to maintain 

remaining energy and BER by using medium error correcting capability during the medium and high SNR 

condition as for existing method, higher error correcting capability such as BCH (127,k) might not be 

necessary as demonstrated have the lowest remaining energy in Figure 2 even when the SNR is high. In 

addition, MEC outperformed the existing BCH as the number of nodes increased because MEC implemented 

RS (63, 57) during medium SNR corresponding to the fact that the RS codes in MEC possessed lower 

latency than BCH due to its lower error correction capability that appended much lower number of 

redundancies than BCH. However, in a medium network condition of SNR, it was observed that RS 

corrected the errors as well as BCH since the BER was optimised and significantly reduced. 

As for the future work, it is suggested to study the multi-coding schemes of MEC with other error 

correcting codes such as Turbo codes, Hamming, and Low-Density Parity Check (LDPC) codes. Last but not 

least, it is recommended that future research to include the aspects of localisation of nodes as well as mobility 

since the study of localisation promotes better scalability with different geographical limitations assessment. 

Besides, mobility might further improve MEC in supporting different types of environmental monitoring 

other than natural disasters such as pollution monitoring, agricultural monitoring, and even human sensing 

that requires node mobility features.   
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