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 This paper focuses the rain effect over FSO link medium in Malaysia 
environment. In this work, a rain data samples that collected from Malaysian 
Meteorological Department (MMD) to determine the scattering coefficient, 
atmospheric attenuation and total attenuation. From the analysis, 
the precipitation rate give different impact over FSO link which can cause 
the attenuation and bit error rate increase. The results also show the 
comparison parameter for optimal geometrical loss such as beam divergence, 
aperture size and receiver sensitivity. Keywords: 
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1. INTRODUCTION  

In telecommunications, Free Space Optics (FSO) which utilizes light propagation in free space to 
transmit data between two points has become an attractive alternative to optical fiber communication or radio 
frequency system [1]. Various applications can be applied in FSO systems, such as the last mile high 
bandwidth internet connectivity, the temporary high bandwidth data links, the mobile telephony backhaul 
(3G), satellite links as well as the various applications where the optical fibers cannot be used. However FSO 
communication is vulnerable to atmospheric weather.  

There are several factors which contribute to the degradation of FSO performance, which includes 
scintillation, absorption and scattering [2], [3]. In propagation of optical signals, the performance changes 
even more easily, especially in varying weather effects. Fog, rain, dust, snow, smoke, and other aerosol 
particulate matter primarily attenuate the signal-carrying laser beam [4]. 

This work focuses on attenuation due to rainfall, which in turn generates the scattering effect. 
Scattering is caused by particles such as fog, haze and rain. The type of scattering is determined by the size of 
the source particles. Scattering caused by particles which are equal or larger compared to the transmitted light 
wavelength is referred to as Mie scattering. To analyze the scattering rate in these cases, it is more 
appropriate to use geometric optics. In scattering, energy is taken from the beam when the beam encounters 
particles or molecules of different sizes and shapes. Thus, the main atmospheric attenuation component was 
assumed to be only of scattering losses. Other factors such as dust or liquid particles in air could also produce 
scattering, given that there are irregularities on the signal-entry surface.  
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Previous researchers have been investigating to determine the level of attenuation due rainfall, and 
relating it to the rain rate [5], [6], [7], [8]. However, most of the researches were focused on European 
weather, and minimal effort has been channeled to investigate this effect in the tropical region,  
which experiences a significant amount of rainfall. An almost-daily rainfall which totals up to between 1500 
and 2000 mm annually, was certain to influence the quality transmission of FSO link deployed. This effort 
will address this vacancy to a significant extent, with precise mathematical relations, derived and improved 
over the years by various researchers [9] coupled by simulations using OptiSystem software.  
 
 
2. RESEARCH METHOD  
A. Theoretical  

The attenuation of laser power by rain can be calculated and is best described by Beer’s law  
[10], [11]: 
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where R is the link range in meters, τ(R) is the transmittance at range R (km), P(R) is the laser 

power at range R. P(0) is the laser power at the source (Watt) and   is the scattering coefficient ( 1

km
).  

The scattering coefficient can be calculated by using Stroke Law [12]. The scattering coefficient 
due to rain with drops of radius a, is defines as: 
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Where n is the number of raindrops per unit volume for drops with radius a, and σ, the scattering 

cross section, 
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(Q)scat is the wavelength-dependent scattering efficiency from the Mie theory [13][14]. Now, for x= 

2πa/λ >> 1, (Q)scat approaches 2 as a limit [13], [14]. The average raindrops size is about 0.05 cm.  
For infrared wavelengths of interest, e.g., 3-5μ or 8-15μ, then x≈ 300-1000; thus (Q)scat = 2. The scattering 
coefficient becomes  
 

22rainscatt n a   (4) 

 
It was found experimentally that the rain particle size distribution is a function of the total 

precipitation rate Z [15]. Za is related to Z in the following manner: 
 

az z  (5) 

 
Where Za is the rate of rainfall in cm (depth of water) per second for drops with radius a, and α is the 

fraction of total volume reaching ground contributed by drops of radius a. Since the measured values of the 
extinction coefficient due to rain are usually presented as a function of the total precipitation rate [16],  
it is useful to express the calculated coefficient in term of the same parameter. βrainscat can be related to Za by 
first noting that. 
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Where ρ = density of water, 2 gm/cc, Va = terminal velocity of raindrops size a, cm/sec, Va = 

volume of each raindrops of radius a, 4πa3/3 
Substituting (6) into (4) yield 
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Terminal velocity of a raindrop through air can be obtained by a Stroke Law: 
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Where, as before, ρ = density of the droplet, 1 gm/cc, a = radius of the raindrop, cm, g = 

acceleration due to gravity, 980 cm/sec2, η = viscosity of the air, 180 x 10-6  
Substituting (8) into (7) will simply the expression for βrainscatt : 
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Another of significant loss due to atmospheric that must be taken into account is the geometrical 

spreading attenuation. Geometrical attenuation occurs when the transmitted beam spreads with increasing 
range. Even in clear conditions, the beam diverges and as result, the detector collects less signal power [17]. 
The geometric losses are simply the ratio of the surface area of the receive aperture to the surface area of the 
transmit beam at the receiver.  
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where r1 = radius of transmitter aperture, r2 = radius of receiver aperture and r3 = radius of beam area 

The geometric losses depend primarily on the divergence and the range [18]. 
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where d1, d2 and d3 are diameters. Replace d3 with R  will yield a final geometric loss expression. 
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Therefore, the total attenuation expression can be derived. The total attenuation is a combination 

of atmospheric attenuation and geometric loss. The total attenuation for FSO system is actually very simple 
at a high level (leaving out optical efficiency, detector noises, etc). It can be described as a ratio of output 
power receive over power transmit which is equal to geometrical loss multiplied by transmittance at range R. 
The equation can be written as [19]: 
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where d2 = diameter receiver aperture (m), d1= diameter transmitter aperture (m), � = beam 

divergence (mrad), R = link range (km), � = scattering coefficient (1/km).  
B. Simulation 

The simulation setup for an FSO communication system in order to implement atmospheric 
attenuation is shown in Figure 1. The continuous wave lasers were used to create a carrier signal. In this 
simulation, two types of lasers were used, with wavelengths of 785nm and 1550nm. The carrier signal was 
then encoded through a multiplexer before modulated in an external Mach-Zehnder modulator. The pseudo-
random bit sequence generator was used to generate the random input data bit sequence at the rate of 
155Mbps.  
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Figure 1. Free space optic simulation setup 
 
 

After that, a non-return-to-zero (NRZ) pulse generator was used to act as the input for modulation 
in an external modulator. The modulated data was then transmitted via the free space optic (FSO) channel.  
In the FSO channel, the range was activated and was set to 1 km. The attenuation considered was losses that 
were caused by atmospheric effect (rain and haze) from low to high attenuation (10dB/km - 60dB/km).  

Meanwhile, a geometrical loss was defined with a transmitter aperture size of 0.05m and a 
receiver aperture size of. 0.25m. The beam divergence was set to 1 mrad. All attenuations, geometrical losses 
and beam divergence were specified according to typical industrial values in order to simulate as close as 
possible to the real environment.  

The receiver side consists of a splitter, photodiode and filter. The splitter splits an optical input 
into two output signal back to channel wavelengths of 785nm and 1550nm, respectively. The photodiode was 
used for optical to electrical conversion before signal flow to a low pass filter. The decoded signal will then 
arrive at signal inspection equipment such as the BER analyzer and Eye-Diagram analyzer. The received 
power was measured using Optical Power Meter. 
 
 
3. RESULTS AND ANALYSIS 

Figure 2 shows the total attenuation corresponding to the rainfall rate. Two designs with different 
transmitter and receiver aperture sizes were compared – Design 1 and Design 2. Both aperture design 
dimensions were defined based on commercial FSO system that is widely available in market today. It can be 
seen from the graph that Design 1 was performing better than Design 2, producing a lower attenuation level.  

 
 

 
 

Figure 2. Total attenuation versus rainfall rate 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  
 

Impact of rain weather over free space optic communication transmission (A.K Rahman) 

307

As the receiver diameter increases, the geometric loss was reduced, comparing to small receiver. 
This is because the larger collecting area aperture significantly reduces signal fluctuation by averaging the 
received waveform over the aperture area. Therefore, in heavy rain conditions which produce higher total 
attenuation, the deployment of a small transmitter and larger receiver aperture will help in improving the link. 

Table 1 shows the prediction of the maximum allowable rainfall rate which could impair the FSO 
link, against different link distances. The receiver sensitivity was assumed to have a BER of 10-9 and  
Design 1 was analyzed. It can be seen that with fixed receiver sensitivity and at short distance, a higher 
rainfall rate was able to be tolerated by the system. As the link distance increases, the tolerable level of 
rainfall rate will drop, due the receiver’s inability to receive sufficient signal power. This prediction is 
significant in order to determine the maximum laser traveling distance and its corresponding rainfall  
rate limit.  

Figure 3 shows the received power due to the total atmospheric attenuation over system’s link. It can 
be seen that for both wavelengths, the received power uniformly decreased with the increase in total 
atmospheric attenuation. The wavelength 1550nm was found to receive a higher power level, as the longer 
wavelength was able to penetrate attenuating particles, therefore, experiencing lower power loss.  

One of the factors discussed previously, in reducing atmospheric attenuation effect was the 
application of a narrow optical beam. Figure 4 shows the consequence of the beam divergence,  
by investigating the received power against the total atmospheric effect, for both wavelengths of 785nm and 
1550nm. It can be seen that all received power decreased constantly with an increased attenuation,  
with different beam divergence. The beam divergence of 1 mrad was found to be receiving the maximum 
power when transmitted at 1550nm. A wide beam divergence will cause a high power loss into the 
atmosphere during transmission. On the other hand, a narrow beam tends to focus transmission signal and 
minimize power loss, thus, higher received power. 

 
 

Table 1. The Prediction of Maximum Rainfall Rate at Different Link Range 
Range (Km) 0.5 1 1.5 2 2.5 
Maximum 
Rainfall Rate 
(mm/hr) 

155 70 40 30 20 

Receiver 
Sensitivity 
BER=10-9 

-42 dBm (APD commercially type) 

Aperture Transmitter = 0.05m Receiver = 
 0.25m 

 
 

 
 

Figure 3. Received power versus total atmospheric attenuation 
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Figure 4. Received power versus attenuation for different beam divergence 
 
 

Figure 5 shows received power versus the total atmospheric attenuation for different aperture sizes. 
The transmitter/receiver aperture sizes for both Design 1 and Design 2 were as discussed previously.  
All received power uniformly decreased with attenuation increase, and the best performing setup was  
Design 1 transmitting on a 1550nm wavelength. The clear advantage of a larger receiver area was its ability 
to reduce errors due to scintillation, which is an atmospheric turbulence due to solar loading and natural 
convection. It causes temporally and spatially varying refractive index changes in the air, time-varying a laser 
beam’s propagation through the atmosphere. This phenomenon is also quite similar to the apparent twinkling 
of the stars or distant city lights. The result is that an FSO communications receiver can experience error 
bursts due to surges and fades in the receive signal strength. Utilizing a receiver aperture which is relatively 
much larger than the spatial scale of the scintillation provides an averaging effect of the localized surges and 
fades, thus improving the error rate. With the reduction of this effect the total attenuation also can  
be decreased. 

Figure 6 shows the BER versus attenuation for different photo detector at the receiver. The graph is 
represented by two detector APD and p-i-n detector, for a single operating wavelength (1550nm). According 
from the graph, the attenuation at -35dB/km the performance of APD photodiode detector was found to be 
better than a p-i-n detector. The BER value for APD was of the order 10-32 whereas a p-i-n detector, on the 
other hand, produced BER in the order of 10-05, which made the APD a more popular choice for FSO 
equipment vendors in their designs. This is due to the high level of attenuation which exists in FSO 
communication systems. Using detectors with higher sensitivity increases the ability of a receiver to detect 
lower power levels and maintain transmission quality within high atmospheric attenuation conditions.  
This condition can be observed deeply in eye pattern in figure below between 2 different type detectors.  
A large eye opening and greater height level represents the link’s good condition, whereas a smaller eye 
opening indicates the links proneness to error. 

 
 

 
 

Figure 5. Received power versus attenuation for different aperture size 
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Figure 6. BER versus attenuation for different photo detector at receiver 
 
 

Figure 7 and 8 shows the eye diagram for both APD and p-i-n for a constant attenuation of -
35dB/km. It can be seen that the opening eye pattern for p-i-n was small, with an eye height of 2.43x10-7, 
whereas the opening eye pattern for APD was slightly better, with a height at 2.49x10-6. The BER values for 
APD and p-i-n photo detector were found to be 5.26x10-5 and 6.17x10-32. It showed that at -35dB/km the link 
with the p-i-n type detector was performing with high errors, as the minimum BER limit should be in the 
order of 10-9. On the contrary, the link with an APD detector produced a much lower BER and operating 
under good conditions.  

 
 

 
 

Figure 7. Eye diagram pattern at attenuation -
35dB/km for p-i-n photodiode

 
 

Figure 8. Eye diagram pattern at attenuation -
35dB/km for APD photodiode 

 
 

4. CONCLUSION 
In this work, the study of rain effect upon an FSO communication system in the tropical region was 

presented. The result shows that the rain in Malaysia environment can effect the transmission FSO especially 
for heavy rain condition. The attenuation can deteriorate link approximately 60 dB/km. Based on simulation 
for optimal performance, the parameter can be used apply by using narrow beam which refer to small 
transmitter. For receiver is better larger size to collect more light. In term of operating wavelength, the longer 
wavelength 1550nm window is much better due to penetration ability. Meanwhile at receiver part APD 
photodetector is highly sensitive compare to PIN detector. As result receiver can detect a weak signal to 
increase power received.  
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