
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 13, No. 2, February 2019, pp. 729~736

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v13.i2.pp729-736 729

Journal homepage: http://iaescore.com/journals/index.php/ijeecs

A noble approach to develop dynamically scalable namenode in

hadoop distributed file system using secondary storage

Tumpa Rani Shaha1, Md. Nasim Akhtar2, Fatema Tuj Johora3, Md. Zakir Hossain4,

Mostafijur Rahman5, R. B. Ahmad6
1,2,4Department of Computer Science and Engineering, Dhaka University of Engineering and Technology (DUET),

Gazipur, Bangladesh
3Institute of Information Technology, Jahangirnagar University (JU), Bangladesh

5Department of Software Engineering, Daffodil International University (DIU), Dhaka, Bangladesh
1Department of Computer Science and Engineering, Daffodil International University (DIU), Dhaka, Bangladesh

6Faculty of Informatics and Computing, University Sultan Zainal Abidin (UniSZA), 22200 Besut, Terengganu, Malaysia

Article Info ABSTRACT

Article history:

Received Nov 12, 2018

Revised Dec 13, 2018

Accepted Dec 27, 2018

 For scalable data storage, Hadoop is widely used nowadays. It provides a

distributed file system that stores data on the compute nodes. Basically, it

represents a master/slave architecture that consists of a NameNode and

copious Data Nodes. Data Nodes contain application data and metadata of

application data resides in the Main Memory of NameNode. In cached

approach, they fragment the metadata depending on the last access time and

move the least frequently used data to secondary memory. If the requested

data is not found in main memory then the secondary data will be loaded

again on the RAM. So when the secondary data reloads to the primary

memory then the NameNode main memory limitation arises again. The focus

of this research is to reduce the namespace problem of main memory and to

make the system dynamically scalable. A new Metadata Fragmentation

Algorithm is proposed that separates the metadata list of NameNode

dynamically. The NameNode creates Secondary Memory File in perspective

of the threshold value and allocates secondary memory location based on the

requirement. According to the proposed algorithm the maximum third, out of

fourth of main memory is used at the secondary file caching time. The free

space aids in faster operation by Dynamically Scalable NameNode approach.

This proposed algorithm shows that the space utilization is increased to 17%

and time utilization is increased to 0.0005% with the comparison of the

existing fragmentation algorithm.

Keywords:

DataNode

Hadoop

Metadata

NameNode

Secondary Storage

Copyright © 2019 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Tumpa Rani Shaha,

Department of Computer Science and Engineering,

Dhaka University of Engineering and Technology, Gazipur, Bangladesh.

Email: tumpa.cse49@gmail.com

1. INTRODUCTION

In this modern age, it has become the main concern to handle the data that is being generated every

day. Approximately 25 quintillion bytes of data are created every day and 90% of the data has been created in

the last two years. This data are being generated from everywhere like sensors for gathering climate

information, social media sites, transaction records, satellites etc. These data sets are immensely unstructured

and as a result to process and estimate these big data is a great concern. As the data size has increased

extremely RDBMS has found it challenging. More ever as these data sets are semi-structured and

unstructured RDBMS cannot categorize as they are designed to handle structured data. This problem requires

a database management system that is capable of analyze these data in an efficient and convenient way.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 13, No. 2, February 2019 : 729– 736

730

Apache Hadoop is such kind of DBMS for handling semi-structured and unstructured data that provides an

open source, distributed database processing platform across several thousand nodes. More ever it is high

speed and has greater tolerance to fault along with cost efficiency as it stocks data in small amount via

multiple servers.

File system metadata and application data are stored separately in the existing Hadoop Distributed

File System. NameNode contains the metadata of the system and DataNode contain application data. Per

cluster about tens of thousands of clients can access the Hadoop storage at a time. DataNode store the block

of data in their local file system and NameNode store metadata of all the DataNode in their local file system.

So if we try to extend the network or try to add new DataNode then because of NameNode main memory

limitation we can’t extend the network. This namespace limitation is one of the important problems of

existing Hadoop Distributed File System.

This proposed Dynamically Scalable NameNode (DSN) approach introducing a Metadaya

Fragmentation Algorithm (MFA) to fragment the metadata frequently and increase the namespace capacity

dynamically by making the interaction between main memory and secondary memory of NameNode.

2. LITERATURE REVIEW

In the field of modern technology, the use of Hadoop for handling big data has become an active

area of research. Several approaches have been suggested on this field.

In [1], they developed the Hadoop Distributed File System on behalf of Yahoo. They have explained

about the Hadoop architecture and showed the result for handling 25 Petabyte of data at Yahoo.

A classification based metadata management system is proposed in [2]. They focused on reducing

the bottleneck of the NameNode main memory. They fragment the metadata of NameNode based on the

importance factor. They have calculated three (High, Medium and Low) types of importance factor (If). Hash

table is used to represent high If, a tree map is used to represent medium If and sequence files are used to

represent low If.

A cached approach is proposed in [3] for addressing NameNode scalability in HDFS. Their main

focus was to enhance the existing architecture. They fragment the metadata depends on the last access time

and moved the least frequently used data to cache. They were able to remove 250MB of data from RAM. But

for data searching when the requested data not found in main memory then the secondary data will be loaded

again on the RAM. So when the secondary data reload to the primary memory the issue of NameNode main

memory limitation arises again.

In paper [4], they analyze the requirement like hardware, software, network environment for

improving the performance of cloud computing. They developed a cache system in layered passion where the

system has a client library and multiple cache services. Client library can access the files from the shared

memory. This distributed cache system can manipulate large number of files with a millisecond level in

highly concurrent environment.

 In [5], they developed a mechanism to improved Hadoop performance using metadata for handling

big data. By assigning jobs to the DataNode, H2Hadoop was extended the ability of NameNode. They were

successful for reducing CPU time and number of need operation.

 In [6-8], they proposed a system for improving metadata management in HDFS for small files.

They focused on the small files in the main memory and provide archival methods for those small files.

Distributed metadata management scheme is proposed in [9]. They proposed a system for

distributed metadata management scheme in HDFS to improve the HDFS efficiency.

In [10], the namespace is departed into several fragments. Replicas of each fragment are dispersed

among the NN. More time is needed for metadata searching with synchronization because the fragmented

namespaces are distributed among different NN

In [11], they proposed a Dynamic Directory Partitioning (DDP) technique where they allowing

directory metadata and file metadata in a diverse way. They improved the performance on scalability and

adaptability.

An efficient metadata management system is proposed in. They proposed directory level based

metadata management which is more efficient than the directory sub tree partitioning and traditional hashing

technique.

3. RESEARCH METHOD

The DSN methodology has the following design principle (1) Dynamically Scalable NameNode

architecture and (2) working procedure. In this section, the system architecture and the working procedure of

the DSN architecture is given.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

A noble approach to develop dynamically scalable namenode in hadoop distributed… (Tumpa Rani Shaha)

731

3.1. Dynamically Scalable NameNode Architecture

The Dynamically scalable NameNode architecture is shown in Figure 1. DNS has master/slave

architecture. DNS cluster consists of a single NameNode, a master server that manages the file system

namespace and regulates access to files by clients and a number of DataNode, usually one per node in the

cluster. In overall, the DSN system consists of one NameNode, a group of DataNode, clients, main memory

and secondary memory concept which is discussed in this section.

Figure 1. Dynamically Scalable NameNode Architecture

3.2. NameNode

The focal point of HDFS is NameNode. It keeps the track where the file data is kept over the cluster.

The directory tree of all file in the system also kept here. When the clients wish to locate a file or they need to

add/copy/delete/move a file then client applications send a request to the NameNode. The NameNode replies

with corresponding DataNode address.

3.3. Main Memory

Normally the namespace of the Hadoop system is stored in NameNode main memory. In this

proposed architecture we introduce Main Memory File (MMF) concept, which stores the high priority

metadata of the system.

3.4. Secondary Memory

In this proposed architecture we introduced the secondary memory concept. The fragmented low

priority metadata will store in the secondary memory. A lot of files can store in the secondary memory

according to the proposed algorithm which is discussed in working procedure section.

3.5. DataNode
DataNode cache the data in the HDFS. DataNode talks to the NameNode to perform modifications

of the data commanded by the NameNode and response to the NameNode after a fixed time interval

continuously with a list of a chunk that they are storing for file system activity. Clients system can

communicate to the DataNode directly if the NameNode has assigned the address of the DataNode.

3.6. Clients

Clients of the proposed system can request to the NameNode for any particular file. NameNode will

reply with the address of the requested DataNode to the clients. Then clients directly communicate with the

DataNode for reading or writing operation.

3.7. Metadata

HDFS metadata is divided into two categories of files named fsimage and edits log. The complete

state of the file processing system at a point in time is content by the fsimage file. A unique increasing

transaction id is assigned in every modification of file system. After all modification to that id fsimage files

represents the file system state.

Clients Request

Reply

 ...

MMF SMF1

Main

Memory Secondary Memory

SMF2 SMFn

Data

Node

… Data

Node
Data

Node

NameNode

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 13, No. 2, February 2019 : 729– 736

732

3.8. Working Procedure
In this DSN architecture when Hadoop client request to NameNode, it firstly check the available

space of MMF (Main Memory Metadata File). If so then the new file is created. And default priority 1

(Lowest Priority) is set for the newly created file. But if there is no available space in MMF then least

priority metadata will be moved to SMF (Secondary Memory Metadata File) following the proposed

Metadata Fragmentation Algorithm (MFA). That is a priority based dynamic metadata classifier is proposed

for the main memory utilization. For assigning priority let us assume the following parameters

 Td =Fixed Time Interval

 H=Number of Hits during Td

 MMS=Main Memory Size

 Mth=Main Memory Threshold

 Sth=Secondary Memory Threshold

 MMF=Main Memory Metadata File

 SMF=Secondary Memory Metadata File

 S= Size of each metadata

 x= Number of metadata file for Mth = (MMS/2)/S

 y= Number of metadata file for Sth = (MMS/4)/S

Generally, the full fsimage file is stored in the main memory of NameNode. To fragment the

fsimage file threshold value (Mth) is calculated by (MMS)/2. That is half of the main memory size is the

threshold for MMF. Secondary Memory Threshold (Sth) value is calculated by (MMS)/4. So x is the number

of metadata file that can be stored on Mth and y is the number of metadata file that can be stored on Sth.

Figure 2 shows the metadata fragmentation algorithm.

Figure 2. Metadata Fragmentation Algorithm

When the size of the metadata file exceeds the Mth then the fragmentation algorithm is triggered.

When the threshold value exceeds, then the priority value for each metadata will be updated frequently if

needed based on trigger. Newly generated priority values are sorted (higher to lower order) and metadata

having higher priority will keep to the MMF. That is x number of metadata has been stored in MMF

Low priority metadata records are separated out and moved into the file created on secondary

storage. As low priority metadata frequently moves to the secondary storage so the number of SMF will

extend according to the size of metadata. The number of metadata has been stored in each SMF is measured

by factor y and they must be stored according their higher to lower priority. Let consider the size of the main

memory is 1 GB, then the threshold value (Mth) will be 512 MB and the size of each fragmented file in the

secondary memory (Sth) is 1 GB/4=256 MB. If we consider that size of each metadata is 1MB then MMF

can contain 512 metadata which is factor x.

When the user searches any particular file, the system will search that data in the main memory first.

If it is found, the file will be replied to the user with the DataNode address. But if it is not found in the main

1. If MMF >Mth then

2. Calculate new Priority value (P)= Average

 (Old Priority, H)

3. Sort the metadata depending on P in descending

 order

4. Keep high order x factor of data in MMF

5. Shift rest lowest data to SMF [i=1….n]

6. If SMF[i] > Sth then

7. Repeat step 2 & 3

8. Keep high order y factor of data in SMF[i]

9. Shift rest low factor data to SMF[i+1]

10. end if

11. end i

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

A noble approach to develop dynamically scalable namenode in hadoop distributed… (Tumpa Rani Shaha)

733

memory then according to the priority value the requested file will be cached to the main memory from the

secondary memory through page table which is shown in Figure 3.

Figure 3. Secondary File Caching

4. RESULTS AND ANALYSIS

To evaluate the performance of the MFA algorithm we have conducted two kinds of test: 1.

Performance on main memory usages 2. Performance on average response time. In this section we have

demonstrated the performance of the DSN approach and the comparison with the existing cache approach.

4.1. Simulation Platform

We have developed the MFA and existing fragmentation algorithm using C++ language in two

different computers. One of those is 4GB RAM with 2.10 GHz Core i3 processor and another one is 8GB

RAM with 1.60GHz Core i5 processor.

4.2. Performance on Main Memory Usages

In this section the performances on main memory usages of DSN approach and existing cached

approach in terms of size of main memory is discussed. Figure 4 shows the NameNode main memory usage

comparison.

0 512 1024 1536 2048 2560 3072 3584
0

200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600

U
se

d
of

 R
A

M
 (M

B)

Size of RAM(MB)

 Dynamically Scalable NameNode Approach

 Existing Cached Approach

Figure 4. NameNode Main Memory Usage Comparison

MMF

SMF1

SMF1

 SMF2

SMFn

Main Memory

Address Translation

1 Cached

0

0

Memory Resident

Page Table
Secondary Memory

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 13, No. 2, February 2019 : 729– 736

734

According to the MFA the use of RAM for the Dynamically Scalable NameNode approach is

calculated by the size of x factor, y factor and the size of each metadata. After the fragmentation of cache

approach the main memory can store 700MB metadata and 250MB data in the secondary memory of 1GB

RAM [3]. But in DSN system the main memory is able to hold 512MB and 256MB in secondary memory

after the metadata fragmentation algorithm trigger. The Secondary Memory can store several files of size

256MB. So the storage capacity has been increased dynamically.

Existing cached approach is used 92% of RAM and the DSN algorithm required maximum 75% of

main memory in worst case. So this DSN approach is utilized average 17% of main memory usage. This free

space of main memory ensure the overall response time of the NameNode.

4.3. Performance on Response Time

In this section the performances on average response time of DSN approach and existing cached

approach is discussed. For analyzing the average response time of the NameNode, we have made a setup to

simulate of proposed and existing MFA algorithm in two well configured computers. Setup-1: 4GB RAM

with 2.10 GHz Core i3 processor and Setup -2: 8GB RAM with 1.60GHz Core i5 processor. Figure 5 and

Figure 6 show the average response time analysis of setup-1 and setup-2.

0 512 1024 1536 2048 2560 3072 3584

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

Re
sp

on
se

 T
im

e i
n

Se
co

nd
s (

S)

Size of RAM (MB)

 Dynamically Scalable NameNode Approach

 Existing Cache Approach

Figure 5. Average Response Time Analysis of Setup-1

Let consider the size of each metadata (S) is 1MB. Then the MMF will contain 512 metadata which

is factor X and each SMF can contain 256 metadata which is factor Y.

0 512 1024 1536 2048 2560 3072 3584
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

Re
sp

on
se

 T
im

e i
n

Se
co

nd
s (

S)

Size of RAM(MB)

 Dynamically Scalable NameNode Approach

 Existing Cached Approach

Figure 6. Average Response Time Analysis of setup-2

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

A noble approach to develop dynamically scalable namenode in hadoop distributed… (Tumpa Rani Shaha)

735

In simulation, the configuration of setup-2 is higher than setup-1. So we can see that the average

response time in setup-2 is less than setup -1. So here it is proved that this proposed system will provide

better response time in high configured system.

5. CONCLUSION

In this proposed work we have experimented with a large amount of data efficiently thus the time

requirements has been reduced and memory utilization is increased. The proposed system is more efficient

than the existing cached approach that is proved by our performance evaluation section. By implementing the

concept of secondary storage it has been shown that amount of metadata will not be so high that the

NameNode will be irresponsive due to the excessive amount of data. At the same time the client request can

be handled more frequently than the existing system. In future work we would like to introduce several

parameters and be proved mathematically so that the system can work more efficiently and can be

implemented in real time system.

REFERENCES
[1] K. Shvachko, H. Kuang, S. Radia, and R.Chansler, “The Hadoop Distributed File System,” IEEE 26th Symposium,

pp. 1–10, May, 2010.

[2] A.Chandrasekar, K.Chandrasekar, H. Ramasatagopan, and J.Balasubramaniyan, “Classification based Metadata

Management for HDFS,” IEEE 14th International Conference on High Performance Computing and

Communications, 2012

[3] Zhang, G. Wu, X. Hu, and X. Wu, “A Distributed Cache for Hadoop Distributed File System in Real-time Cloud

Services,” 13th International Conference on Grid Computing, pp. 12-21, 2012.

[4] H. Alshammari, J.Lee, and H. Bajwa, “H2Hadoop: Improving Hadoop Performance using the Metadata of related

jobs,” IEEE Transactions on Cloud Computing, PP. 1-1, 2015.

[5] G. Mackey, S. Sehrish, and J. Wang, “Improving Metadata Management for Small Files in HDFS,” IEEE

International Conference on Cluster Computing and Workshops, 2009.

[6] S. Bende, R. Shedge, “Dealing with Small Files Problem in Hadoop Distributed File System,”7th International

Conference on Communication, Computing and Virtualization, 2016.

[7] Dr. Raut, S., Phakade, P., “An Innovative Strategy for Improved Processing of Small Files in Hadoop”

International Journal of Application or Innovation in Engineering and Management, 3, pp. 278-280, July, 2014.

[8] M. Varade, V.Jethani, “Distributed Metadata Management Scheme in HDFS,” International Journal of Scientific

and Research Publications, 3, 2013.

[9] Y. KIM, T. Araragi, J. Nakamura, T. Masuzawa, “A Distributed NameNode Cluster for a Highly- Available

Hadoop Distributed File System,” IEEE 33rd International Symposium on Reliable Distributed System, 2014.

[10] Y. Fu, N. Xiao, and E. Zhou, “A Novel Dynamic Metadata Management Scheme for Large Distributed Storage

Systems,” 10th IEEE International Conference on High Performance Computing and Communications, 2008.

[11] L. Ran, and H. Jin, “An Efficient Metadata Management Method in Large Distributed Storage Systems,”

International Conference on Human-centric Computing and Embedded and Multimedia Computing, pp. 375-383,

2011.

BIOGRAPHIES OF AUTHORS

Tumpa Rani Shaha obtained her B.Sc and M.Sc degrees under department of Computer

Science and Engineering from Dhaka University of Engineering and Technology (DUET),

Gazipur, Bangladesh. Tumpa Rani shaha research interests are on Data Mining, Big Data,

Hadoop Distributed File System, Machine Learning and Deep Learning. Currentlt she is a

faculty member at department of Computer Science and Engineering, Daffodil International

University.

Md. Nasim Akhtar received the M.Eng and Ph.D degrees from National Technical

University of Ukraine, Kiev, Ukraine and Moscow State Academy of Fine Chemical

Technology, Russia, in 1998 and 2010, respectively. Currently, he is a Professor in the

Department of Computer Science and Engineering, Dhaka University of Engineering and

Technology (DUET), Gazipur, Bangladesh. His research interests include Distributed Data

Warehouse System On Large Clusters, Digital Image Processing and Water Marking, Peer

to Peer Networking, Cloud Computing, Operating System. He has presented papers at

conferences both home and abroad, published articles and papers in various journals.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5281774
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5281774
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4637648
https://link.springer.com/book/10.1007/978-94-007-2105-0
https://link.springer.com/book/10.1007/978-94-007-2105-0

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 13, No. 2, February 2019 : 729– 736

736

Md. Zakir Hossain received the B.Sc Engineering degree in Computer Science and

Engineering Department from Dhaka University of Engineering and Technology (DUET),

Gazipur, Bangladesh, in 2015 and he is currently pursuing the M.Sc Engineering degree in

Computer Science and Engineering Department in Dhaka University of Engineering and

Technology (DUET), Gazipur. His research interest includes Data Mining, Big Data, AI,

Machine Learning, Cloud Computing, Software Engineering, Computer Network, IoT. He

has presented papers at conferences both home and abroad

Ms. Fatema Tuj Joohora is the Lecturer of a reputed private university in Bangladesh. She

has received her B.Sc and M.Sc degree in Information Technology from

Jahangirnagar University (JU). Her recent publications include “An Efficient Approach of

Training Artificial Neural Network to Recognize Bengali Hand Sign" (2016). Her research

interest includes Data Mining, Artificial Neural Network, Image processing, and cloud

computing.

Mostafijur Rahman completed his BSc in Computer Science from National University of

Bangladesh (2003). He Pursued his MSc (2009) and PhD (2017) in Computer Engineering,

from UNIMAP, Malaysia. He worked as Lecturer since 2009 to September, 2017 for School

of Computer and Communication Engineering in UNIMAP. Currently he is serving as

Assistant Professor in the Department of Software Engineering at Daffodil International

University (DIU), Bangladesh. His research interest in Software Testing, Multimedia and

Creativity in Medical Science, Computer Security, Cloud Computing, Algorithm

Optimization, Parallel and Distributed System, Device Driver for GNU/Linux based

embedded OS. He has presented papers at conferences both home and abroad, published

articles and papers in various journals.

R. Badlishah Ahmad received the M.Sc Engineering and Ph.D degrees from University of

Strathclyde, UK in 1995 and 2000, respectively. Currently, he is a Faculty of Informatics

and Computing, Universiti Sultan Zainal Abidin (UniSZA). His research interests in

Computer and Telecommunication Network Modelling include WSN and Optical Network

using discrete event simulators (OMNeT++), Optical Networking and Embedded System

based on GNU/Linux. He has presented papers at conferences both home and abroad,

published articles and papers in various journals.

