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Abstract 
In this correspondence, we propose a novel image resolution enhancement algorithm based on 

discrete wavelet transform (DWT), stationary wavelet transform (SWT) and sparse signal recovery of the 
input image. The nonlocal means filter is employed in the preliminary denoising stage of the proposed 
method. The denoised input low resolution (LR) image is then decomposed into different frequency 
subbands by employing DWT and SWT simultaneously. In parallel, the denoised LR image is subjected to 
a sparse signal representation based interpolation. All the estimated high frequency subbands as well as 
the sparse interpolated LR image are fused to generate a high resolution (HR) image by using inverse 
discrete wavelet transform (IDWT). Experimental results on various test images show the superiority of our 
method over the conventional and state-of-the-art single image super- resolution (SR) techniques in 
achieving the real time performance. 
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1. Introduction 

High resolution (HR) images are always essential in various digital imaging applications, 
such as satellite imaging, infrared imaging, medical imaging and text image restoration. In 
general, the resolution can be increased by increasing the number of pixels per unit area. But 
the light incident on each pixel reduces there by causing shot noise. Similarly, increasing the 
chip size also improves the resolution, but results in poor charge transfer rate. So, we rely on 
effective signal processing techniques for generating a HR image from a given input low 
resolution (LR) image(s).These techniques are commonly referred to as image super-resolution 
(SR) algorithms [1-14]. 

Based on the number of input LR images employed, SR algorithms are categorized into 
two classes: single image SR and multiple image SR. In multi-frame SR the input LR images 
should be available with subpixel motion shifts between them. Otherwise, the frames would be 
coincident causing information redundancy. Hence single image SR has become widely popular 
in the recent times. These techniques are further classified into three types which are based on 
interpolation [2–4], machine learning techniques [5–9] and wavelet techniques [10–13]. 

The well-known interpolation methods like nearest neighbor, bilinear and bicubic are 
widely used because of their simplicity. But, these techniques suffer from blurred high frequency 
details due to the ringing and zippering artifacts. Xin and Michael [2] introduced a non-iterative 
adaptive interpolation scheme based on the local covariance estimates of the input LR image. 
The algorithm uses the notion of geometric regularity to approximate the relation between the 
HR and LR covariances. Zhang and Wu [3] suggested interpolating the input LR image in two 
statistically independent directions. The final reconstructed image is produced by adaptively 
fusing these two individual results using directional filtering with minimum mean square error. 
The authors in [4] developed an edge guided image interpolation algorithm based on soft-
decision estimation by proposing an auto regressive model. This approach preserves the spatial 
information to some extent, but the block wise computation of pixels still introduces artifacts. In 
spite of low computational complexity, the performance of the above interpolation based 
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approaches degrade quickly when the enhancement factor is higher than 2. In order to achieve 
SR at large scaling factors, the researchers have focused on single image SR techniques. 

The machine learning techniques employ a learning step between numerous HR image 
patches and its LR counterparts. The learned knowledge is then incorporated into a priori term 
in the testing phase for SR reconstruction. These priors extract the high frequency details from 
the training examples holding the known HR components. Machine learning techniques yield 
good results even at large magnification factors (less than or equal to 3). This improvement is 
mainly due to the application of dictionary learning and sparse representation in image SR 
algorithms. Stephane and Guoshen [5] developed a class of linear estimators, which are 
obtained by adaptively combining a group of estimators derived from different priors. The 
weights associated with these priors are computed over a block of coefficients by imparting 
sparse representation. Jiancho et al. [6] proposed a sparse representation model which makes 
an assumption that each LR patch can be well represented as a sparse linear combination of 
the columns of the LR dictionary. The same sparse vector is enforced on the HR dictionary in 
order to reconstruct the HR patch of the same scene. Zeyde et al. [7] improved Jiancho's 
method with some modifications like, implementing different approach for learning a dictionary 
pair and boot-strapping scheme for operating without a training database. A more recent work 
by Dong et al. [9] further contributed to machine learning based SR by proposing a nonlocal 
centralized sparse representation model. Although most of these techniques perform better, 
huge number of irrelevant training examples increases the computational time and also deviates 
the searching process [14]. 

On the contrary, the wavelet based SR reconstruction techniques provide a better 
tradeoff between computational complexity and performance. Besides, these SR techniques are 
able to operate at a magnification factor of 4 or even more, by making use of self-similarities 
between the local neighborhood regions of the subband images. A notable work done by 
Demirel and Gholamreza [10] focused on the edge preserving SR by employing discrete 
wavelet transform (DWT) and stationary wavelet transform (SWT). The immediate substitution 
of the LR image in place of the low frequency subband leads to non-uniform illumination in the 
reconstructed HR image, obtained by using inverse discrete wavelet transform (IDWT). Chavez 
and Ponomaryov [11] suggested an image resolution enhancement technique which generates 
sharper output image using DWT and sparse mixing estimators. More recently, DWT [13], lifting 
wavelet transform [12, 15] and dual-tree complex wavelet transform have also been employed 
in the context of SR. 

In our proposed method we have not used the redundant edge preservation stages 
rather used a stationary wavelet scheme. It minimizes the information loss caused by the 
inferior directionality and translation varying nature of DWT. Another modification is in applying 
sparse representation based interpolation on the input LR image to produce the estimated low 
frequency subband. To preserve the edge information, we developed a normalized edge 
extraction stage using the high frequency subband images. Finally, we have applied back 
projection algorithm in order to minimize the SR reconstruction error between the simulated and 
observed images. The qualitative and quantitative analyses prove the effectiveness of our 
method over the conventional and state-of-the-art methods. 

The remainder of this paper is organized as follows. In section 2 we describe the sparse 
representation based signal recovery process, the nonlocal means denoising filter and the 
iterative back projection algorithm. Section 3 illustrates the proposed SR technique followed by 
various experimental results in section 4. Finally, the paper concludes in section 5. 

 
 

2. Preliminaries 
In this section, we review the preliminary concepts required to develop our algorithm. 
 

2.1. Signal Recovery Based on Sparse Representation 
We employ, the sparse representation based interpolation [11] to reconstruct the 

estimated low frequency subband. The problem is: given a LR image X and we need to recover 
a HR image Y . It is generally an ill-posed task, since there are infinitely many HR solutions Y  
or a given LR image. So, the problem is further regularized by enforcing a sparse representation 
vector, which is usually referred as prior term. 
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Figure 1. 2-D signal recovery based on sparse representation 

 
 

Let D ∈  R
m×k represents an over-complete dictionary having k elements (k > m) in m -

dimensional space and a signal y ∈  R
m can be well represented as a sparse linear combination 

of the columns of D. So, the signal y can be modeled as, y = Dα, where α ∈  RK (||α||0 ≪ m) is a 
sparse representation vector. In practice, the LR image can be viewed as a blurred and down-
sampled version of the original HR image. Thus, the LR patch x and HR patch y can be 
mathematically related as x = My = MDα, where M ∈  R

k×m
 (k < m) is a projection matrix that 

provides control over the blurring and decimation effects. 
Since D is an over-complete dictionary, the equations y = Dα and x = MDα are 

underdetermined for the unknown sparse representation vector, α. In spite of that, the sparsest 
solution α* will be unique only under mild conditions. In our work, we use the LR and HR 
dictionaries Dl and Dh advocated in Jiancho's method [6]. These dictionaries satisfy a near-
isometry condition, which allows the same sparse representation for an LR-HR patch pair with 
respect to the Dl and Dh respectively. This process is outlined as a block diagram in Figure 1. 

Algorithm for Sparse Recovery 
1. Input: Single LR image X, two trained dictionaries Dl and Dh. 
2. Process each 3 × 3 patch x of X, taken in a raster scan order with one pixel overlap 

and solve the following optimization problem for α 

 

      (1) 
 
3. Compute the HR patch, y = Dh α* and put into local image Y0. 
4. End 
5. Output: Sparse recovered solution Y0. 
This sparse recovered signal Y0 constitutes the estimated low frequency subband 

which is used to reconstruct the super-resolved image, by applying IDWT operation. 
 

2.2. Nonlocal Mean Denoising 
Prior to the subband decomposition, the input LR image is subjected to the nonlocal 

mean denoising. The algorithm denoises the LR image based on the assumption that there exist 
redundant image pixels with in certain neighborhood. Thus it estimates each denoised pixel by 
computing the weighted sum of the neighborhood pixels in the input image X. The denoised 
image at location, (p, q) can be viewed as: 

 

       (2) 
 

Where Q(p, q) represents the neighborhood of the (p, q)- th pixel and W[i, j; p, q] is the weight 

associated with it. These weights are computed by taking into account of both the geometric 
and radiometric distances as: 
 

     (3) 
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where σR stands for the range weight and f(.) denotes the geometric distance function. Here the 
weights are inversely proportional to the radiometric distances. The denoised LR image is urther 
processed in spatial and wavelet domains to compute the super-resolved image. 
 
2.3. Back-projection Algorithm 

Any LR image X can be viewed as blurred and decimated version of the ground truth 
HR image Y. This can be written as X = HBY, where H is the down sampling matrix and B is the 
blurring operator. To minimize the SR reconstruction error, we apply iterative back projection 
algorithm in the final stage of our proposed method. The algorithm estimates the final HR image 
by back projecting the obtained SR image Y* of our method on to the solution space of X = HBY, 

iteratively. 
 

      (4) 
 

Here Yt represents the back projected image at t-th iteration, μ denotes the step size and c is 

any positive constant. The back projection algorithm is simple and easy to implement and also 
capable of handling several observations with different degradation parameters. However, it has 
limitations in terms of the ill posed nature of the SR problem due to absence of unique solution 
and also its accuracy depends on initial estimation. 
 
 
3. Proposed method for SR 

Let X be the given input LR image of dimensions r×s, using which we have to 
reconstruct the HR image Y of dimensions βr × βs. In wavelet based SR techniques, the super-
resolved images suffer from non-uniform illumination, which is due to the direct replacement of 
the low frequency subband with the input LR image. So, preserving the contrast along with the 
edges is essential. In this correspondence, sparse representation based signal recovery is 
employed. 

Here we start with the input LR image is of dimensions 128×128. To overcome the 
inherent noise in the input LR image, we have applied the nonlocal means denoising algorithm. 
The working of this nonlocal mean filter has been illustrated in section 2. Further, the denoised 
LR image is subjected to DWT and SWT operations simultaneously, which decomposes the 
image into four different subbands, viz., low-low (LL), low-high (LH), high-low (HL) and high-high 
(HH). Due to the down sampling effect, the DWT subbands are decimated by a factor of 2, 
whereas the SWT subbands have equal dimensions as that of the denoised LR image [10]. The 
high frequency subbands LH, HL and HH provide information regarding the horizontal, vertical 
and diagonal components of the image, while the low frequency subband LL being the 
approximate coefficient. Next we have applied Lanczos interpolation with an up scaling factor of 
2 on the DWT high frequency subbands. The down sampling effect of the DWT subbands result 
in loss of information. In order to minimize this loss, SWT is also employed on the denoised 
input LR image. Now the interpolated DWT high frequency subband images and the SWT high 
frequency subbands are added up with each other. The resultant high frequency subbands 
contain significant frequency components.  

To preserve more edge details in the super-resolved image, we developed a normalized 
edge extraction stage by using the high frequency subbands LH, HL and HH using nearest 
neighbor interpolation process. The extracted edges can be computed as follows: 

 

       (5) 
 

Where is the normalization parameter which controls the insignificant edge information. 
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Figure 2. Block diagram of the proposed wavelet based SR technique 

 
 

In general, the LL subband is considered as the low frequency version of the denoised 
LR image, since it is obtained by low pass filtering the input image. So, the LL subband does not 
contain any valid edge information. Hence we have processed only LH, HL and HH subbands, 
leaving behind the LL subband. The authors in [10] replaced LL subband with the input LR 
image. As mentioned earlier, this process leads to non-uniform illumination in the reconstructed 
SR image. So, we first apply sparse representation based interpolation method by a factor of 2 
on the denoised LR input image and then the result is used in place of the LL subband. Finally, 
the sparse recovered image and the three estimated high frequency subbands are combined 
using IDWT. The obtained SR image can be further improved by applying the back projection 
algorithm, which iteratively works on minimizing the SR reconstruction error. The block diagram 
of the proposed technique is outlined in Figure 2. 

 
 

4. Results and Discussion 
 

 
Figure 3. The LR test images used in our simulations 

 
 

In this section, we present several experiments conducted to examine the performance 
of the proposed method. Figure 3 shows the LR test images used in our simulations. These 
images are produced by direct down sampling the original HR images by a factor of 4. Gray-
level images (Elaine and Boat) as well as color images (Mandril, Peppers and Lena) are 
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involved for testing. For color images we first transform the RGB color model into YCbCr color 
model and apply the SR reconstruction process only to the Y (luminance) channel, while the Cb 
and Cr channels are enlarged using plain Lanczos interpolation. Since human eye is highly 
sensitive to the changes in luminance than in color. 

The conventional techniques: bicubic interpolation (Bicubic); Lanczos interpolation 
(Lanczos); edge guided directional filtering (EGDF) [3] and the state-of-the-art techniques: 
sparse representation model (SRM) [6]; sparse mixing estimators (SME) [5]; DWT based image 
enhancement (DWT) [13]; image SR using DWT and SWT (DWT-SWT) [10]; wavelet domain 
interpolation via sparse estimators (DWT-Sparse) [11] are compared with the proposed SR 
method. The above SR approaches are implemented using Matlab software which run on a 
system with an Intel 2.3GHz CPU and a 4GB RAM. 
 
 

Table 1. PSNR (dB) and SSIM indices of the reconstructed images 

Method 
Image     
Elaine Boat Mandril Peppers Lena 

Bicubic 
29.07 26.79 27.93 28.21 28.82 
0.923 0.841 0.758 0.883 0.943 

Lanczos 
29.24 26.41 28.01 28.62 28.85 
0.922 0.839 0.755 0.885 0.877 

EGDF [3] 
18.84 19.22 20.72 20.66 21.26 
0.959 0.916 0.830 0.899 0.931 

SRM [6] 
28.77 26.32 27.55 27.79 28.26 
0.875 0.931 0.835 0.902 0.872 

SME [5] 
33.12 28.88 30.35 32.10 32.89 
0.945 0.842 0.858 0.905 0.946 

DWT [13] 
29.12 29.48 29.99 30.21 33.01 
0.922 0.841 0.861 0.899 0.898 

DWT-SWT [10] 
34.13 29.92 30.11 32.39 33.12 
0.965 0.889 0.848 0.910 0.949 

DWT-Sparse [11] 
32.44 30.52 30.25 31.75 33.25 
0.973 0.941 0.851 0.905 0.941 

Proposed method 
34.57 30.77 30.33 32.45 33.79 
0.966 0.949 0.867 0.907 0.955 

 
 

To denoise the input LR image using nonlocal means filter, we choose 5×5 pixels 
neighborhood Q and the range weight, σR = 2. The subband decomposition is performed using 
Biorthogonal (Bior 1.1) wavelet function. The LR image undergoes sparse representation based 
interpolation by a factor of 2. We choose λ = 0.1 for computing the sparse vector α* in (1). 

 

 
Figure 4. Reconstructed results of Elaine, Boat and Lena images using different methods: (a) 

Bicubic interpolation; (b) DWT [13]; (c) DWT-Sparse [11]; (d) Proposed method 
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For qualitative assessment, we have used the objective metrics: peak signal to noise 
ratio (PSNR) and structural similarity index measure (SSIM). These metric values are tabulated 
in Table 1. In addition, the qualitative assessment is carried out in Figure 4 using visual quality 
as a subjective metric. By looking at Table 1 and Figure 4, we can notice the outstanding 
performance of the proposed SR technique. 

 
 

5. Conclusion 
In this paper, we have presented an effective image SR algorithm using the sparse 

signal recovery and wavelet domain interpolation. The nonlocal means filter in the preliminary 
stage makes our algorithm more robust to noise. The information loss due to the translational 
invariance and inferior directionality of the DWT is corrected using the SWT. In parallel, the 
sparse recovered image effectively serves as the estimated LL subband for the IDWT operation. 
Compared to the existing SR approaches, the proposed technique has the advantage of 
preserving the edge information. Our simulation results demonstrated that the proposed method 
generated qualitatively better images with high PSNR and SSIM values. 

 
 

References 
[1] W Liang, S Chao-xuan, H Qiang, H Zhuang-zhi, W Yong-lei. Super-resolution imaging realization of 

costas signal. TELKOMNIKA Indonesian Journal of Electrical Engineering. 2014; 12(2): 1374-1384. 
[2] X Li, MT Orchard. New edge-directed interpolation. IEEE Transactions on Image Processing. 2001; 

10(10): 1521-1527. 
[3] D Zhang, X Wu. An edge-guided image interpolation algorithm via directional filtering and data fusion. 

IEEE Transactions on Image Processing. 2006; 15(8): 2226-2238. 
[4] X Zhang, X Wu. Image interpolation by adaptive 2-d autoregressive modeling and softdecision 

estimation. IEEE Transactions on Image Processing. 2008; 17(6): 887-896. 
[5] S Mallat, G Yu. Super-resolution with sparse mixing estimators. IEEE Transactions on Image 

Processing. 2010; 19(11): 2889-2900. 
[6] J Yang, J Wright, TS Huang, Y Ma. Image super-resolution via sparse representation. IEEE 

Transactions on Image Processing. 2010; 19(11): 2861-2873. 
[7] R Zeyde, Elad, M Protter. On single image scale-up using sparse-representations. In Curves and 

Surfaces. Springer. 2012: 711-730. 
[8] A Ranga, G Suryanarayana. A novel approach for single image super resolution by sparse signal 

representation. Indian Journal of Science and Technology. 2015; 8(S2): 74-77. 
[9] W Dong, L Zhang, G Shi, X Li. Nonlocally centralized sparse representation for image restoration. 

IEEE Transactions on Image Processing. 2013; 22(4): 1620-1630. 
[10] H Demirel, G Anbarjafari. Image resolution enhancement by using discrete and stationary wavelet 

decomposition. IEEE Transactions on Image Processing. 2011; 20(5): 1458-1460. 
[11] H Chavez-Roman, V Ponomaryov. Super resolution image generation using wavelet domain 

interpolation with edge extraction via a sparse representation. Geoscience and Remote Sensing 
Letters, IEEE. 2014; 11(10): 1777-1781. 

[12] M Agrawal, R Dash. Image resolution enhancement using lifting wavelet and stationary wavelet 
transform. In Electronic Systems, Signal Processing and Computing Technologies (ICESC), 2014 

International Conference on IEEE. 2014: 322-325. 
[13] G Anbarjafari, H Demirel. Image super resolution based on interpolation of wavelet domain high 

frequency subbands and the spatial domain input image. ETRI journal. 2010; 32(3): 390-394. 
[14] K Nasrollahi, TB Moeslund. Super-resolution: a comprehensive survey. Machine vision and 

applications. 2014; 25(6): 1423-1468. 
[15] Y Zou, X Liang, T Wang. Visible and infrared image fusion using the lifting wavelet. TELKOMNIKA 

Indonesian Journal of Electrical Engineering. 2013; 11(11): 6290-6295. 


