■ 409

Power Transformer Incipient Faults Diagnosis Based on Dissolved Gas Analysis

Osama E. Gouda^{*1}, Saber M. Saleh², Salah Hamdy EL-Hoshy³

¹Department of Electrical Power and Machines, Faculty of Engineering, Cairo University ²Department of Electrical Power and Machines, Faculty of Engineering, Fayoum University ³Middle Egypt electricity zone, Egyptian Electricity Transmission Company, El-Fayoum *Corresponding author, e-mail: Prof_ossama11@yahoo.com

Abstract

Incipient fault diagnosis of a power transformer is greatly influenced by the condition assessment of its insulation system oil and/or paper insulation. Dissolved gas-in-oil analysis (DGA) is one of the most powerfull techniques for the detection of incipient fault condition within oil-immersed transformers. The transformer data has been analyzed using key gases, Doernenburg, Roger, IEC and Duval triangle techniques. This paper introduce a MATLAB program to help in unification DGA interpretation techniques to investigate the accuracy of these techniques in interpreting the transformer condition and to provide the best suggestion for the type of the fault within the transformer based on fault percentage. It proposes a proper maintenance action based on DGA results which is useful for planning an appropriate maintenance strategy to keep the power transformer in acceptable condition. The evaluation is carried out on DGA data obtained from 352 oil samples has been summarized into 46 samples that have been collected from a 38 different transformers of different rating and different life span.

Keywords: dissolved gas analysis (DGA), fault diagnosis, power transformer, insulating oil, condition assessment

Copyright © 2015 Institute of Advanced Engineering and Science. All rights reserved.

1. Introduction

Power transformers are the most expensive and important equipment in electric power systems that serves to convert the power with different level of voltage. During its lifetime, transformer insulation is exposed to mainly electrical, mechanical and thermal stresses. Therefore, the life of a transformer depends mainly on the condition of the insulation and its ability to withstand the above stresses, during its normal operation. The main reason behind the stresses can be due to aging of insulation and the most critical reason is a short circuit event. As the health of the oil implies the health of the transformer, the oil should be sampled and tested regularly to evaluate the oil condition and to determine the possible fault problems [1, 2]. Therefore, incipient fault detection of transformers is necessary in order to avoid electrical power system fault as quickly as possible.

The transformer insulation can be classified into mineral oil and solid insulation [3, 4]. Any weakness of insulation may result in failure of the transformer [5]. Insulating oil in a transformer during operation is exposed to a combination of heat, oxygen and electrical discharge, which may lead to its degradation especially through the process of oxidation [6-8]. When an incipient fault occurs in power transformer, either electrical or thermal, causing decomposition of the transformer oil and a number of gases are generated and dissolved into the oil. Such these gases are mainly include Hydrogen (H2), methane (CH4), Ethane (C2H4), Ethylene (CH6), acetylene (C2H2), carbon monoxide (CO) and carbon dioxide (CO2) and the non-fault gases are nitrogen (N2), oxygen (O2). Transformer oil can decompose CO and CO2 as a result of its oxidation [8].

Dissolved gas analysis (DGA) is one of the most acceptable techniques used for detecting and evaluating gasses dissolved from mineral oil and also from solid insulation of internal incipient faults in the power transformer based on the oil samples [9, 10]. It is critically important to monitor the incipient of transformer fault depending on the type and the concentrations of these gases formation. DGA interpretation techniques such as Key gas technique, Doernenbug technique, Roger ratio technique, IEC ratios technique, and Duval

triangle technique [8], [11-14] are different techniques for the detection of incipient transformer fault conditions.

In this paper, the dissolved gasses were interpreted using several techniques. Different techniques give different analysis result, and it is faced with so much diverse information. These techniques of interpretation of the fault gases are investigated. The study was done to evaluate the accuracy of each technique in predicting the fault based on a fault percentage using MATLAB program.

2. Samples of Evaluated Transformers

The evaluation is carried out on DGA data obtained from 352 oil samples has been summarized into 46 samples that have been collected from a 38 different transformers of different rating and different life spans as given in Table 1. It is difficult to determine whether a transformer is behaving normally if it has no previous dissolved gas history. For analyzing the aging degree of the transformer for normal state, we can classify the normal condition as a four status conditions such as: Normal Operation, Caution (investigate), Abnormal (more investigation), and Danger (nearing failure). The DGA guide to classify risks to transformers with no previous problems has been developed by the IEEE [5, 13]. It uses combinations of individual gases and total combustible gas concentration. This guide is not universally accepted and only one of the tools is used to evaluate transformers.

l able 1. I ransformer details									
Transf.	No. of transformer	Year of Manufacture	Rating MVA	Voltages KV					
		3- transformer (1981)	75						
А	7 – transformer	3- transformer (2005)	125	220/66/11					
		1- transformer (2005)	75						
В	2 – transformer	2- transformer (1982)	75	220/132					
		6- transformer (1990)							
		2- transformer (1997)							
		2- transformer (2000)							
С	23 – transformer	4- transformer (2004)	25	66/11					
		5- transformer (2005)							
		2- transformer (2008)							
		2- transformer (2011)							
D	3 – transformer	1- transformer (1978)	20	66/11					
D		2- transformer (1980)	20	00/11					
Е	3 – transformer	1- transformer (1978)	12.5	66/11					
<u> </u>		2- transformer (1983)	12.5	00/11					

Table 1. Transformer details

Table 2 [5], [13] gives one set of guidelines based on good utility practice that is useful for determining the overall health of a power transformer based on the total concentration of combustible gases. The four conditions are defined below:

Table 2. Dissolved key	y concentration limits in	(ppm)
------------------------	---------------------------	------	---

Gases in (PPM)	Gases Status								
Gases III (FFIM)	Normal	Caution	Abnormal	Danger					
Hydrogen (PPM)	100	101-700	701-1800	> 1800					
Methane (PPM)	120	121-400	401- 1000	> 1000					
Acetylene (PPM)	35	36-50	51-80	> 80					
Ethylene (PPM)	50	51-100	101-200	> 200					
Ethane (PPM)	65	66-100	101-150	> 150					
Carbon Monoxide PPM)	350	351-570	571-1400	> 1400					
Carbon Dioxide (PPM) ^a	2500	2501-4000	4001-0000	>10000					
TDCG (PPM)	720	721-1920	1921-4630	>4630					

^ait is not a combustible gas

3. Proposed Accurate DGA Technique

It is worth to mention that in some cases, for each individual traditional interpretation techniques approach such as "key gas, roger's ratio, Doernenburg ratio, IEC ratio and Duval

triangle" have been given different fault conditions for the same sample unit. To avoid this, the suggested technique gives the appropriate fault based on fault percentage which is given by all the above existing DGA interpretation techniques without any overlapping.

Firstly, check the limit value of the combustible and non combustible gases are applicable or not based on the quantity of each gas concentrations in ppm (parts per million) as an input data for each diagnostic technique as given in table 3quoted from [5, 13].

Table 3. Limit concentrations of dissolved gas

Key gas	Concentrations L1 "ppm"							
Hydrogen (H2)	100							
Methane (CH4)	120							
Carbon monoxide (CO)	350							
Acetylene (C2H2)	1							
Ethylene (C2H4)	50							
Ethane (C2H6)	65							

Table 4. Suggested DGA fault types codes for accurate DGA technique

Technique	F1	F2	F3	F4	F5	F6	F7
Duval	Normal	Thermal Fault <300 °C	Thermal Fault 300-700 °C	Thermal Fault >700 ℃	Low energy discharge and High energy discharge	PD With mix thermal and electrical fault	Out of code fault
Doernenbug	Normal	Out of code fault	Thermal deco	omposition	Arcing	Partial Discharges	Out of code fault
IEC	Normal	Thermal fault of low temp <150 °C Thermal fault of low temp between 150- 300 °C	Thermal fault of medium temp. between 300- 700 °C	Thermal fault of high temp >700 ℃	Discharge with low energy Sparking Discharge with high energy, Arcing	Partial discharge with low energy density	Out of code fault
Rogers	Normal	Thermal fault of low temperature range <150 °C Thermal fault of temperature range 150-200 °C Thermal fault of temperature range 200-300 °C	Winding circulating current Core/tank circulating current.	Insulated conductor overheat	Arc with power follows through. Sparking. Flashover.	Partial discharge Partial discharge with tracking	Out of code fault
Key Gas	Normal	Out of code fault	Overheating of oil	Hot Spot	Arcing fault	Partial Discharge (Corona)	Out of code fault
Accurate Technique	Normal	Thermal Fault <300 °C	Thermal Fault 300-700 °C	Thermal Fault >700 ℃	Arcing fault	Partial discharge	Out of code fault

Secondly, the same sampling oil unit is analyzed by each computerized individual technique to determine the possible fault types. As an example, for the same sample unit, Key Gas technique got diagnosis condition as "Acing in Oil", Rogers Ratio technique got diagnosis

Power Transformer Incipient Faults Diagnosis Based on Dissolved Gas... (Osama E. Gouda)

condition as "Arc with Power Follow Through", IEC Ratio technique got condition as "No Prediction", and Doernenburg Ratio technique got diagnosis condition as "Arcing" and Duval Triangle technique got diagnosis condition as "Discharge of High Energy". Therefore, for the fault identification with respect to each traditional technique, the faults are categorized into seven types of faults which is assigned with fault codes F1-F7 as suggested in Table 4. The next step is to compare all incipient fault types using each technique. Then, the conclusion is given for final fault type of the tested transformer oil same sample unit based on the percentage given by each technique. Finally, using MATLAB software all diagnostic results of individual technique and Accurate DGA technique result are displayed.

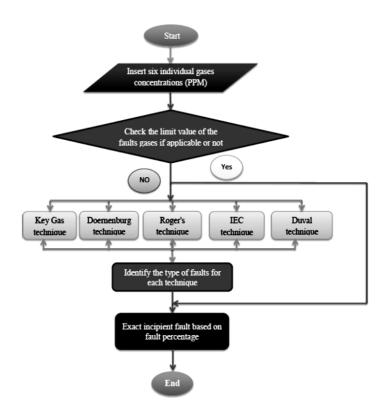


Figure 1. The flowchart of the procedure of Accurate DGA technique

The flowchart on a PC using MATLAB software given in Figure 1 is used in this paper to represent the results of all mentioned techniques. The Accurate DGA technique program will focus on the fault examination analysisidentification using fault percentage analysis to find the accurate fault result, in order to diagnose the incipient faults of the suspected transformers and suggest proper maintenance actions as soon as possible.

4. Results and Analysis

Table 5 shows the diagnosis results according to healthy conditions and accurate DGA technique. The developed accurate DGA technique (which is derived from individual traditional techniques) effectively conclude the appropriate fault of the traditional interpretation approach based on fault percentage without any overlapping as it is clear in Table 5. The suggested technique is based on the fault percentage that is mainlydetermined by using the existing DGA interpretation techniques which are listed in Table 4 without any overlapping, for that resion it is more accurate than any one of them and it is more helpful to detect the transformer faults compared with techniques suggested by Duval, M. [8], Key Gas, IEC ratio, Doernenburg ratioand R. R. Rogers [14].

		Gases in (ppm)								Traditional Techniques				Tranaf
n o	H ₂	CH ₄	C_2H_2	C_2H_4	C_2H_6	СО	CO2*	K ey G as	Doerne nburg	Rog er's	IE C	Du val	Accur ate Techn ique	Transf ormer State
1.	41 Norm al	65 Norm al	0 Norm al	58 Norm al	22 Norm al	130 Norm al	1453 Norm al	F 7	F1	F3	F 3	F3	F3	Therm al Fault 300- 700 °C
2.	17 Norm al	66 Norm al	0 Norm al	17 Norm al	9 Norm al	268 Norm al	1362 Norm al	F 7	F1	F7	F 3	F1	F1	Normal
3.	20 Norm al	48 Norm al	0 Norm al	186 Norm al	36 Norm al	al 143 Norm al	533 Norm al	F 7	F1	F3	F 4	F4	F4	Therm al Fault >700 ⁰C
4.	179 Cauti on	306 Cauti on	0 Norm al	579 Dang er	73 Cauti on	496 Cauti on	1050 Norm al	F 7	F3,F4	F3	F 4	F4	F4	Therm al Fault >700
5.	73 Norm al	177 Cauti on	0 Norm al	52 Cauti on	37 Norm al	1767 Dang er	5398 Abno rmal	F 7	F1	F3	F 3	F3	F3	°C Therm al Fault 300- 700 °C
6.	210 Cauti on	43 Norm al	187 Dang er	102 Abno rmal	12 Norm al	167 Norm al	1070 Norm al	F 7	F1	F7	F 5	F5	F5	Arcing fault
7.	39 Norm al	7 Norm al	0 Norm al	65 Cauti on	12 Norm al	1469 Dang er	2692 Cauti on	F 4	F1	F7	F 7	F4	F4	Therm al Fault >700
8.	37 Norm al	96 Norm al	0 Norm al	57 Cauti on	19 Norm al	132 Norm al	926 Norm al	F 7	F1	F3	F 3	F3	F3	°C Therm al Fault 300- 700 °C
9.	46 Norm al	147 Cauti on	0 Norm al	150 Abno rmal	27 Norm al	184 Norm al	2678 Cauti on	F 7	F1	F7	F 4	F4	F4	Therm al Faul >700 °C
10.	18 Norm al	63 Norm al	0 Norm al	51 Cauti on	20 Norm al	390 Cauti on	2633 Cauti on	F 7	F1	F7	F 3	F3	F3	Therm al Faul 300- 700 °C
11.	200 Cauti on	30 Norm al	98 Dang er	60 Cauti on	9 Norm al	138 Norm al	308 Norm al	F 7	F1	F7	F 5	F5	F5	Arcing fault
12.	28 Norm al	62 Norm al	0 Norm al	76 Cauti on	16 Norm al	538 Cauti on	1206 Norm al	F 7	F1	F3	F 4	F4	F4	Therm al Faul >700 ⁰C
13.	68 Norm al	78 Norm al	0 Norm al	136 Abno rmal	103 Abno rmal	550 Cauti on	1720 Norm al	F 7	F3,F4	F7	F 3	F4	F4	Therm al Faul >700 ℃
14.	54 Norm al	143 Cauti on	0 Norm al	101 Abno rmal	23 Norm al	1358 Abno rmal	4497 Abno rmal	F 7	F3,F4	F3	F 4	F3	F3	Therm al Faul 300- 700 °C
15.	19 Norm al	47 Norm al	0 Norm al	62 Cauti on	27 Norm al	229 Norm al	1114 Norm al	F 7	F1	F3	F 3	F4	F3	Therm al Faul 300- 700 °C
16.	678 Cauti	70 Norm	237 Dang	89 Cauti	31 Norm	768 Abno	1909 Norm	F 7	F5	F7	F 5	F5	F5	Arcing fault
17.	on 86 Norm al	al 277 Cauti on	er 0 Norm al	on 338 Dang er	al 63 Norm al	rmal 323 Norm al	al 2574 Cauti on	F 7	F1	F7	F 4	F4	F4	Therm al Faul >700

Table 5. Result of fault types codes for individual and accurate DGA technique and transformer state

Power Transformer Incipient Faults Diagnosis Based on Dissolved Gas... (Osama E. Gouda)

18.	20 Norm al	19 Norm al	0 Norm al	77 Cauti on	45 Norm al	571 Abno rmal	1854 Norm al	F 4	F1	F7	F 2	F4	F4	°C Thern al Fau >700 °C
19.	25 Norm al	49 Norm al	0 Norm al	58 Cauti on	42 Norm al	424 Cauti on	1814 Norm al	F 7	F1	F3	F 3	F4	F3	Thern al Fau 300- 700 °
20.	53 Norm al	150 Cauti on	0 Norm al	379 Dang er	64 Norm al	312 Norm al	987 Norm al	F 7	F1	F3	F 4	F4	F4	Therr al Fai >700
21.	114 Cauti on	241 Cauti on	0 Norm al	574 Dang er	80 Cauti on	1309 Abno rmal	5675 Abno rmal	F 7	F3,F4	F3	F 4	F4	F4	°C Therr al Fau >700
22.	99 Norm al	288 Cauti on	0 Norm al	386 Dang er	73 Cauti on	304 Norm al	1625 Norm al	F 7	F3,F4	F3	F 4	F4	F4	°C Therr al Fai >700
23.	1374 Abno rmal	2648 Dang er	298 Dang er	5376 Dang er	628 Dang er	783 Abno rmal	2819 Cauti on	F 7	F3,F4	F3	F 4	F4	F4	°C Therr al Fai >700
24.	34 Norm al	83 Norm al	0 Norm al	136 Abno rmal	100 Cauti on	645 Abno rmal	3197 Cauti on	F 7	F3,F4	F7	F 3	F4	F4	°C Therr al Fai >700 °C
25.	20 Norm al	132 Cauti on	0 Norm al	17 Norm al	61 Norm al	712 Abno rmal	2576 Cauti on	F 7	F1	F2	F 2	F3	F2	Therr al Fai <300 ℃
26.	13 Norm al	138 Cauti on	0 Norm al	16 Norm al	83 Cauti on	1046 Abno rmal	5197 Abno rmal	F 7	F1	F2	F 2	F3	F2	C Therr al Fai <300 ℃
	762 Abno rmal 43	93 Norm al 116	126 Dang er 0	54 Cauti on 139	38 Norm al 65	459 Cauti on 718	5346 Abno rmal 2326	F 7	F5	F7	F 5	F5	F5	Arcing fault Therr
20.	Norm al	Norm al	Norm al	Abno rmal	Cauti on	Abno rmal	Norm al	F 7	F3,F4	F3	F 3	F4	F3	al Fai 300- 700 °
29.	179 Cauti on	306 Cauti on	0 Norm al	579 Dang er	73 Cauti on	496 Cauti on	1050 Norm al	F 7	F3,F4	F3	F 4	F4	F4	Therr al Fai >700 ⁰C
30.	57 Norm al	141 Cauti on	0 Norm al	51 Cauti on	38 Norm al	1405 Dang er	5484 Abno rmal	F 7	F1	F3	F 3	F3	F3	Therr al Fai 300- 700 º
	40 Norm al	8 Norm al	0 Norm al	15 Norm al	34 Norm al	2723 Dang er	3929 Cauti on	F 4	F1	F7	F 1	F1	F1	Norm
32.	35 Norm al	283 Cauti on	0 Norm al	222 Dang er	121 Abno rmal	1475 Dang er	1103 4 Dang er	F 7	F3,F4	F7	F 3	F3	F3	Therr al Fau 300- 700 º
33.	15 Norm	159 Cauti	0 Norm	87 Cauti	29 Norm	1769 Dang	1126 3 Dang	F 7	F1	F7	F 3	F3	F3	Therr al Fau 300-
34.	al 55 Norm	on 159 Cauti	al 0 Norm	on 493 Dang	al 114 Abno	er 1309 Abno	er 1129 8 Dang	F 7	F3,F4	F3	F 4	F4	F4	700 ° Therr al Fai >700
35.	al 37 Norm	on 123 Cauti	al 0 Norm	er 52 Cauti	rmal 67 Cauti	rmal 869 Abno	er 3896 Cauti	F	F1	F2	F 2	F3	F2	°C Therr al Fai
36.	al 723	on 191	al 288	on 293	on 110	rmal 459	on 5346	7 F	F5	F7	2 F	F5	F5	<300 ℃ Arcing

	Abno rmal	Cauti on	Dang er	Dang er	Abno rmal	Cauti on	Abno rmal	7			5			fault
37.		15 Norm al	0 Norm al	58 Cauti on	78 Cauti on	687 Abno rmal	4647 Abno rmal	F 7	F1	F2	F 2	F4	F2	Therm al Fault <300 ⁰C
38.	30 Norm al	51 Norm al	0 Norm al	54 Cauti on	12 Norm al	803 Abno rmal	3566 Cauti on	F 7	F1	F3	F 4	F4	F4	C Therm al Fault >700 ℃
39.	31 Norm al	56 Norm al	0 Norm al	77 Cauti on	33 Norm al	771 Abno rmal	5175 Abno rmal	F 7	F1	F3	F 3	F4	F3	Therm al Fault 300-
40.	109 Cauti on	226 Cauti on	0 Norm al	192 Abno rmal	68 Cauti on	1150 Abno rmal	5240 Abno rmal	F 7	F3,F4	F3	F 3	F3	F3	700 °C Therm al Fault 300-
41.	137 Cauti on	279 Cauti on	0 Norm al	505 Dang er	66 Cauti on	897 Abno rmal	3085 Cauti on	F 7	F3,F4	F3	F 4	F4	F4	700 °C Therm al Fault >700 °C
42.	59 Norm al	119 Norm al	0 Norm al	70 Cauti on	36 Norm al	735 Abno rmal	4738 Abno rmal	F 7	F1	F3	F 3	F3	F3	Therm al Fault 300- 700 °C
43.	151 Cauti on	242 Cauti on	0 Norm al	232 Dang er	68 Cauti on	1076 Abno rmal	5418 Abno rmal	F 7	F3,F4	F3	F 4	F3	F3	Therm al Fault 300-
	870 Abno rmal	77 Norm al	14 Abno rmal	54 Cauti on	73 Cauti on	459 Cauti on	5346 Abno rmal	F 7	F6	F6	F 7	F5	F6	700 °C Partial dischar ge
45.	376 Cauti on	575 Abno rmal	0 Norm al	1092 Dang er	146 Abno rmal	674 Abno rmal	2160 Norm al	F 7	F3,F4	F3	F 4	F4	F4	Therm al Fault >700 ⁰C
46.	17 Norm al	40 Norm al	0 Norm al	86 Cauti on	11 Norm al	78 Norm al	823 Norm al	F 7	F1	F3	F 4	F4	F4	Therm al Fault >700 ℃

In some cases, Accurate DGA Technique may lead to more than one result (e.g. Accurate Technique in samples number 2, 6, 7, 9, 10, 11, 33, 44). To avoid this in the developed proposed technique, the output will be selected based on the worst case. Consequently, based on MATLAB Code the above analysis is summarized in table 5. The internal incipient faults diagnosis of power transformer is also accomplished by evaluation of transformer condition using individual and TDCG concentrations for determining the overall health of a power transformer based on four status conditions: Normal Operation, Caution, Abnormal, and Danger (nearing failure). So, the result of this work is useful for planning an appropriate maintenance strategy to keep the power transformer in acceptable conditions. Therefore, incipient fault detection of transformers is necessary in order to avoid electrical power system fault as quickly as possible.

5. Conclusion

This paper introduces an accurate DGA technique for identifying the internal incipient faults in the power transformer based on the fault percentage of dissolved gasses released from transformer oil and solid insulation using practical oil samples collected from different transformers. The techniques of interpretation of the fault gases are investigated and compared with each other based on the Accurate DGA technique which is derived from individual techniques to evaluate the accuracy of each technique in predicting the fault based on a MATLAB program as shown in Table 5. Furthermore, the deteriorated transformer by means of this analysis can be carefully focused for the appropriate maintenance as condition-based maintenance before severe damage occurs.

References

- [1] A Abu-Siada, S Islam. A new approach to identify power transformer criticality and asset management decision based on dissolved gas-in-oil analysis. *IEEE Transactions on Dielectrics and Electrical Insulation*. 2012; 19: 1007-1012.
- [2] Ena Narang, Er Shivanisehgal. Fault Detection Techniques for Maintenance Using Dissolved gas Analysis. *International Journal of Engineering Research & Technology (IJERT)*. 2012; 1(6): 1-7.
- [3] Sherif SM Ghoneim, Sayed A Ward. Dissolved gas Analysis an Early Identification of Transformer Faults. *Advances in Electrical Engineering Systems (AEES).* 2012; 1(3).
- [4] Andri Febriyanto, Tapan Kumar Saha. Oil-immersed Power Transformers Condition Diagnosis with Limited Dissolved Gas Analysis (DGA) Data. Australasian Universities Power Engineering Conference (AUPEC). 2008: 73.
- [5] IEEE Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers. C57.104-2008.. Institute of Electrical and Electronics Engineers, Inc. New York: 2008; 9-27.
- [6] Siva Sarma, GNS Kalyani. ANN Approach for Condition Monitoring of Power Transformers using DGA. IEEE Region 10 Conference, TENCON 2004. 2004: 444-447.
- [7] M Duval. New techniques for dissolved gas-in-oil analysis. *IEEE Electrical Insulation Magazine*. 2003; 19: 6-15.
- [8] Duval M. A Review of Faults Detectable by Gas-in-Oil Analysis in Transformers. IEEE Electrical Insulation Magazine. 2002; 18(3).
- DVSS Sivasarma, GNS Kalyani. ANN approach for Condition Monitoring of Power Transformers using DGA. IEEE Electrical Insulation Magazine. 2002: 12-25.
- [10] X Liu, F Zhou, F Huang. Research on on-line DGA using FTIR [power transformer insulation testing]. 2002; 3: 1875-1880.
- [11] TO Rouse. Mineral insulating oil in transformers. IEEE Electr. Insul. Mag. 1998; 14(3): 6-16.
- [12] IEEE and IEC Codes to Interpret Incipient Faults in Transformers, Using Gas in Oil Analysis, by R.R. Rogers C.E.G.B, Transmission Division, Guilford, England. 1995.
- [13] IEEE Power Engineering Society. C57.104-1991. *IEEE Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers.* 1992
- [14] RR Rogers. IEEE and IEC Codes to Interpret Incipient Faults in Transformers, Using Gas in Oil Analysis. IEEE Transactions on Electrical Insulation. 1978; 13: 349-354.