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 Downscaling the tunnel oxide thickness has become one of the innovative 
solutions to minimize the operational voltage with better the 
programming/erasing (P/E) operation time. However, the downscaling 

technique faces several challenges where the conventional SiO2 tunnel layer 
has reached its limit. But a practical alternative has been introduced;  
Variable Oxide Thickness (VARIOT) technology in flash memory has been 
promising. VARIOT is one of tunnel barrier engineering technology for 
incorporating the high-k dielectric materials as a composite tunnel barrier. This 
paper presents the VARIOT concept to determine the optimum set of 
combination, the equivalent oxide thickness (EOT) and the low-k oxide 
thickness (Tox) for alternate high-k materials. Fowler-Nordheim (F-N) 
tunneling coefficients are also extracted for various combinations of VARIOT, 

where in this work ZrO2, HfO2, Al2O3, La2O3, and Y2O3 are used. The 
VARIOT optimization is conducted using 3-Dimensional (3D) Silicon 
Nanowire Field-Effect-Transistor (SiNWFET) device structure and simulated 
in TCAD Simulation tools. From the simulation results, it has found out that 
the high-k materials of La2O3 asymmetric stack is the excellent dielectric 
material among four (4) other dielectric materials;  
ZrO2, HfO2, Al2O3 and Y2O3 for EOT=4nm and Tox=1nm. 
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1. INTRODUCTION 

As the demand of flash memory device has increased, it is necessary to continuously downscale of 

the flash memory device. Memory capacity and performance must scale as the flash memory size has been 

scaled to maintain the device performance such as P/E voltage, P/E time, better retention and endurance. 

Nevertheless, the scaling becomes challenging because of the high electric fields acquired in the 

programming/erasing process [1] and direct tunneling effect [2]. 

Reduction of the thickness of the tunnel oxide may solve this challenge, but it also presents a severe 

bottleneck due to stress-induced leakage current (SILC). Many reports document the tunnel oxide should not 

reduce beyond 7-8nm because of the tradeoff between P/E process and retention reliability [3-4].  

This condition will restrict the betterment of the device performance in terms P/E voltage and time. When the 

tunnel oxide is thinner, the P/E process will become faster, but the charge leakage will destroy the retention 
time. Therefore, it is necessary to find ingenious solutions to omit this restriction.  

As one of the effective solutions, the inception of the different dielectric with high dielectric constant 

(high-k) materials stacks to engineer the tunnel oxide is proposed. Many researches have been reported about 

the tunnel barrier engineering (TBE) approach to analyze the performance before and after the inception of 

high-k dielectric materials [1-4]. TBE technology is an approach to modify the tunnel barrier by incorporating 
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the high-k dielectric materials in which the high-k dielectric will extend scalability of the same equivalent 

oxide thickness (EOT) by applying a thicker physical tunnel stack. TBE technology is divided into two 

approaches; 1) Crested Barrier Engineering and 2) Variable Oxide Thickness (VARIOT).  

The VARIOT concept is proposed by Govoreanu et al. (2003) consisted of the two-layer dielectric 

stack where the low-k layer and high-k layer is combined hence it is called asymmetric stack [5]. Beforehand, 

the concept of Crested Barrier Engineering first is introduced by Likharev et al. in 1999 [6].  

Few reports stated that TBE stack has a higher field-sensitivity compared to the single SiO2 layer which allows 

shorter P/E time, smaller operating voltage plus the ten (10) years retention time is not affected [2, 7]. Also, it 
was stated that different dielectric materials would exhibit different performance of the device performance as 

their properties are different each other [7-8]. Driussi et al. (2005) have conducted theoretical analysis on the 

performance of Crested Barrier and VARIOT concept as resulting that the VARIOT combinations yield better 

performance than Crested Barrier combinations in terms of low operating voltage and better retention. Thus, 

VARIOT dielectric stack will be focused in this paper.  

In this paper, the optimization work comparing high-k dielectric materials engineered in the tunnel 

barrier performance implementing VARIOT concept is conducted by using the asymmetric stack  

(low-k/high-k). Several high-k materials with fixed low-k SiO2 thickness are explored using Direct Quantum 

Tunneling (DQT) model which represents the tunnel barrier under test. 

 

 

2. RESEARCH METHOD  
The VARIOT optimization involved two parts which are the parameter optimization and F-N 

coefficients extraction. The primary purpose of VARIOT optimization work has been divided into two 

objectives: 1) To simulate and determine the optimum set of dielectric material combination, the equivalent 

oxide thickness (EOT), the optimum thickness of low-k (Tox) dielectric layer for minimum programming 

voltage (Vprog) and 2) To extract F-N tunneling coefficients of the optimum asymmetric stack. The equivalent 

oxide thickness (EOT) and optimum thickness of low-k (Tox) are determined for each combination of the 

asymmetric stack (low-k/high-k) in which satisfying program, retention and read-disturb constraints of flash 

memory using the method proposed by Verma et al. (2010) [7]. Thus, the optimum combination of the 

asymmetric stack is selected based on minimum programming voltage (Vprog). Generally, Figure 1 shows the 

flowchart of the VARIOT optimization process. 

 
 

 
 

Figure 1. Flowchart of VARIOT optimization process 
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In order to optimize these parameters, there are two things need to be clarified. Firstly, the high-k 

materials of the asymmetric stacks need to be chosen based on their criteria [7-8]. One of the critical criteria is 

the materials can be deposited on the SiO2 layer. Therefore, there are five (5) different high-k materials are 

selected in this optimization work (i.e., HfO2, ZrO2, Al2O3, La2O3 and Y2O3). High-k material plays a vital role 

in engineering the tunnel barrier. The relevant parameters of high-k material are the dielectric constant, 

tunneling mass of the electron and the conduction/valence band offset as stated in Table 1. Figure 2 shows the 

cross-sectional diagram of incorporation of VARIOT in SiNWFET device structure.  

 

 

Table 1. Parameters for Different Dielectric Materials Used in the Simulation 
Dielectric Parameters HfO2 ZrO2 Al2O3 La2O3 Y2O3 

Barrier Height, ΦB (eV) 1.5 1.4 2.8 2.3 1.6 

Dielectric Constant, ϵr 19 25 9.6 27 25 

Electron Affinity, χ (eV) 2.7 2.8 1.3 1.9 2.4 

Band Gap, EG (eV) 6.0 5.8 8.8 6.0 6.0 

Effective Mass, m*/m0 0.2 0.2 0.3 0.25 0.25 

 

 

 
 

Figure 2. Cross-sectional of 3-D SiNWFET device structure with low-k/high-k stack as its gate oxide 

 

 

After these materials’ selection, the optimization work is conducted using TCAD Silvaco tool.  

The tunneling model used in this optimization process is DQT model considering high non-linearity of the 

composite barrier structure. The EOT physical dimension of each asymmetric combination is fixed for 4:1:8 
nm, while the Tox is varied from 1:1:EOT nm. The low-k dielectric thickness, Tox is calculated as 

 

𝐸𝑂𝑇 =  𝑇𝑜𝑥 + (
3.9

∈ℎ𝑘
)𝑇ℎ𝑘 (1) 

 

where ∈hk and Thk are the thickness and dielectric constant of the high-k material respectively. The high-k 

thickness is calculated based on the dielectric constant as in Table 1 by using (1). High-k dielectrics with a 

thicker physical barrier for an equal EOT act as an ideal alternative material. Secondly, constraints of flash 

memory must be considered in the optimization process because it will be the limit of allowable high-k material 

and its thickness as presented in Table 2, resulting in a domain down-selection. 

 

 
Table 2. Flash Memory Operational Constraints [7] 

Tolerable read-disturb current density (A/cm2) < ~ 4 x 10-11 at around 3.6V. 

Tolerable retention current density(A/cm2) < 10-16 at around -1.5V. 

Tolerable programming current density(A/cm2) 3 x 10-2 

Endurance > 104 P/E cycles 

 

Gate

Higk-k

Low-k

n-type
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3. RESULTS AND ANALYSIS  

Figure 3 illustrates the JV relationship of VARIOT stack of SiO2/La2O3 for EOT=4nm. By varying 

the SiO2 layer thickness of the VARIOT stack, the changes of JV curve can be observed. It shows that the J-V 

curve for VARIOT stack is steeper than the J-V curve of single tunnel SiO2 layer. To be noted that by varying 

the thickness of low-k or high-k layer can change the leakage current characteristic as it is one of the limitations 

when downscaling the tunnel oxide layer. The potential drop across the SiO2 layer changes due to varied low-

k thickness, resulting in, changes of the potential drop across the high-k layer. Thus, for the same P/E current 

densities, the P/E voltage can be improved by varying the thickness of the SiO2 layer.  
 

 

 
 

Figure 3. J-V Curve of Sio2/La2O3 Dielectric Combinations for EOT = 4nm. the Dotted Line Indicates the 

Single Sio2 Layer and the Solid Line Indicates the Sio2/La2O3 Stack for Tox 1:1:3nm 

 

 
The J-V curve was plotted for Tox in 1:1:EOT nm and the process was repeated to the different 

dielectric material of asymmetric stack. After that, the constraints (program, read disturb and retention) were 

imposed to the J-V curve, and the gate voltage that satisfies each constraint were extracted for every EOT of 

all VARIOT stacks, and next step is plotting the Vg – Tox curve. Figure 4 represents the Vg – Tox curve for all 

VARIOT stacks which indicating the program constraint. 

The lowest program voltage pattern can be identified from Figure 2. It is found that the minimum 

program voltage for 4 dielectric stack materials is at Tox=2nm except for combination of SiO2/La2O3 stack. The 

minimum gate voltage of SiO2/La2O3 stack is at Tox=3nm. As presented in Figure 4, all combination stacks 

have reached their peak program voltage at Tox=3m and become saturated after that except for SiO2/La2O3 

stack. SiO2/La2O3 stack behaves differently where its program voltage peak happened to be at Tox=1nm and 

then saturated at the further changes. 

From Figure 4, it is expected that the direct tunneling occurred at Tox< 2nm as low voltage is needed. 
Then as Tox is increased, it required higher gate voltage to perform F-N tunneling and become saturated because 

EOT is fixed and does not change the gate electrostatic control. 

Even though the minimum program voltage is expected to be mostly at Tox=2nm or 3nm but it does 

not elucidate that it is the optimized Tox. For next step, both retention and read disturb constraints are imposed 

on the J-V curves to prevent memory contamination. Then the gate voltage that fulfills these constraints are 

extracted, and the Vg – Tox curve is plotted. 

Figure 5 indicates the Vg – Tox curve for all VARIOT stacks under this study in which satisfying the 

read disturb and retention constraints. As can be seen in Figure 5, the trend of read disturb constraint is quite 

similar to the program constraint. However, dissimilar trend is observed for retention constraint, where lower 

gate voltage acquired to perform direct tunneling at the retention constraint. However, higher gate voltage 

needed as the Tox is scaled up.  
As can be seen in Figure 5, the maximum allowable retention (Vret) and read disturb (Vread) voltages 

on Floating Gate (FG) are also considered: Vread=3.6V (modern industry standard) and Vret=-1.5V. To meet the 

retention and read disturb criteria, only above Vreaddis dashed line and below Vret dashed line parts are 

considered. 
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(a) (b) 

 

 

  
(c) (d) 

 
(e) 

 

Figure 4. Vg-Tox plot for program constraint for (a) SiO2/HfO2 (b) SiO2/Al2O3 (c) SiO2/ZrO2 (d) SiO2/La2O3 

(e) SiO2/Y2O3 

 
 

Then, all domains selected are plotted as Figure 6 to choose the minimum programming. Figure 6 

illustrates the gate voltage for each EOT of all combinations of VARIOT stack for both constraints. Obviously 

the optimized Tox for retention and read disturb is not exactly at Tox=2nm or Tox=3nm as previous case in Figure 

4 because it does not satisfy both fixed constraints. Figure 6(a) shows that all the VARIOT tunnel layer are 

satisfied the retention constraint for EOT=4:1:8nm. As can be observed, the lowest programming voltage is 

~2-3V can be obtained from composite stack with ZrO2, HfO2 and Y2O3 at EOT=4nm. However, the VARIOT 

tunnel stack with La2O3 cannot obtain the low Vprog due to the larger of barrier height (2.3 eV). 

On the other hand, read disturb constraint has been a restrictive to the selection of domain Tox.  

The similar trend can be observed from Figure 6(b). Only the combination of SiO2/La2O3 layer can fulfill the 

read disturb criteria at EOT = 4nm with the minimum programming voltage, Vprog (~4.70V). This is due to the 
higher band offset owing by La2O3‘s dielectric material. The composite with ZrO2 and HfO2 stack only satisfies 

the stringent read disturb condition at EOT=7nm whereas the SiO2/Y2O3 stack only fulfill the criteria at 

EOT=8nm. The optimum EOT and Tox are determined by comparing their programming voltage as in Figure 

2. As expected, La2O3 can yields the lowest programming voltage as it satisfies the requirement of both 

retention and read disturb constraints. All the parameters extracted for each selection of all VARIOT 

asymmetric stack are summarized in Table 3.  
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(a) 
 

(b) 
 

  

(c) (d) 

 
(e) 

 

Figure 5. Vg-Tox plot for retention and read disturb constraints for (a) SiO2/HfO2 (b) SiO2/Al2O3 (c) SiO2/ZrO2 

(d) SiO2/La2O3 (e) SiO2/Y2O3.. Dotted line refers to maximum allowed retention and read disturb voltages 

 

 

 
 

(a) (b) 
 

Figure 6. Gate Voltage for each EOT of all VARIOT stack (a) Retention constraint < |-1.5V| (b) Read 

Disturb Constraint > 3.6V 

 

 

Table 3. Optimum Parameters Each of the VARIOT Asymmetric Stack 
Parameters HfO2 ZrO2 Al2O3 La2O3 Y2O3 

EOT (nm) 6nm 6nm 5nm 4nm 8nm 

Tox (nm) 5nm 5nm 1nm 1nm 1nm 

Vprog (V) 5.55 4.95 5.22 4.70 6.05 

Vreaddis (V) 3.55 3.61 3.94 4.00 3.75 

Vret (V) -4.3 -4.45 -4.63 -5.40 -3.35 

F-N Coefficients Extraction 

AFN_program, (A/V2) 2.50 x 10-7 

BFN_program, (A/cm) 3.40 x 108 

AFN_erase, (A/V2) 6.77 x 10-7 

BFN_erase, (A/cm) 5.60 x 108 
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4. CONCLUSION  

The VARIOT optimization of composite tunnel barrier with respect to the SiO2 layer (low-k) and EOT 

are performed to obtain the minimum Vprog which satisfying the flash constraints (program, retention and read-

disturb constraints). The optimization is simulated using TCAD Silvaco ATLAS Simulator.  

The simulation is conducted using Silicon Nanowire FET structure. On top of that, five high-k dielectric 

materials under the asymmetric stack of tunnel barrier engineering are chosen to determine the optimum set of 

material, the lowest EOT, and optimum Tox. Considering the flash constraint is one of important condition as 

read-disturb constraint has been found to be the most restrictive factor which limiting the advantage offered by 

the composite tunnel barrier. La2O3 appears to be the promising dielectric material, in yielding the minimum 

programming voltage, Vprog (4.7V) compared to the other dielectric materials (Al2O3, ZrO2, HfO2, and Y2O3). 
La2O3 also meet all the flash constraints requirement considered in the VARIOT optimization. Minimum EOT 

and optimum Tox also can be determined from this study which is EOT=4nm and Tox=1nm for the optimum 

combination of the SiO2/La2O3 asymmetric stack. 
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