
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 14, No. 2, May 2019, pp. 949~956

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v14.i2.pp949-956  949

Journal homepage: http://iaescore.com/journals/index.php/ijeecs

FPGA-based architecture of hybrid multilayered perceptron

neural network

Lee Yee Ann
1
, P. Ehkan

2
, M.Y. Mashor

3
, S.M. Sharun

4

1,2School of Computer and Communication Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, Malaysia
3School of Mechatronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, Malaysia

4Faculty of Innovative Design and Technology, Universiti Sultan Zainal Abidin, Gong Badak Campus, Malaysia

Article Info ABSTRACT

Article history:

Received Sep 22, 2018

Revised Dec 25, 2018

Accepted Jan 14, 2019

 The HMLP is an ANN similar to the MLP, but with extra weighted

connections that connect the input nodes directly to the output nodes. The
architecture of the HMLP neural network for implementation on FPGA is
proposed. The HMLP architecture is designed to be concurrent to
demonstrate the parallel nature of the HMLP where each hidden or output
node within the same hidden or output layer of the HMLP can calculate its
output independently. The HMLP architecture is designed to be modular as
well, such that if modification to a module is necessary, only the specific
module need to be modified and all other modules can be retained. This
modularity will be especially helpful when different activation function is to

be swapped in to replace current activation function. All calculations in the
HMLP are performed in floating-point arithmetic. The HMLP architecture is
compiled, simulated and finally implemented on the Cyclone V FPGA of
DE1-SoC board. The simulation outcome and FPGA outputs showed that the
developed HMLP architecture is able to calculate correct output values for all
test datasets.

Keywords:

Artificial Neural Network

FPGA-based architecture

Hybrid Multilayered Perceptron

Neural Network

VHDL

Copyright © 2019 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Lee Yee Ann,

School of Computer and Communication Engineering,
Universiti Malaysia Perlis, Pauh Putra Campus,

02600 Arau, Perlis, Malaysia.

Email: leeyee4nn@gmail.com

1. INTRODUCTION

Various types of Artificial Neural Networks (ANN) had been applied for many kinds of

applications, of which the Multilayered Perceptron (MLP) neural network is very popular. The MLP is made

up of multiple layers of simple processing elements called nodes. The layers of MLP are one input layer,

one output layer, and one or more hidden layers. The nodes and layers of MLP are arranged in a feedforward

arrangement [1]. The MLP has a fully connected structure where each node is connected to every other nodes

of next layer via weighted connections. The MLP’s hidden layers perform a non-linear mapping of the input

layer to the output layer [2].

Hybrid Multilayered Perceptron (HMLP) is a type of ANN that is based on the popular MLP.

The HMLP enhances the existing MLP’s ability by having the input layer directly connects to the output
layer through some weighted connections. The additional weighted connections of HMLP effectively form a

linear model in parallel to the non-linear MLP [3]. The HMLP had been applied for different applications,

such as heart anomaly detection using electrocardiogram (ECG) data [4], classification of acute leukemia

disease [5] and forecasting of car speed [6]. The HMLP had also been implemented on hardware, the most

recent hardware implementation of HMLP was on a Rabbit Core Module RCM4100 microcontroller [7].

Field Programmable Gate Array (FPGA) is a reconfigurable digital logic device that can be used for

implementation of various digital systems. The concurrent nature of FPGA provides engineers a suitable

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 14, No. 2, May 2019 : 949 – 956

950

platform to design and implement any concurrent digital system such as the MLP. A Xilinx Zynq FPGA-SoC

device was used to implement a MLP for gas classification application in a Wireless Gas Sensor Network

system [1] and for arrhythmia detection from electrocardiogram (ECG) signals [2]. The DE2-70 FPGA

board, with an Altera Cyclone II FPGA device on board, was the platform of choice to compare the

performance of an MLP implemented on hardware-based FPGA and a same MLP implemented on NiosII

softcore processor on FPGA. The comparison result indicated that MLP implemented directly on FPGA

hardware executes significantly faster than MLP which implemented on NiosII but at the expense of greater

resource utilisation [8].
Based on existing works on implementation of MLP on FPGA, the prospect of using the FPGA as a

platform to implement the HMLP seems very promising. From previous literature, no existing work on

implementing HMLP directly on FPGA was reported [9]. This paper is a continuation of works reported in

[9] and proposes an FPGA-based architecture for implementing the HMLP on an FPGA.

The Introduction should provide a clear background, a clear statement of the problem, the relevant

literature on the subject, the proposed approach or solution, and the new value of research which it is

innovation. It should be understandable to colleagues from a broad range of scientific disciplines.

Organization and citation of the bibliography are made in Vancouver style in sign [1], [2] and so on.

The terms in foreign languages are written italic (italic). The text should be divided into sections, each with a

separate heading and numbered consecutively. The section/subsection headings should be typed on a separate

line, e.g., 1. Introduction [3]. Authors are suggested to present their articles in the section structure:

Introduction - the comprehensive theoretical basis and/or the Proposed Method/Algorithm - Research Method
- Results and Discussion – Conclusion.

Literature review that has been done author used in the chapter "Introduction" to explain the

difference of the manuscript with other papers, that it is innovative, it are used in the chapter "Research

Method" to describe the step of research and used in the chapter "Results and Discussion" to support the

analysis of the results [2]. If the manuscript was written really have high originality, which proposed a new

method or algorithm, the additional chapter after the "Introduction" chapter and before the "Research

Method" chapter can be added to explain briefly the theory and/or the proposed method/algorithm [4].

2. HYBRID MULTILAYERED PERCEPTRON NEURAL NETWORK

Figure 1 illustrates the structure of the HMLP [3]. The HMLP consist of 3 layers, one input layer,
one hidden layer and one output layer. Being based on the MLP, the structure of HMLP greatly resembles

MLP’s structure with addition of several weighted connection from the input layer directly to the output

layer. HMLP’s additional weighted links is shown as dashed lines in Figure 1.

Figure 1. Structure of HMLP compared to MLP structure [3]

Based on the structure of HMLP, the output equation of a HMLP’s k-th output neuron, ŷk, with 1

hidden layer is given as (1).

 ̂ ∑
 (∑

)

 ∑

 for (1)

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

FPGA-based architecture of hybrid multilayered perceptron neural network (Lee Yee Ann)

951

where ni, nh and no are the number of input nodes, hidden nodes and output nodes of the HMLP, respectively;

w1
ij, w

2
jk and wℓ

ik are the weights from input layer to hidden layer, the weights from hidden layer to output

layer, and the weights of additional connection from input layer to output layer, respectively; b1
j and b2

k are

bias input to the j-th hidden node and the k-th output node, respectively; and v0 is the input to the i-th input

nodes of the HMLP. F(·) is the activation function at the hidden nodes. In this paper, the activation function

is selected as a sigmoidal function given as (2).

 (2)

The weights w1
ij, w

2
jk, w

ℓ
ik, and biases b1

j and b2
k are unknown, and should be selected to minimise

the prediction error. Similar to the MLP, HMLP’s topology means that each node of the HMLP processes its

respective output without interacting with other nodes of the same layer. This means that, in order to harness
the inherent parallelism offered by the HMLP or other neural networks with MLP-like structure,

implementing the HMLP on a concurrent system such as the FPGA will be more favourable than running the

HMLP on sequential system such as a PC, a general purpose microprocessor or a microcontroller.

3. DESIGN OF FPGA-BASED ARCHITECTURE OF HMLP

The architecture of the proposed HMLP for FPGA is planned using top-down approach and is

heavily based on HMLP’s structure in Figure 1 and HMLP’s output (1). The development of the architecture

for the HMLP is done via bottom-up approach, whereby the lowest-level modules are described first.

Next higher-level modules are later described level-by-level, until finally the top-level module which

encompassed all submodules that make up the HMLP is described.
The HMLP is designed to be modular such that if modification to a module (such as activation

function module) is required, the modification can be performed on the target module while retaining all

other modules of the whole structure. The HMLP architecture is designed with concurrency in mind to

observe the inherent parallelism of a HMLP. The architecture is designed such that the hidden nodes will

execute multiply-add operation in parallel with other hidden nodes. While hidden nodes are processing their

outputs, the output nodes will perform multiply-add operation of the weighted input layer to output layer

connection at the same time, as shown in Figure 2. This concurrent architecture reduces the overall

processing time, but at the expense of increased logic element utilization.

Figure 2. Timeline of hmlp_fpga execution showing the start signal, hid_node done signal, out_node done

signal and relative processing time of hid_node and out_node

3.1. Modules and Sub-Modules

Figure 3 shows the modules within the top-level module hmlp_fpga that make up the HMLP

architecture for FPGA implementation and all major internal connections. The modules that make up

hid_node and out_node are shown in Figure 4.

Based on HMLP’s structure, the hidden and output nodes, represented by the modules hid_node and

out_node respectively, execute most arithmetic operations of the HMLP. Both hid_node and out_node

modules comprise of a multiply-add module and activation function module.

All nodes of a given layer are connected to adjacent layers via weighted connections.

These connections are described in higher level modules, which mainly operate as to route the input signals,

weights, biases and other intermediate signals to the correct hidden or output node.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 14, No. 2, May 2019 : 949 – 956

952

Figure 3. Modules within top level module hmlp_fpga

Figure 4. Lower-level modules within hid_node and out_node

Low-level modules hid_madd and out_madd are described to perform multiplication of the input

signals to its respective weights and then to sum the input-weight products at the HMLP’s hidden and output

nodes, respectively. These modules will multiply its input-weight pair one-by-one and accumulate all product

of the multiplication. Module out_madd perform almost similar operation to hid_madd but with the extra
processing of weighted connection from input layer to output layer of the HMLP. Floating-point

multiplication IP and addition IP are used to implement the multiplication and summation operations. A state

machine controls the overall operation of the hid_madd and out_madd modules. The accumulated value is

then passed to next module that applies the activation function to the accumulated value.

The summed values from hid_madd and out_madd are passed to next modules, afunc_sigmoid and

afunc_linear. Both are the modules describing the operation of the sigmoidal activation function at the hidden

nodes and the linear activation function at the output nodes respectively. These activation function modules

are described as separate module from the multiply-add modules because if different activation function is

required, the new activation function can be swapped in while all other modules can be retained.

In afunc_sigmoid module, the sigmoidal activation function is implemented using floating-point IPs for

exponent, addition and inversion operations with a state machine to control the flow of data through the

afunc_sigmoid module and generate necessary control signals. In afunc_linear module, no arithmetic
operation is performed, only a state machine is described to control the flow of data through the afunc_linear

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

FPGA-based architecture of hybrid multilayered perceptron neural network (Lee Yee Ann)

953

module and generate necessary control signals. The activation function’s output from afunc_sigmoid or

afunc_linear module will be the output of individual hid_node or out_node module.

Next higher-level module described the HMLP’s hidden node and output node. Module hid_node

encapsulates hid_madd and afunc_sigmoid modules that perform the operation of the hidden nodes.

Likewise, out_node module encapsulates out_madd and afunc_linear that performs the operation of output

nodes of the HMLP.

The hid_layer and out_layer modules repetitively generate the hid_node module and out_node

module that formed the HMLP’s hidden layer and output layer, respectively. Top level module hmlp_fpga

connects all modules, input signals, output signals and intermediate signals to implement the HMLP structure

as in Figure 1 on FPGA.

3.2. Floating Point Number Representation

Real numbers representation is crucial and on an FPGA, all real numbers need to be described in

binary. In this architecture, floating point number representation is utilised to reduce development time

instead of describing a unique number representation. Using standardised number representation, such as the

IEEE754 standard [10] that define the bit ordering of 32-bit single precision floating-point numbers,

allow for better integration with other devices, avoid potential confusion when communicating with different

systems, and makes custom designs more adaptable for future developments.

Arithmetic operations on the floating-point numbers is done through the use of Floating-Point

Arithmetic IPs from Altera (now Intel FPGA) that meets most of the IEEE754 standard [11]. These floating-

point arithmetic IPs are used in the hid_madd, out_madd and afunc_sigmoid modules to perform operations
of multiplication, addition, exponent, and inversion.

4. SIMULATION

The architecture of the HMLP is described in VHDL and compiled on Altera Quartus II version

15.0 Web Edition. The architecture is then simulated using ModelSim 10.3d software. A VHDL testbench

tb_hmlp_fpga is described to provide the necessary stimuli to the HMLP’s top level module hmlp_fpga.

For the simulation, inputs to hmlp_fpga are set by tb_hmlp_fpga and the outputs of hmlp_fpga are observed

from the simulation waveform. The inputs and weights data for hmlp_fpga’s simulation is generated using

MATLAB. Figure 5 shows the ModelSim simulation output of hmlp_fpga for ni = 3, nh = 3, and no = 2.

The start signal, hid_layer done and final done signal is pointed out by its respective cursor.

Figure 5. Simulation waveform of the designed HMLP architecture

The simulation is repeated three times with different ni, nh and no combinations. For each ni, nh and

no combination, five different input datasets are randomly generated using MATLAB and coded into the

simulation testbench tb_hmlp_fpga. Simulation output is compared to the result computed by MATLAB.
The simulation shows that hmlp_fpga produced similar outputs to MATLAB results. Some deviation

between simulation output and MATLAB result do exist, but the difference is very small and can be

considered to be negligible.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 14, No. 2, May 2019 : 949 – 956

954

5. IMPLEMENTATION ON FPGA

After the simulation stage, the designed HMLP architecture is then compiled for the target FPGA

development board. All compilation, netlist generation, place and route, and generation of configuration

bitstream are done using Quartus II. For the purpose of testing the HMLP architecture on the FPGA,

a synthesisable testbench is described to assign the inputs and weights data to the HMLP and display the

output data in human readable form.

5.1. FPGA Device/Development Doard
The target FPGA development board for testing the HMLP architecture is the DE1-SoC from

Terasic. The DE1-SoC has an Altera 5CSEMA5F31C6 FPGA chip as the main FPGA device and other

necessary circuitries for the Cyclone V FPGA-SoC to function. DE1-SoC is also equipped with various

input/output components and devices for users to explore the FPGA-SoC [12].

The on-board slide switches, push-button switches, LEDs, 7-segment displays and clock generator

are used to test the designed HMLP architecture. The synthesisable testbench takes user inputs from the

switches and pushbuttons, assigns the HMLP’s test inputs and weights to the hmlp_fpga module, and lastly

displays the HMLP outputs from hmlp_fpga module accordingly on the 7-segment displays and LEDs.

5.2. Compilation Report

A full compilation report of the hmlp_fpga module and the synthesisable testbench for the Cyclone

V FPGA is shown by Altera Quartus II after successful compilation. Useful details such as the target FPGA’s
resource utilisation can be extracted from the compilation report. Overall, resource utilisations of the

designed HMLP architecture including the synthesisable testbench are shown in Table 1.

Table 1. CycloneV SE Resource Utilisation taken from Quartus II Compilation Report
HMLP

structure
ALM

Total

register

Total block

memory bits

Total DSP

block
HMLP Compute time

ni = 3

nh = 3

no = 2

5534 / 32070

(17%)
8576

2964 / 4065280

(0%)
53 / 87 (61%) 115 clock cycles (2.3 µs on 50 MHz clock)

ni = 8

nh = 3

no = 2

5661 / 32070

(17%)
8683

2964 / 4065280

(0%)
53 / 87 (61%) 150 clock cycles (3.0 µs on 50 MHz clock)

ni = 3

nh = 4

no = 2

7137 / 32070

(22%)
11053

3928 / 4065280

(0%)
70 / 87 (80%) 157 clock cycles (3.14 µs on 50 MHz clock)

ni = 8

nh = 3

no = 3

5588 / 32070

(17%)
8585

2964 / 4065280

(0%)
53 / 87 (61%) 150 clock cycles (3.0 µs on 50 MHz clock)

For a HMLP with greater ni, nh or no, it’s FPGA resource utilisation will be greater. Greater ni will

add to compute time but has minimal impact on resource utilisation; increasing nh will add compute time and
uses more resource; whereas increasing no has no impact on compute time but increases resource usage.

The ALM stand for Adaptive Logic Module in Altera FPGAs [13]. In this design, most of the FPGA

resources is used up by the Altera’s Floating-Point IPs, especially the IPs for exponent and inversion

operation to compute the afunc_sigmoid sigmoid activation function module at the hidden nodes. This is

proven by the significant increment of resource utilisation when nh is increased from 3 to 4 as in Table 1.

5.2. FPGA Implementation Outcome

From the simulation and FPGA implementation outcomes, the time needed for the HMLP

architecture to compute its output value, in term of number of clock cycles, is determined by (3).

hmlp_fpga output latency (4)

Based on (3), the afunc_linear module takes 4 clock cycles to produce stable result at its output port.

69 clock cycles are the duration needed by afunc_sigmoid module to finish its operation and produce stable

result on its output port. 7ni and 7nh are the output latency of the hid_madd and out_madd modules

respectively. The output latency of these multiply-add modules varies depending on ni and nh because

multiply-add is a sequential operation, thus increasing ni or nh will add to the overall output latency of the

hmlp_fpga module.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

FPGA-based architecture of hybrid multilayered perceptron neural network (Lee Yee Ann)

955

For a HMLP with ni = 3, nh = 3, no = 2, and system clock of 50 MHz, the time needed for the HMLP compute

its output is 2.3 μs (115 clock cycles).

The concurrent structure of the HMLP allow for all nodes to process its output concurrently,

thus reducing the overall processing time. The processing time for multiply-accumulate operation performed

by the hid_madd and out_madd modules is greatly affected by the number of input to the respective module.

This is because multiply-add operation is a sequential operation. More inputs hid_madd and out_madd have,

its processing time will be greater. To reduce the processing time of hid_madd and out_madd modules,

the multiply operation and add operation is pipelined, such that these modules can calculate the product of

next input-weight pair while adding and accumulating previous multiplication product as shown in Figure 2.

As in the simulation, the compilation and FPGA implementation of the designed HMLP architecture
is repeated three times with different ni, nh and no combinations. For each ni, nh and no combination,

five different input datasets are used. The datasets used for FPGA implementation are the same dataset used

for simulation. The outcome of the designed HMLP architecture on FPGA is compared with the simulation

result. The output value from the FPGA implementation is found to be the same as its simulation result.

6. CONCLUSION

This paper had described the development of architecture of HMLP neural network for

implementation on Cyclone V FPGA. The HMLP architecture is designed to be concurrent and modular.

The proposed architecture is compiled using Altera Quartus II and simulated on ModelSim. The simulation

reveals that the proposed HMLP architecture is able to produce desired result. Next, HMLP is implemented
on the Cyclone V FPGA device on board DE1-SoC development and education kit. The FPGA produced

same outputs as compared to the simulation and MATLAB.

ACKNOWLEDGEMENTS

Appreciations are extended for the financial support from the Ministry of Education, Malaysia

through the MyBrain15 scheme, and the tools, equipment and expertise at Universiti Malaysia Perlis.

REFERENCES
[1] X. Zhai, A. A. S. Ali, A. Amira, and F. Bensaali, “MLP Neural Network Based Gas Classification System on Zynq

SoC,” IEEE Access, vol. 4, pp. 8138–8146, 2016.
[2] M. Wess, P. D. S. Manoj, and A. Jantsch, “Neural network based ECG anomaly detection on FPGA and trade-off

analysis,” in Proceedings - IEEE International Symposium on Circuits and Systems, 2017.
[3] M. Y. Mashor, “Hybrid multilayered perceptron networks,” Int. J. Syst. Sci., vol. 31, no. 6, pp. 771–785, 2000.
[4] J. Adnan, K. A. Ahmad, M. H. Mat, Z. I. Rizman, and S. Ahmad, “Cardiac abnormality prediction using HMLP

network,” in AIP Conference Proceedings, 2018, vol. 1930.
[5] N. H. Harun, M. K. Osman, M. Y. Mashor, and R. Hassan, “Classification of acute luekemia using HMLP network

trained by genetic algorithm,” Adv. Sci. Lett., vol. 23, no. 4, pp. 2648–2652, 2017.
[6] Z. Saad, M. Y. Mashor, and W. Khairunizam, “Formation of momentum and learning rate profile for online

training and testing of HMLP with ALRPE,” in Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2015, vol. 9490, pp. 268–275.

[7] S. M. Sharun, M. Y. Mashor, S. Yaacob, A. Zul Azfar, and N. Hamzah, “Development of Attitude Control
Simulator for InnoSAT Satellite System,” in The 2nd International Malaysia-Ireland Joint Symposium on
Engineering, Science and Business 2012 (IMiEJS2012), 2012, pp. 225–234.

[8] B. Mohamed, A. Issam, A. Mohamed, and B. Abdellatif, “Comparison of hardware and NIOS II based software

implementation of MLP on the FPGA plateform,” J. Theor. Appl. Inf. Technol., vol. 72, no. 3, pp. 376–384, 2015.
[9] L. Y. Ann, P. Ehkan, and M. Y. Mashor, “Possibility of hybrid multilayered perceptron neural network realisation

on FPGA and its challenges,” in Lecture Notes in Electrical Engineering, 2016, vol. 362, pp. 1051–1061.
[10] IEEE, “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2008, pp. 1–70, Aug. 2008.
[11] Altera, Floating-Point IP Cores User Guide. 2016.
[12] Terasic, DE1-SoC User Manual. Terasic Technologies, 2016.
[13] Intel FPGA, Cyclone V Device Handbook Volume 1: Device Interfaces and Integration. 2018.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 14, No. 2, May 2019 : 949 – 956

956

BIOGRAPHIES OF AUTHORS

Lee Yee Ann is a Ph.D candidate at School of Computer and Communication Engineering,
Universiti Malaysia Perlis (UniMAP), Malaysia. He obtained Diploma in Computer
Engineering (2010) and B.Eng in Computer Network Engineering (2013), both from
UniMAP. His field of research includes Digital Design, FPGA, and Embedded System. He is

a graduate member of Board of Engineers Malaysia (BEM).

Phaklen Ehkan received the BEng Electrical-Electronic Engineering (UTM), MSc. IT
(UUM) and Ph.D in Computer Engineering (UniMAP - University of Birmingham, UK).
He worked as an Engineer/Sr. Engineer in MNC- Electronic Industries for six years before
joined the University Malaysia Perlis as a lecturer in 2003. Currently, he is an Associate
Professor attached to School of Computer and Communication Engineering, UniMAP.
His research interests include Reconfigurable Computing and FPGA, Digital Design and
Embedded System, Digital and Image Processing, System on Chip (SoC), Smart System and
IoT. He has published over 80 articles in International Journals and Scopus indexed
Proceedings. Dr. Phaklen Ehkan is currently a Chartered Engineer (UK), Professional

Technologist (MBOT), graduate member of BEM, member of IEEE, BCS and IACSIT.

Mohd Yusoff Mashor is a Professor at Universiti Malaysia Perlis in the School of
Mechatronic Engineering. His main research fields are artificial intelligence, control systems
and image processing. His researches are mostly applied to medical diagnostic systems and
satellite control systems, where artificial intelligence are intensively utilised. He obtained his

bachelor degree (in 1990) from Westminster University, UK in Control and Computer
Engineering, M.Sc (in 1991) from Sheffield University, UK in Control and Information
Technology, and Ph.D (in 1995) from Sheffield University in Artificial Intelligence. He has
served as a lecturer in Control Systems and Electronics for more than 20 years. He started his
career as a lecturer at Universiti Sains Malaysia and currently serves Universiti Malaysia
Perlis.

Siti Maryam Sharun received B.Sc in Electrical & Electronics Engineering (1997) and M.
Education (1999) from Universiti Teknologi Malaysia, and Ph.D in Mechatronic Engineering
(2013) from UniMAP. Her field of specialisation are Control System, Artificial Intelligence,
and Computer Technology. Dr. Siti Maryam Sharun was a lecturer at Politeknik Shah Alam,
a senior lecturer at Politeknik Sultan Abdul Halim Mua’dzam Shah, and is currently a Senior
Lecturer at Faculty of Inovative Design & Technology, Universiti Sultan Zainal Abidin
(UNISZA), Malaysia. She is a member of IAENG.

