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 Robustness of a battery management system (BMS) is a crucial issue 

especially in critical application such as medical or military. Failure of BMS 

will lead to more serious safety issues such as overheating, overcharging, 

over discharging, cell unbalance or even fire and explosion. BMS consists of 

plenty sensitive electronic components and connected directly to battery cell 

terminal. Consequently, BMS exposed to high voltage potential across the 

BMS terminal if a faulty cell occurs in a pack of Li-ion battery. Thus, many 

protection techniques have been proposed since last three decades to protect 

the BMS from fault such as open cell voltage fault, faulty cell, internal short 

circuit etc. This paper presents a review of a BMS focuses on the protection 

technique proposed by previous researcher. The comparison has been carried 

out based on circuit topology and fault detection technique. 
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1. INTRODUCTION  

Lithium-ion battery (LIB) has been launched into the market place by SONY in June 1991[1]. 

Today, Li-ion battery can be found in many applications such as electric vehicle (EV), smart gadgets, solar 

photovoltaic industries etc. LIB is a rechargeable electrical energy storage which has a lot of advantages such 

as fast charging, higher energy density, longer battery life and able to fit into a small and lighter package. 

Table 1 shows the comparison between LIB and other type of batteries. Despite having those advantages, 

LIB has a limitation such as memory effect [2]-[4], subject to aging [5] and contains very sensitive  

chemical [6]. Battery management system (BMS) has been proposed since 90's in order to ensure its 

reliability and the ability to operate under safe operating limit [7]. Basically, BMS protect the LIB by 

monitoring the parameter such as current, temperature, voltage and states of cell including state of  

energy (SOE)[8], state of health (SOH)[9]-[11], state of charge (SOC) [12], [13] and remaining useful 

lifetime [5], [14].  

BMS can be classified into three categories namely centralized, distributed and modular BMS [15]. 

In centralized BMS, each battery cell is connected and controlled by a single micro-processing unit [16]. 

Meanwhile, a distributed BMS consists of one master controller and many slave modules [16]. In this 

topology, only slave modules have a direct contact to a single battery cell to perform cell monitoring. 

Combination of both centralized and distributed BMS is called modular BMS [17]. This topology consists of 

multiple modules connected to one another. Each module connects directly to more than one battery cell.  
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Table 1. Comparison between LIB and Other Type of Batteries [18] 

Type of battery 
Energy Density 

(Wh/Kg) 
Advantages Disadvantages 

Li-Ion 110-160 High energy density, low maintenance 
Sensitive chemistry, need protection, memory 

effect 

Li-Polymer 100-130 
more resistant to overcharge, more 

safe than Li-Ion 
Less energy density compare to Li-Ion 

Lead Acid 30-50 
Safer than Lithium, no memory effect, 

low maintenance 

Low energy density, environmentally 

unfriendly 

NiCd 45-80 
Safer than Lithium, fast and simple 

charge 
Low energy density, memory effect 

NiMH 60-120 
Higher energy density than NiCd, 

safe, less memory effect 

Limited service life, limited discharge rate, 

high self-discharge rate 

 

 

Regardless the categories of the BMS, they have a direct contact to the battery cell and exposed to 

high risk of high voltage potential across the BMS if one or more battery cells are failed. A conventional 

BMS does not have the capability to detect a battery fault which leads to more serious issue such as fire or 

explosions [19]-[22]. This paper describes the protection techniques and categories based on fault detection 

methods. There are four categories of battery fault detection that normally used in BMS. 

 

 

2. LITHIUM-ION CELL FAULT 

Since LIB introduced by SONY in 1991, there is a huge number of recalls has been made for LIB. 

Recently, in 2017 Samsung experienced significant safety issues as the LIB inside Galaxy Note 7 facing 

overheating problem. This incident is a disaster for Samsung as they were forced to recall all Galaxy Note 7 

and eventually cancelled the entire line.  

By nature, LIB is hazardous. It contains a flammable liquid organic electrolytes [23] in contact with 

highly energetic material [4]. Inside LIB, there are anode and cathode layers separated by separator and filled 

by flammable electrolyte. This separator is very thin and tend to cause a premature failure if there is an 

abnormal abuse condition [24]. The abuse condition can be categorized into three categories; mechanical 

abuse, electrochemical abuse and thermal abuse [25]. Among these three categories, electrochemical abuse 

has drawn much attention as most of LIB incident is caused by electromechanical abuse such as over-

discharge, over-charge, internal short circuit, external short circuit, gas generation etc. Table 2 shows the 

summary of incident related to LIB. 

 

 

Table 2. Summary of Incident Related to LIB [21], [26] 
Date/Source of incident Type of application Abuse condition Incident description 

8 Feb 2018/Airline Notebook Mechanical abuse Smoke emitting out from shipment package. 

28 Jul 2018/Media Report Smart Bag Short circuit Arc and smoke begin when passenger try to 

remove battery from smart bag. 

21 May 2018/News Scooter Over-discharge A package containing a lithium-ion battery 

powered scooter caught fire at the UPS facility.  

9 May 2018/Airline e-cigarette Short circuit The bag was burned as well as the carpet of the 

aircraft after a passenger carry-on bag caught fire. 

13 Feb 2018/Airline Li-Ion Power bank cell internal short circuit Power bank got overheating, hot and started to 

smoke. The item was placed in a thermal 

containment bag. 

3 Jan 2018/Airline Solar bank charger Short circuit Solar bank chargers with lithium ion batteries, 

UN 3480, installed were discovered on fire during 

the loading process. 

 

 

Nowadays, most of LIB available on the market is integrated with internal protection circuit such as 

current interrupt device (CID) and positive temperature coefficient (PTC). CID is a method to manage cell 

overcharge by disconnecting the circuit if overpressure event is occurred [1]. Inside the CID, there is a 

fusible link that connecting the cell’s terminal and the electrode [27]. This fusible link acted as a fuse and 

melted if there is over current flow through it [28]. Another internal protection is PTC. PTC is a thermal fuse 

which used to prevent the thermal runaways. PTC will shutdown the batteries if the battery temperature is 

overheated [4], [29]. 

Regardless the type of internal protection, the aim of a BMS is to separate the faulty cell from the 

circuit and keep the cell in open state. Table 3 shows the comparison between LIB fault, types of abuse and 

how the fault will be managed.  
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Table 3. Comparison between LIB Faults 
Fault Abuse type Causes Is the fault manageable? 

Internal short-circuit Electrochemical abuse Manufacturing defect No 

External short-circuit Electrochemical abuse Defective connection, wiring fault Yes. By high speed fuse 

Overcharge Electrochemical abuse Failure of charging unit, failure of BMS Yes. By BMS 

Overheating from external Thermal abuse Battery place near heat source 
Yes. By open the cell internal 

pressure 

Crush Mechanical abuse Physical abuse of battery pack 
Yes by design enclosure with 

more vibration tolerance 

Thermal run away Thermal abuse Faulty cell heating surrounding cells Yes. PTC and CID 

 

 

3. FAULT PROTECTION FOR BMS 

LIB pack is used in numerous high voltage applications such as EV, unmanned aerial vehicle, 

photovoltaic energy storage due to its characteristic that has high energy density and high life cycle.  

LIB battery pack which composed of LIB cells which are connected either in series or parallel or both depend 

on requirement of the application. For large format of LIB application, BMS is crucial to ensure the safety 

and it reliability including protecting the BMS itself from any potential of high voltage fault. Since the BMS 

consist of plenty sensitive electronic components, protecting the BMS itself is quite challenging. Based on 

the previous studies, there are several fault detection techniques used to detect the battery cell failure. 

 

3.1. Fault Detection using CVM Method 

Cell voltage measurement (CVM) is a method used to detect faulty cell especially in a battery pack. 

Figure 1 shows the CVM topology. In this topology, CVM modules are used to measure the cell voltage Vcell 

on each battery cell. If Vcell is higher than 4.9V then open wire fault signal is triggered [7]. Meanwhile, if Vcell 

drop below 0.1V the cell internal short circuit fault is triggered. This method is widely used to detect the 

open wire fault [7]. However, according to [30], the major challenge of CVM method is higher number of 

sensors are needed to measure every cell voltage as LIB battery pack composed of huge number of cells 

connected in series.  

 

 

 
 

Figure 1. Cell voltage measurement topology 

 

 

3.2. Fault Detection using Comparator 

Comparator circuit is a device used to compare between two voltage signals and determines which 

signal is greater. In BMS protection circuitry, comparator is normally used to determine the under voltage 

and over voltage condition for each cell in a battery pack [31]. Based on Sumukha V Udupa [31],  

the comparator is used to compare between the input voltage (Vin) and the threshold voltage (Vth).  

The comparator input voltage is applied to the inverting input, so the output will have an inverted polarity.  
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If Vin is greater than Vth, the output will be drive to logic low and vice versa. This method can be used to 

determine the over-voltage and under-voltage fault. For Li-ion battery, upper threshold voltage is 4.25V and 

lower threshold is 2.5V [32]. Figure 2 shows the protection circuit using comparator. Vth is a voltage 

measure across zener diode Z1 and VR4 is a voltage measure across resistor R4. The operation of over-voltage 

and under-voltage is summarized in Table 4.   

 

 

 
 

Figure 2. Protection circuitry using comparator 

 

 

Table 4. Summary of Comparator Protection Circuitry Operation 
Input Voltage Comparator C1 Status (S1) Comparator C1 Status (S2) Condition 

Vcell > 4.25V High Low Over-voltage 

Vcell = 3.0V Low Low Normal 

Vcell = 2.8V Low Low Normal 

Vcell < 2.5V Low High Under-Voltage 

 

 

The advantage of this topology is no microcontroller is required to measure the voltage.  

Thus measurement speed is no more the issue. However, noise on the input signal may cause the input to 

transit above and below the threshold voltage causing an erratic output [33]. Furthermore, the complexity of 

circuitry is one of the main issue as large format of LIB battery pack requires huge number of comparator. 

 

3.3. Protection using Zener Diode Method 

Combination of zener diode and fuse is the simple protection method introduced by [34]. Figure 3 

shows the configuration of zener diode and fuse used as a fault protection device. In this topology,  

zener diode, Z1 acting as a voltage limiter. In normal condition, is not conducted and no significant current is 

flowing through the BMS. Thus, all fuses remain in closed state. When an over-voltage or reverse-voltage 

condition occurs, the zener diodes will begin to conduct, resulting the current to flow through the fuse and 

consequently blow the fuse to protect the voltage measurement electronics from damage. There are many 

situations that may lead to over-voltage and reverse-voltage occurrence, where some is unexpected. 
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Figure 3. Combination of zener diode and fuse protection topology 
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This technique offers low cost protection circuitry and less component involvement. However,  

fuse need to replace every time its blown. Thus it is not economical in term of maintenance. Besides that,  

if high voltage applied to the zener diode Z1, it will break the Z1 before the fuse blown. Meaning that this 

topology is not efficient when applied to high voltage application. 

 

3.4. Fault Detection using Drain-Source Voltage Monitoring Method 

In BMS unit, MOSFET widely used as a switching component to distributes an excessive charge 

from one cell to another cell. However, Guangyuan Liu [35] has proposed a new technique using MOSFET 

to detect a failure of a battery cell by measuring its drain-source voltage. In this technique, MOSFET is 

connected in series between each cell in battery pack. In order to determine whether the battery is faulty or 

not, the status of the cell state is detected by sensing the voltage drop across the MOSFET. When the 

MOSFET is turned on, the current will flow through the MOSFET. Thus, voltage drop across the MOSFET 

can be derived by in (1). 

 

𝑉𝑑𝑠𝑖 = 𝑖𝑖 𝑥 𝑅𝑑𝑜𝑛 (1) 

 

Since the value of Rdon is usually very low, the voltage drop across MOSFET, 𝑉𝑑𝑠𝑖 is very small. 

Therefore, differential op amp is used to amplify the on-state voltage across MOSFET.  

When i1=iL and i2=0, it tells that there is open cell battery fault is occurred in cell C2 as shown in 

Figure 4 [35]. During this condition, MOSFET S2 is turned off to isolate the faulty battery from the rest of 

battery pack. Figure 4 also shows a short circuit of battery cell. In short circuit fault detection algorithm, if i2 

is greater than a threshold value, ISCth, means that cell C2 is short circuit. Since current i2, flow in opposite 

direction, the body diode of MOSFET is blocked. Consequently, battery cell C2 will be separated from the 

rest of battery pack. 
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Figure 4. Battery cell short circuit 

 

 

For large size of battery pack, a plenty number of MOSFET required on each cell.  

Beside, battery total current is limited to maximum current subjected to the MOSFET current rating. 

 

 

4. FUTURE DEVELOPMENT 

Robustness of BMS plays an important role to ensure its continuous operation especially when it use 

in medical or military application. Advanced control of battery cells and fault tolerance of battery pack are 

critical in future battery applications, especially in frequently recycling applications. Further studies need to 

be conducted to improve the speed of protection circuitry taken place when fault event occurs. Real time 

voltage sensing is may need to be considered replacing the zener diode. High speed MOSFET or IGBT 

switching capability can be explored to replace the function of the fuse.  

 

 

5. CONCLUSSION 

This review covers a difference type of cell fault detection technique and its control algorithm.  

Most of previous studies more focused on protecting the battery cell instead of protecting the BMS itself. 

Protection the BMS from fault stills a relevant field for future study, which include on less-complex of 

voltage sensing, high speed processing and compact design. Therefore, these fault detection technique 

discussed above should be considered for future development of high reliability and more robust BMS.  
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