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1. INTRODUCTION 

Nowadays, PID controllers have received considerable attention in the last years both from an 
academic and industrial point of view [1-5]. In fact, in principle, they provide more flexibility in the 

controller design, concerning the standard PID controllers, because they have five parameters to select. 

However, this also implies that the tuning of the controller can be much more complicated. They have been 

successfully applied in practical applications such as motion control of manipulators and chaos control of 

electrical circuits. In these applications, it has been verified that PID controllers can improve the performance 

of traditional control system adopting integer order PID controllers. The most important advantage of the PID 

controllers is that they can afford more extensive possibilities offered by their additional fractional order 

dynamics [4-7]. However, this also indicates that the tuning strategies of PID controllers are much more 

complicated. In the researches on the PID controllers, tuning of controller parameters has become a 

significant issue. 

In general, the tuning methods for FID controllers are classified into analytical, numerical, and rule-
based ones. In [6-7] the controller parameters have been analytically derived by solving nonlinear equations 

fulfilling the gain/phase crossover frequency and phase/gain margin specifications. The robustness to loop 

gain variations specification proposed in [8] has also been widely used to design FID and proportional–

integral (PI) controllers. The merits of the analytical method are obvious; however, it is available only when 
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the equations are few in number and simple. Therefore, it is very difficult to obtain a complete FID controller 

for the MB system by solving five complicated nonlinear equations. As for the rule-based method, it can 

easily calculate the controller parameters based on empirical tuning rules, which can be observed in [9-12].  

In this paper, we propose and investigate optimal tuning PID controller of unstable fractional order system by 

desired transient characteristics using real interpolation method (RIM). The main advantages of this method 

are drawn as the followings: 

a) This is the novel practical method based on the desired settling time and overshoot percentage.  

b) The results are close to the desired parameters. 
c) The novel method can tune an unstable fractional order system by real interpolation method (RIM). 

d) The novel method is simplicity and computer efficiency. 

e) The novel method can find an optimal solution for tuning task in both academic and industrial purposes. 

The paper is organised as follows. In Section 2 the problem is formulated. The tuning rules are 

described in Section 3. Simulation results are presented in Section 4, where a comparison with other tuning 

rules is performed. Conclusions are drawn in Section 5. 

 

 

2. RESEARCH METHOD 

2.1.   Real Interpolation Method (RIM) 

The real interpolation method is one of the methods, which works on mathematical descriptions of 

the imaginary area. The method is based on real integral transform as follow [13]: 
 

 (1) 
 

which assigns to the original      the image      as a function of the real variable


. Formula of direct 
transform (12) can be considered as a special case of the direct Laplace transform by replacing the complex 

variable            for real   variable. Another step towards the development of the instrumentation 

method is the transition from continuous functions      to their discrete form, using the computing resources 

and numerical methods. For these purposes, real interpolation method is represented by numerical 

characteristics {       } . They are obtained as a set of values of the function      in the nodes        ̅̅̅̅̅, 

where   is the number of elements numerical characteristics, called its dimension.  

Selecting of interpolations    is a primary step in the transition to a discrete form, which has a 

significant impact on the numerical computing and accuracy of problem solutions. Distribution of nodes in 

the simplest variant is uniform. Another important advantage of real interpolation method is cross-conversion 

properties [11]. It dues to the fact that the behavior of the function      for large values of the argument   is 

determined mainly by the behavior of the original      for small values of the variable  . In the opposite 

case, the result is the same: the behavior of the function      for small values of the argument   is 

determined mainly by the behavior of the original      for large values of the variable   [13]. 

When considering the original      of dynamic characteristics of dynamic systems, formula (1) 

leads to an operator model, which under certain conditions can be considered as special cases of the models 

based on the Laplace transform. Thus, in (1) replacing of the function      by      - the impulse transient 

function of the dynamic system, we obtain its transfer function. From here we can find the elements of a 

discrete model of the system, and its transfer function by performing the discretization procedures for nodes 

        ̅̅̅̅̅  
 

   
0

,   1,i t

iW k t e dt i 



 

  (2) 
 

Function       is a real transfer function of control automatic systems, having an impulse transient 

response     . Function       could be received based on determination of transfer function such as a 

relationship of the imaginary of output      and      input signals  
 

       /W Y X  
 (3) 

 

In which the imaginary of the output signal and the input signal is calculated from the original 

functions of the input      and output      signals: 

 
     ,  ,  ,  0

0

tF f t e dt C C 


   
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   
0

  tY y t e dt


 
 (4) 

 

   
0

  tX x t e dt


 
 (5) 

 

where      input signal, and      output signal of the system. 
The input-output relationship of the system has a form like below: 

 

      Y W X  
 (6) 

 

2.2.   Problem formulation 

In this section, the control system with negative unity feedback is drawn in Figure 1. 

 

 

 
 

Figure 1. Control system with negative unity feedback 

 

 

Transfer function of PID controller can be formulated as. 

 

K
(s) K Ki

p dC s
s

  
 (7) 

 

Transfer function of plant (in fractional form) is 
 

1 01

1 01

1 1 0

1 1 0

B (s)
G(s)

( )

n n

m m

G n n

G m m

b s b s b s b s

A s a s a s a s a s

  

  









   
 

   
 (8) 

 

where                                                               
  are arbitrary real numbers            

Transfer function of PID controller (7) can be rewritten in the rational form as the following 

 
2K K K( )

(s)
( )

d p iC

C

s sB s
C

A s s

 
 

 (9) 

 

Characteristic equation is 

 
W( ) 1 (s)G(s)s C   (10) 
 

Characteristic polynomial is 

 
P( ) ( ) ( ) ( )B ( )C G C Gs A s A s B s s 

 (11) 

 
A gain-phase margin tester (GPMT) can be thought of as a “virtual compensator”, provides 

information for plotting the boundaries of constant gain margin and phase margin in a parameter plane.  

The frequency independent GPMT is given in the form [15]: 

 

(M, ) Me .j

tG  
 (12) 
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For a given IOPID controller parameters 
K , K , Kp i d  the closed-loop system is said to be bounded-

input bounded-output (BIBO) stable if the quasi-polynomial
P(s,K ,K ,K )p i d  has no roots in the closed right-

half of the s-plane (RHP). The stability domain S in the parameter space P with 
K , K , Kp i d  being coordinates 

is the region that for 
K , K , Kp i d S

 the roots of quasi-polynomial 
P(s,K ,K ,K )p i d all lie in open left-half of 

the s-plane (LHP). The boundaries of the stability domain S which are described by real root boundary 

(RRB), infinite root boundary (IRB) and complex root boundary (CRB) can be determined by the D-

decomposition method [14]. These boundaries are defined by the equations P(0,K) 0 , P( ,K) 0   and 
P( j ,K) 0   for (0, )  , respectively, where P(s,K)  is the characteristic function of the closed-loop 
system and K the vector of controller parameters. 

a) Determining RRB 

In applying the descriptions of stability boundaries of the stability domain S to the FOCE in (6),  

the RRB turns out to be simply a straight line given by 

 
P(0,K ,K ,K ) 0 0,p i d iK  

 (13) 

 

for 
0 1s   in the transfer function of the plant in (8). 

b) Determining IRB  

There is more theoretical difficulties for the calculating of the IRB due to fractional component. 

FOCE possesses an infinite number of roots, which cannot be calculated analytically in the general case. 

However, the asymptotic location of roots far from the origin is well known [21], [22], which may lead to 

IRB. The objective of this section is to determine the stabilizing region in (Kp, Ki) plane with given Kd,  

and values for which the following complex polynomial is 
 

 2D( ) ( ) ( ) K K K M(s)B ( )G d p i Gs sL s A s s s s   
 (14) 

 

where L(s) and M(s) are given complex fractional order polynomials. When L(s) = M(s) = 1, the stabilization 

of (14) reduces to the standard IOPID stabilization. 

D( ) 0  . Suppose when s , 
       / .G GL s A s M s s sB c         where t and c are real and complex 

numbers respectively. We have: 

(a) If 1  , then the boundary does not exist. 

(b) If 1   and c is not real, then the boundary does not exist. 

(c) If 1   and c is real, then 
 

      
    

          
         

                  

      
         (15) 

 

    
 

 
 (16) 

 
c) Determining CRB 

To construct the CRB, we substitute s j  into (11) to obtain, 

 
P(j ) (j ) (j ) (j )B (j ) 0C G C GA A B      

 (17) 
 

Using D-decomposition to find stability [21], to construct the CRB, we substitute s j  into (11) to obtain  

 
P(j ) (j ) (j ) (j )B (j ) 0C G C GA A B      

 (15) 

 

Using D-decomposition to find stability [ [1] Reference -A graphical tuning] 

In s plane 

( )
2 cos( ) jsin( )

2 2

j

j e



  

   
, where  is a real number. The formula (12) can be 

expressed into a formula with the separate real and imaginary components  
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2P(j ) (K K )R ( ) I ( ) K R ( ) R ( ) 0i d BG AG p BG AGj                    (16) 

 

where 
R BG , 

R AG ,
IAG  are the real component of 

B (j )G 
, the real and imaginary components of 

(j )GA 
, 

respectively. Finally, by setting the real and imaginary parts equalized zero the formula (15) leads to the 

detail form: 

 

2

R ( ) K R ( ) 0

(K K )R ( ) I ( ) 0

AG p BG

i d BG AG

 

   

 


    (17) 

 

The CRB is determined by formula (17). 

 

2.3.   Algorithm 

2.3.1  Design of the desired transient characteristics 
Performance qualities of the control system can be evaluated by settling time, overshot percentage, 

damping ratio, natural frequency, rise time. There are some methods to design the desired transfer 

characteristics [18-20]. In this paper, the desired transient characteristics could be used a second order 

system. A second order system can be described by the following form without zeros 

 
2

2 2
( )

2

n

n n

H s
s s



 


 
 (18) 

 

With zeros, 

 
2

2 2

/ ( )
( )

2

n n

n n

s
H s

s s

  

 




 
 (19) 

 

Where n natural frequency,  damping ratio,  coefficient related to overshoot percentage. And there is a 
relationship between settling time and natural frequency and damping ratio 

 
4

set

n

t
 



 (20) 

 

Another option is that we can use the mat lab or another software program to design a desired 

transient characteristics.  

 

2.3.2  Real interpolation method 

The desired transient characteristics could be given by massive data, table and transient function. 

Let see the transient characteristics given by form: function 
( ) ( )Dh t f t

 or massive 
( )Di ih f t

 

From Figure 1, the equivalent transfer function of the feedback system has a form 

 
( ) ( )

( )
1 ( ) ( )

C s G s
W s

C s G s



 (21) 

 

Or it could be rewritten by input and output transfer function  

 
( ) ( ) ( )

( ) 1 ( ) ( )

Y s C s G s

X s C s G s



 (22) 

 

If the input of the tuning system is a step function, when ( )X s  is determined 
 

( ) 1 / sX s   (23) 
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To determine coefficient Kp, Ki, Kd in PID controller for fractional order transfer function using the 

real interpolation method. By substituting s  formula (22) can be rewritten in the real transfer form. 
 

( ) ( ) ( )

( ) 1 ( ) ( )

Y C G

X C G

  

  


  (24) 

 

From (24) we obtain the formula determined PID controller.  

 

 
1

( )
( ) X( ) / Y( ) 1

C
G


  




 (25) 

 

where ( )G  X( ) Y( )  real transfer function of the plant, the imaginary of output and input signals 
respectively. 

The functions 
X( ), ( )Y 

could be determined by formula (4) and (5) in the real form or by 

following formula. If the transient characteristics are given by a massive the functions 
X( ), ( )Y 

 can be 
obtained by the following formula:  

 

   
1

Δi i

N
t

i i

i

X x t e t 




 (26) 

 

   
1

Δi i

N
t

i i

i

Y h t e t 




 (27) 

 

where 
 ix t

 and 
 ih t

 are the input value and the output value at time it , respectively; Δt -the 

sample time and N - the number of samplings. 

If the input of the tuning system is a simple step function, when ( )X   is determined in real form. 
 

( ) 1 /X    (28) 
 

The number of the unknown coefficients of the PID controller (
, ,p i dK K K

) is three; it means that 

the dimension of the elements numerical characteristics is three ( 3  ).Selecting value of nodes is a primary 

step. It effects on the accuracy of the tuning task. The meaningful region is from 0 to
( )t s

set . It means that 

the maximum value of first node 1  can be defined by the following condition: the value of the integral in (4) 

by the settling time ty reduces to a negligible value   0.001 0.05   , which satisfy the condition

  1 sett

seth t e  
. Hence calculated expression for the node 1 can be shown below. 

 

1

ln( / ( ))set

set

h t

t



 

 (29) 
 

where  -calculation error,
( )seth t

- settling value, sett
- settling time.  

Other node in the simplest case, can be determined by the nominal distribution. 

 

1,  2,i i i   
 (30) 

 

In case, the result according to the maximum value of the first node do not meet the desired output 

performances, the value of the first node should be decreased. In this paper, by varying the value of the first 

node from the maximum, determined by (29) approach to 0, we carry out the optimization of the range of 
nodes for the output requirements of the desired system.  

The numerical characteristics of the PID controller‟s real transfer function. 
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K
( ) K K , 1,i

i p d i

i

C i


    

 (31) 

 

 
1

F( ) , 1,
( ) X( ) / Y( ) 1

i

i i i

i
G

 
  

 


 (32) 
 

We have a system of equations with unknown coefficient 
, ,p i dK K K

 

 

1

1

2

2

3

3

1
1

1
1

1
1

C










 
 
 
 

  
 
 
 
   , 

p

i

d

K

K K

K

 
 

  
 
  , 

1

2

3

F( )

F( )

F( )

F







 
 

  
    (33) 

 

The unknown coefficients 
, ,p i dK K K

 can be obtained in matrix form 
 

1K C F  (34) 

 
Algorithm:  

a) Determination of stability region (13), (16) and (17). 

b) Design a desired transient characteristic (18) or (19) 

c) Calculation value of nodes (29) and numerical characteristics (22) or (28), (27), (31) and (32). 

d) Solving the equation to find the parameters of PID controller (33) and (34). 

e) Estimation of the tuned PID controller in the time and frequency domains. 

f) Investigation of the optimal range of the values of node by varying the value of the nodes. 

 

 

3. NUMERICAL RESULTS AND DISCUSSION 

Given fractional order transfer function of a unstable bearing system [zhong16], 
 

2.76 1.81 0.82

6438.
G(s)

330.04 84268.85 15869154.14s s s


    (35) 

 

Investigation of STABILITY REGION of the unstable fractional order transfer function of the 

bearing system (11). 

a) Determine RRB 

It is important to determine the stability region of the PID controller, tuned for the system (35).  

The RRB can be determined by (13) as the bellow  

 
0.iK 

 (37) 

 

b) Determine IRB 

The IRB can be determined according to (16) 

 

 

 

 
 

2643.8  
lim lim1 ) 1

p i d

s s

K s K K ss

sD s s



 

 
  

 
 

Not exist the IRB. 
c) Determine CRB 

The CRB can be determined by three conditions (18), (19) and (20). The results are shown in the 

following figures. The following figure shows the stability region of the transfer function (11). The CRB in 

(Kp, Ki) plane when Kd=10 is shown in the Figure 2. The cross-line area is a feasible region for the 

coefficients of the PID controller.  
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Figure 2. The feasible region of coefficients Kp, Ki, Kd 

 

 

The cross-line region demonstrates stability region of Kp, Ki where Kd=10. Oviously, the stability 

region of PID controller‟s coefficients lie in the first quarter. In the Figure 3 there are shown more feasible 

area with five values of Kd. 

 
 

 
 

Figure 3. Stability region of PID controller depending on its coefficients 

 

 

All boundaries (RRB, IRB and CRB) are shown in following figure. Kp, Ki, Kd stability region 

The results simply lead to the conclusion  

 

2465

0

p

i

K

K




  (39) 
 

Three parameters of 
, ,p i dK K K

 are located in the first quarter of coordinate axis system. 

STUDY CASE 1 
Design of the desired transient characteristics. 

Using (22) and (23) with the desired transient time 
0.03 setT s

 and overshoot  50%POT   we 

formed a transfer function with the step response shown in the Figure 4. According to Figure 4, the transient 

time of the desired system accounts for 
0.0366 setT s

 and the overshoot is given a desired value at
 50.1%POT  . 
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Figure 4. The desired transient characteristics with overshoot percentage 50.1% and settling time 0.0366 s 

 

 

Obviously, the number of the numerical characteristics is three ( 3  ) because of three unknown 

coefficients of the PID controller. Calculation of the nodes of numerical characteristics: 

Using the formula (30) with the input parameters
0.036 ,sett s 0.001 ,t s 

 0.001,  1seth 
 the first 

node can be determined 1 188.736. 
 Other nodes are determined by the condition of uniform distribution:

1  ,   2,i i i   
. Finally, the value of nodes can show the following massive 

  188.736 377.473 566.209i 
 

Based on the finding nodes the value of massive F can calculated and make up
 -25230 402.219 6006iF 

, 
and C massive accounts for  

 
3

3

3

1 5.298 10 188.736

1 2.649 10 377.473

1 1.7660 10 566.209

C







 
 

  
    and the coefficients of the PID controller are 

7

39271.902

-1.134 10

-23.375

K

 
 

  

 




. 

 

According to the feasible area (39) of PID controller the values of the tuned parameters of the 

controller are not satisfied. When d1={2.5, 5, 5, 7.5, 10 the results are shown in the Figure 5.  

 

 

 
 

Figure 5. Time response of the tuning systems 
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In terms of the percentage overshot, the tuning systems are close to the desired system. With δ1=2.5 

the percentage overshot of the tuning system is slightly higher than the expected value. With other values of 

δ1 the figure is lower than that of the expected value with the higher value of the first node. According to the 

settling time, the values of the tuning systems are greater than that of the desired system.  

On the other hand, the shape of the time response figures do not following the desired transient 

response. The bode graph show in the following figure. It is clear that the bode graphs of the tuning systems 

are close to each other. The magnitude and phase margin of the tuning system are close to each other.  

The bode diagram of the open loop system is shown in Figure 6. 
 

 

 
 

Figure 6. Bode of the open loop system 
 

 

The detail values of the tuning system are presented in the following table. 

STUDY CASE 2 

We carry out the investigation for the higher value of the desired overshoot percentage and settling 

time. The desired overshoot percentage and settling time account for 100% and 0.0429 s respectively. The 

desired transient process is shown in the Figure 8. The desired transient characteristics with overshoot 

percentage 99.1% and settling time 0.0429 s. 

The results of the tuning process will illustrate in the Figure 7. When δ1=5, 10, 20, 50 the time 

responses are shown in the following Figure 7. 

 

 

 
 

Figure 7. The desired transient characteristics with overshoot percentage 99.1% and settling time 0.0429 s 
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Figure 8. Time response of the tuning systems 

 

 

The shapes of the transient response of the tuning systems are closer to the desired system than that 

in the first example. Higher accuracy than that of the first example. Bode graph of the tuning systems is 

shown in the Figure 9. 

 

 

 
 

Figure 9. Bode graph of the tuning systems 

 

 

The magnitude margins show the same value for all tuning system, however, the phase magnitude 

margins account for higher value with the higher value of the first node. 

 

 

4. CONCLUSION 

In this paper, we propose the method of tuning conventional PID controller for unstable transient 

characteristics. The results show that: 1) This is the novel practical method based on the desired settling time 
and overshoot percentage; 2) The results are close to the desired parameters; 3) The novel method can tune 

an unstable fractional order system by real interpolation method (RIM); 4) The novel method is simplicity 

and computer efficiency; 5) The novel method can find an optimal solution for tuning task in both academic 

and industrial purposes. 
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