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Abstract
Due to the increasing popularity of LDPC codes and its demand for future applications, first time

in this paper, LDPC coding techniques have been systematically summarized and analyzed. The paper
gives the comprehensive review of LDPC encoder, decoder and its architecture for simulation and
implementation. The paper is specially intended for giving an insight of the algorithmic overview of the
LDPC encoder, decoder and its architecture for research and practical purposes. The original belief
propagation algorithm (BPA), logarithmic model of BPA, and the other simplified form of the logarithmic
sum product algorithms (SPA) has been elaborated and analyzed for medium and short length codes
under AWGN channel.
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1. General Introduction to LDPC Codes
Low density Parity check (LDPC) codes, also known asGallager codes are a type of

linear block codes , first proposed by Gallager[1] and were scarcely considered in the three
decades that followed due to its computational complexity and limited computational ability of
the receiver at that time. LDPC codes were reinvented by Mackay and Neal[2, 3] and have
taken considerable attention recently due to their Shannon limits performance[2, 4, 5] with belief
propagation decoding algorithm. Before Mackay and Neal , a notable work was done by
Tanner[6] in which Tanner generalized LDPC codes and introduced a graphical representation
of LDPC codes and now called Tanner graph.

1.1. Generator Matrix
In general, a generator matrix [7] for k n array is defined as:
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Code vectors, by convention, are usually designated as row vectors. For a message s ,
a sequence of k message bits is shown below as row vector (1 k matrix having one row and
k columns):

1 2, ,.......... ks s s s (2)

The codeword C is generated as the matrix product s and G andis written as:

C sG (3)
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A systematic linear block will have the generator matrix in the following form:

 kG P I 
(4)

Where kI is a k k identity matrix and P is a ( )k n k  matrix. The codeword generated by
the systematic generator matrix can be simply divided into the two parts of k message bits and
( )n k parity check bits.

1.2. Parity Check Matrix
The parity check matrix is used to decode the receive sequence. For each ( )n k

generator matrix G, there exists an ( )n k n  matrix H such that each row of G is orthogonal to

the rows of H; i.e. 0TGH  where TH is transpose of H and 0 is a ( )k n k  all zero matrix.
H is called the parity check matrix and for systematic linear block code is written in form:

T
n kH I P    (5)

H is a parity check matrix because it can be used to test if the codeword is valid or not
codeword is valid only if . 0TH code 

1.3. Parity Check Matrix and Tanner Graph for LDPC Codes
A  low density parity check codes are defined by parity check matrix that is sparse[1, 3].

LDPC code can be denoted in general as ( , , )v cN d d where N is the length of the code equal

to the number of the column in a parity check matrix, vd is the number of ones(1s) in a column

of a parity check matrix and cd is the number ones(1s) is a row and a parity check matrix. LDPC
codes can be regular or irregular. If the number of ones (1s) in each row and column of a parity
check matrix are the same, then it is called regular and if the number of ones (1s) in row or
column are not the same then it is called irregular. The restriction that v cd d is needed to
ensure more than just all-zero codeword satisfies all of the constraints or equivalently, to ensure
that a nonzero code rate. For regular parity check matrix or regular LDPC code, the number of
ones in H satisfies the following condition:

. .c vM d N d (6)

Where M and N are the number of row and columns of a parity check matrix  respectively. The
code rate is given as:

1
M N M

r
N N


   (7)

Or equivalently,

1 v c v

c c

d d dr d d
   (8)

Here M rows are assumed to be linearly independent and v cd d .Also for best performance,

the number of ones (1s) in a column is set as 3vd  .The code is valid only if

. 0TH code  (9)

Where H is the sparse parity check matrix and code is the codeword obtained from the
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generator matrix( G)  and message bits ( s ). Consider a parity check matrix H, such that 2vd 
and 4cd 

The sparse parity check matrix is best represented by a Tanner graph [8, 9]. The one in
each row or column shows the connectivity between variable and check nodes. The set of bit
nodes connecting to check nodes m is denoted by ( ) { | 1}mnN m n h  and the set of check

nodes connecting to bit node n is given by ( ) { | 1}mnM n m h  . A typical Tanner graph is
shown in the Figure 1.  This graph is for (8, 2, 4) regular LDPC code.The relationship of check
node and variable node in the Figure 1 is expressed in algebraic form as shown in equation
(10).

The work of the Luby et al [9, 10] have demonstrated that irregular parity check
matrices generally outperform their regularcounterparts but it’s quite difficult to construct an
irregular parity check matrix in case when high girth is required. Also irregular codes are difficult
to implement and design hardware for it.
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Figure 1. Tanner graph Representation Of H
Matrix

Figure 2. Short Cycles Example

Mackay et al [9] discovered that cycles especially short ones, tended to degrade
decoding performance of LDPC codes. Therefore it is of high importance that short cycles be
avoided in the construction of good LDPC codes. One example of short cycle (four cycles) is
shown in the Figure 2.

2. Encoding Methods of LDPC Codes
The encoding of LDPC codes involves two basic tasks before we transmit the data.
a) Constructing the sparse parity check matrix.
b) b) Generate codewords using that matrix.
The method for generating sparse parity check matrix has explained well by Mackay

[11] and Neal[12]and has given a library of codes. The straightforward approaches for encoding
the LDPC code are stated as explained below:
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2.1. Method 1
This method is used for regular LDPC codes [13, 14]. For a given m n sparse parity

check matrix for the code xholds the following condition

. 0TH x  (12)

Partitioning the parity check matrix H into m m matrix A and ( )m n m  matrix B, after
rearranging columns if necessary to make A nonsingular, we can write the H as:

[ | ]H A B (13)

Similarly we partitioned the codeword x into information bits s and parity bits p such that:

[ | ]x p s (14)

Now equation (14) becomes:

[ | ][ | ] 0TA B p s  (15)

Thus Equation (15) becomes:

0Ap Bs  (16)

Hence

1p A Bs (17)

It may be faster to compute c into two steps:
1) Compute ( )z Bs in time proportional to ( )n m , exploiting the sparseness of B

2) Compute 1( )p A z , in time proportional to 2( )n m
To exploit the sparseness of A with view to optimize step (2), we find the LU

decomposition that satisfies:

A LU (18)

Where L is sparse lower triangular matrix and U is sparse upper triangular matrix.
The previous process reduced the equation AC z toUc y . Now Equation (16)

becomes:

Ly z (19)

Up y (20)

We can solve easily Equation (19) and (20) by forward substitution and backward
substitution respectively. The pivoting and bit reversing (PABR) algorithm[13] can be used to
find the non-singular of binary matrix A over GF(2).

(21)
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2.2. Method 2

The Gaussian elimination can transfer the initial sparse parity check matrix m nH  ,

which is afull rank, into an equivalent lower triangular form m nH 


as shown in Equation (21).
This is the simple way to get the parity bits but this matrix is no longer sparse. This is a

pre-processing before encoding the actual data. To encode the data, the codeword is written in
form:

( , )x s p (22)

Where 1 2( , ......... )n ms s s s  the information is bits and 1 2( , ......... )mp p p p represents the
parity bits which we get by back substitution when the column of the original matrix is shuffled
for Gaussian elimination. The parity bits can be obtained in two steps:

a) Initialize

1 1,
1

n m

j j
j

p h s




 (23)

b) The next 2 3, ......... mp p p parity bits are computed iteratively using the following
equation.

1

, , ( )
1 1

n m l

l l j j l j n m j
j j

p h s h p
 

 
 

   (24)

Where 2,3.....l m .  This scheme offers high encoding complexity but is used in simulation.

2.3. Method 3
T.J.Richardson and Urbanke [15] proposed a relatively low complexity efficient

encoding [15] scheme. Instead of Gaussian elimination which resulted in a dense lower

triangular matrix, the matrix m nH  is brought to approximate lower triangular matrix m nH 


by
row and column shifting only. The Richardson proposed approximate lower triangular matrix is
composed of small sub-matrices as:

(25)

Where the dimension of the each matrix is as follow:

( ) ( )

( )

( ) ( )  ;  th e  lo w e r tr ia n g u la r  m a tr ix

C g ( )

( )

A m g n m

B m g g

T m g m g

n m

D g g

E g m g

   
  
   
  
 
  

The matrix m nH 


is obtained by the column shifting of the original matrix m nH  . The
columns are selected in such order as to give the reasonable depth of matrix E because the
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number of columns of A and C depends on n m , so the only variable is the dimension g

which is kept as small as possible to reduce the complexity and make the encoding efficient.
Thecodeword 1 2( , , )x s p p is generated in the following way:

1 1
1 ( )T Tp U ET A C s     (26)

1
2 1( )T T Tp T As Bp   (27)

WhereU ET B D   and must be invertible. Once we get the triangular matrixT , then we

can interchange the columns of D to make U invertible. Since the resulting matrix n mH 


is

obtained by just column shifting of the parity check matrix n mH  and each of the sub-matrices
are sparse, so this method offer a linear complexity in order.

2.4. Method 4
In this method[16] if the parity check matrix has one part regular systematic and one

part is the identity matrix such as:

'm n m n m mH H I      (28)

The matrix m nH  is irregular systematic where n n m   . The parity equation for this type of
the matrix is found simply as:

,
1

N M

i i j j
j

p h s




  (29)

This need not to find the inverse andThe codeword is now given by [   ]X s p .

3. LDPC Decoding Algorithms
The message passing algorithm [1, 3], [17-20] is a decoding algorithm in which

messages are passed from node to node through the tanner graph used for complicated
calculation using distributed hardware. When the graph is cycle-free, the message passing
algorithm is recursive algorithm that always converge, after a finite number of messages have
been passed, the true a posteriori probability (APP) log-likelihood ratios(LLR) is  defined as:

Pr[ 1 | ]
log

Pr[ 0 | ]
n

n
n

x y

x y






(30)

Where Y X n  and y is the received sequence, nx is the transmitted codeword sequence

and n is the additive white Gaussian noise. n is the APP  log likelihood ratio (LLR).

3.1. Probability Domain Decoding Algorithm
A codeword 1 2{ , ........ }nX x x x is transmitted after BPSK modulation over a noisy

AWGN channel , the received sequence is Y X n  where 1 2{ , ,........... }nY y y y , n is the
additive white.

Gaussian noise with zero mean and variance 2 {n~N(0, 2 )} as shown in Figure (3).
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Figure 3. LDPC encoder and decoder in a communication system

Now the LDPC decoding algorithm can be stated in the following steps for parity check

m nH  where m is the number of rows and n is the number of columns. The following notation is
introduced to represent the decoding algorithms effectively.

j n =the number of columns in parity check matrix m nH 

i m = the number of rows in parity check matrix m nH 

( ) { : 1}jiN j i h  : The set of column locations of the ones (1’s) in the ith row of H .

( ) \N j i : The set of column locations of the ones (1’s) in the ith row of H excluding
location j .

( ) { : 1}jiM i j h  : The set of row locations of the ones (1’s) in the jth column of H .

( ) \M i j : The set of row locations of the ones (1’s) in the jth column of H excluding
location i .

Now the LDPC decoding algorithm can be demonstrated in the following steps.
Initialization:  The a posteriori probabilities(APP) are initialized to channel output as.
For s ( , )i j , set:

0 0
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1
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1 e x p ( )
j i i
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q f
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0

1
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i
i
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f

f
 (33)

Set the number of iteration as maxI

1) Parity node update( Horizontal processing): Update jir

0 1

( )\

( )ji ji ji
i N j i

r q q  


  (34)

0 1

0 1

1 / ( )

1 / ( )
ji ji ji

ji
ji ji ji

r q q
r

r q q





 

 

(35)

2) Bit node update (Vertical processing): Updating the variable node as:

( )\
i j i

j M i j

R r 


  (36)

i
ji i

ji

R
s f

r
 (37)
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Or equivalently,

0

1

ji
ji

ji

q
s

q
 (38)

Updating 0 0 andji jiq q as follow:

0 1 0    and  1
1

ji
ji ji ji

ji

s
q q q

s
  


(39)

3) Calculating estimated codeword: In this step , the APP likelihood ratio iR is
computed and then the estimated codeword is calculated.

i i iR f R (40)

0   for 0ˆ
1    else

iR
X


 


(41)

iR Comparison depends on the modulation scheme used .Here it is for typical BPSK
modulation.

4) Stop condition : If the parity check equation is satisfied

1 2ˆ ˆ ˆ.( , ............ ) 0T
iH x x x  (42)

Or the maximum iteration max(I ) is reached then terminates the decoding or otherwise
go to step2. Alternative way for Step 3 to Step 5:this can also be written in the form:

Step 3: In step 3, Equation (36) and equation (40) take the following form:
First calculate

' ( ) \

(0) (1 ) (0)i i i j i
j M i j

Q K P r 


   (43)

'
' ( )\

(1) (1)i i i j i
j M i j

Q K P r


  (44)

Now Update

'
' ( )\

(0) (1 ) (0)ji ji i i j
i N j i

q K P r


   (45)

'
' ( ) \

(1) ( ) (1)ji ji i i j
i N j i

q K P r


  (46)

The constant K has the value such that (0) (1) 1i iQ Q  and     1|i i iP Pr x y 
is the probability of 1ix  under that the knowledge of the received signal y is known, while the

code structure is not considered. Set (0) 1  and (1)ji i ji iq P q P   for all ,i j for which 1jih 
.

Step 4: For every column index i , compute



TELKOMNIKA ISSN: 2302-4046 

Comprehensive Algorithmic Review and Analysis of LDPC Codes (Waheed Ullah)

119

1,if  Q (1) 0.5( Q (0))ˆ
0,else

i ior
X

 
 


(47)

If ˆ( . ,2) 0Trem X H  , or if the maximum number of iterationsis reached, then stop, else,continue
iteration from Step 2.

3.2. Log Domain Decoding Algorithm
Due to many multiplications involved in BP SPA which can make it numerically

unstable, therefore log domain SPA is preferred. We define the following notations:

 
 

20

1 22

1 / 1 exp 2 /Pr( 0 | ) 2
( ) ( ) log log

Pr( 1 | ) 1 / 1 exp 2 /

ii i i i
i

i i i i

yf x y y
L f L

f x y y





               
(0)

( ) log
(1)

ji
ji

ji

r
L r

r

 
   

 
; (0)

( ) log
(1)

ji
ji

ji

q
L q

q

 
   

 
; (0)

( ) log
(1)

i
i

i

Q
L R

Q

 
  

 

1) Initialization :  Set the maximum number of iterations max( )I and initialize as follows:

2

2
( ) ( ) i

ji i

y
L q L f


  (48)

2) Parity node update( Horizontal process): For initial derivation purpose for log-
domain SPA,

As (0) 1 (1)ji jir r  and 0
0 1 1

1

1
tanh log( 1 2

2

p
p p p

p

 
    

 
, we can write:

( )\

1 1
tanh ( ) tanh ( )

2 2ji ji
i N j i

L r L q 


      
   

 (49)

Now factorizing ( )ijL q into sign and magnitude components as follow:

( )ij ji jiL q   , where ( )ji jisign L q     and | ( ) |ji jiL q 

Re-writing Equation (49) as:

( )\ ( )\

1 1
tanh ( ) . tanh

2 2ji ji ji
i N j i i N j i

L r   
  

      
   

 

1 1
( ) .2 tanh tanh

2ji ji i j
i i

L r  
 

 

       
 

1 1 1
         = .2 tanh log log tanh

2ji i j
i i

  
 

 

  
    

 
1 1 1

         = .2 tanh log log tanh
2ji i j

ii

  
 



  
    



 
( ) \( ) \

         = .ji ji
i N j ji N j j

  
 

 
  
 
 (50)
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Here 1 1
( ) ( ) log[tanh( / 2) log

1

x

x

e
x x x

e
  

        
such that 0x  . This

function can be implemented as look up table.
1) Bit node update (Vertical processing): Updating the variable node. Dividing

equation (45) by (46) and then taking the logarithm of both sides, we get:

( )\

( ) ( ) ( )ji i j i
j M i j

L q L f L r 


   (51)

2) Updating the final Log-likelihood ratio (LLR):
Similarly we get from Equation (43) and (44)

( )

( ) ( ) ( )i i ji
j M i

L R L f L r


   (52)

3) Calculating estimated codeword and Stop condition:
For every column index i , we calculate

0   for L( ) 0ˆ
1    else

iR
X


 
 (53)

If 1 2
ˆ ˆ ˆ ˆ( . ,2) ( , ,..... . ,2) 0T T

nrem X H rem x x x H  , or if the maximum number of
iterations is reached, then stop, else, continue iteration from Step 2.

3.3. Approximated Log-domain SPA algorithm
The approximation to Log-domain SPA knows as min-sum algorithm (MSA) [17], greatly

reduces the complexity but with reduced performance. In the log-domain SPA, the complexity is
at the step 2. Min sum decoding algorithm reduces the complexity by approximating the
magnitude of the initial LLR ( ( )jiL q ). From equation (50), we get the approximation as:

   ( )\
( )\( )\ ( )\

( ) = . . | |ji ji ji ji i N j i ji
i N j ji N j j i N j i

L r Min       
  

 
   
 
  (54)

After this modification, all the steps are repeated in the same way in as in Log-domain SPA in
section (3.2).

3.4. Min-Sum Decoding Algorithm
Here, first of all, we define some notations as:
X = the transmitted actual sequence;Y = the received sequence; ( )i iL L f = initial

channel LLR
( )ji jiV L q =variable node message; ( )ji jiC L r = check node message

k̂
iL =The final LLR used for calculating the estimated codeword ( X̂ )

The min-sum decoding algorithm is now stated in the steps below for parity check
matrix.

1) Initialization: Set iL Y as the initial log likelihood ratio (LLR) as no priori
information[18, 20] about the AWGN is required. and for each
( , ) {( , ) | 1}mnj i m n h  , we initialize the variable node as:

ji iV L (55)
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Set the maximum number of iterations ( maxI ) as max0 tok I
2) Parity node update( Horizontal processing): Message passing from variable to

parity(check) node   for 0 to 1( )vj M d  and k
jiC is updated for  each ( )i N j

as follows:

1 1
' ' ( )\ '

' ( )\

( ). | |k k k
ji ji i N j i ji

i N j i

C sign V Min V 




  (56)

3) Bit node updates (Vertical processing):Check node to variable node
For 0 to 1( )ci N d  , calculate the final LLR

( )

ˆk k
i i ji

j M i

L L C


   (57)

Updating the variable (bit) node message for each ( )j M i

( )\

ˆ   or ( )k k k k k
ji i ji ji i j i

j M i j

V L C V L C 


     (58)

4) Hard decision: Estimating the codeword by hard decision as follows,

ˆ0  for 0ˆ
1  else

iL
X
  


(59)

5) Stop condition: If the parity check equation is satisfied i.e.

ˆ. 0TH X  (60)

Or the iteration maxI is reached then terminates the decoding or otherwise go back to step 2.
The message passing between check node and variable node in step 2 and step 3 can

also be represented in a graphical way as shown in Figure 4 and Figure 5.

Figure 4. Horizontal processing: bit nodes to
check nodes

Figure 5. Vertical Processing: check nodes to
bit nodes

3.5 Enhanced Min-Sum Decoding Algorithm
Min-Sum algorithm (MSA)provides a significant decrease in decoding complexity and is

also independent of the noise variance, so no a priori information of the AWGN channel is
required. But MSA causes performance degradation reasonable because of check node
messages overestimation in comparison to SPA.

For a certain edges v and c denote 1L and 2L as the values of ( )jiL r and k
jiC

computed by SPA and MSA respectively for the same messages during the previous iteration.
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Then the following statement holds about the relationship [20, 21]of 1L and 2L .
1) The values 1L and 2L have the same sign i.e. 1 2( ) ( )sign L sign L
2) The magnitude of 2L is always greater than 1L i.e. 2 1L L
The normalization factor is required to correct the magnitude overestimation and bring

2L close to the value of 1L which significantly improve the decoding performance. Several
modification algorithms have been proposed in order to improve the performance of reduced
complexity min-sum decoding algorithm (also known as universal most powerful (UMP)
algorithms [18].Two approaches [20, 21] are most popular for the check node message update
in the equation (56) as under:

a) First Approach :Normalized Min-Sum Decoding Algorithm

1 1
' ' ( )\ '

' ( )\

. ( ). | |k k k
ji ji i N j i ji

i N j i

C sf sign V Min V 




  (61)

The scaling factor ( sf ) is used as normalization factor to correcting the variable
message overestimation during the check node update in step 2. The value of scaling factor is
0 1sf  .

b) Second Approach :Offset Min-Sum Decoding Algorithm

1 1
' ' ( )\ '

' ( )\

( ). | ,0 |k k k
ji ji i N j i ji

i N j i

C sign V Max V f 




  (62)

All the extrinsic messages with reliability values smaller than the offset factor f , are set
to 0, such that they have no contribution to the preceding bit node processing. In both the
approaches, the normalization factor and the offset values should vary with each iteration
number for achieving better performance but for making the processing complexity simple, it is
kept constant. All other steps are repeated in the same way as in section (3.4).

4. Effect of Normalization Factor on Performance
In Equation (61), the check node message is updated as follow:

' ''
'

'
'

1 1

( )
( )

. ( ). min | |k k k
ji ji jii N j

i N j i i
i i

C sf sign V V 


 


  (62)

The range for scaling factor (sf ) value is 0< sf <1. This is called the single factor or single way
normalized min-sum decoding algorithm. It uses one scaling factor for updating the check node
message during the row processing. The normalized min-sum algorithm has been simulated
here to show the scaling factor effect on error performance when either code rate or length is
changed. Three types of codes have been selected for the results validation and comparative
analysis. Regular medium length codes (1024, 512) and (1296, 864) are chosen to show the
effect for code rate change and a short length code (684,324) is chosen to show effect when the
code length is changed. The simulation results in figures (6), (7) and (8)signify that error
performance is affected greatly with scaling factor and it varies with code rate and length.
Actually adaptive normalization can greatly improve the performance but then it becomes very
complex for real time applications and makes it practically impossible although in theory it can
shows good results.
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Figure 6. Performance of normalized min-sum
for (1296, 864) LDPC code for various sf

values, iterations=10

Figure 7. BER performance ofnormalizedmin-
sum for (648, 324) LDPC codefor various sf

values, iteration=10

5. Quasi Cyclic LDPC Codes
Quasi- cyclic (QC) LDPC codes are the good candidate to solve the memory problem

as their parity check matrices consists of circulant permutation matrices [22] or the zero
matrices. QC LDPC codes have also shown performance [23] close to Shannon limit. QC LDPC
is becoming popular among the hardware implementation related researchers and many
efficient encoding [24-28] methods for implementation has been proposed.

Figure 8. BER performance of one-way normalized min-sum for (1024, 512) LDPC code for
various sf values, iterations=10

5.1. Constructing Quasi Cyclic Matrices
The structure of the QC LDPC codes depends on the arrangement of the constituents’

sub-matrices and their shift values. Two constraints are always kept in mind while designing
LDPC codes; 1) High girth to improve the performance, 2) low complexity in implementation.
Some of the methods include finite geometry [29, 30], algebraic construction [31], finite field
approach [32].

The QC-LDPC parity check matrix has the general structure as:

1 2[ , ..... ]QC iH C C C (64)

Where 1 2, ..... iC C C are all circular shifted matrices such that the parity check matrix is
full rank. Shifted identity matrices are easily obtained by shifting the row of an identity matrix to
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the right or left by some amount. Some arrangement of the identity matrices are shown as:

1 1 1 2 1 3 1 4

2 1 2 2 2 3 2 4

3 1 3 2 3 3 3 4

I I I I

I I I I

I I I I

 
 
 
 
 

(65)

1 1 1 3 1 4

2 2 2 3 2 4

3 1 3 2 3 4

4 1 4 2 4 3

I O I I

O I I I

I I O I

I I I O

 
 
 
 
 
 

(66)

Equation (65) is with all non-zero sub-matrices and Equation (66) is with zero sub-
matrices. Each sub-matrix in a row shows the weight one and similarly for each column. In the
Equation (65), the row and column weights are 3 and 4 respectively while in the equation (66),
the row and column weights are 3 and 3 respectively due to the placement of the zero sub-
matrices.

The circulant matrix of size m m can be shown as:

0 1 1

1 0 2

1 2 0

m

m m

c c c

c c c
C

c c c



 

 
 
 
 
 
 





   



(67)

A circulant matrix is uniquely specified by a polynomial formed by the entries of the first row.

2 1
0 1 2 1( ) m

mc x c c x c x c x 
    (68)

For a rate 1 / k systematic QC code has the m mp generator matrix [28] of the form:

1 2 1[ , , ] [ ]QC m k m m m mpG I p p p I P    (69)

1 1, 2 2, ,j j j m m jp s G s G s G   (70)

Where mI is the m m identity matrix and iC is the m m binary circulant matrices.After
getting the generator matrix, the encoding is simply done as:

. .[ ] [    ]QCX s G s I P s p   (71)

Where s contains the information bits.
5.2. Encoding Techniques for QC LDPC Codes

The parity check matrix for QC LDPC codes[25] is represented as:

1 2[ , ..... ]Q C iH C C C (72)

This matrix can be decomposed into two parts:

 Q CH M D (73)

Where D is a square matrix and must be invertible. D and M both are quasi cyclic, composed of
circulant. The desired generator matrix G has the following form:
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 QCG I P (74)

The necessary and sufficient condition for the generator matrix is that:

[0]QC QCG H  (75)

The codeword [   ]X s p has two parts; the information bits s and the parity bits p such that
Thus X is a codeword if and only if:

  0
I

M D
P

 
 

 
(76)

Or equivalently,

0T TMI DP  (77)

1 1TP D MI D M    (Mod 2) (78)

If a matrix is circular or composed of circular permutationmatrices, the inverse is also a
circular matrix[33] which can be obtained as follows:

The cyclic matrix in Equation (67) is such that TC C and 1 2( , , , )T T
nX x x x  is a

matrix of polynomial such that:

(1,0,0, ,0)T TCX   (79)

This can be written in the polynomial form as:

0 1 2 2 1

1 1 0 2 2

1 1 2 2 0

1

0

0

m n

m m n

n

c x c x c x

c x c x c x

c x c x c x



 

   

   

   





       



(80)

Solving the Equation (80), we obtainthe inverse 1C  of C written in the form:

1 2

2 3 11

1 1

n

n n

x x x

x x x
C

x x x





 
 
 
 
 
 





  



(81)

This can be verified by multiplying the Equation (67) and (81) such that:

1 (  )C C I indentity matrix  (82)

0 1 1

1 0 2

1 2 0

m

m m

c c c

c c c

c c c



 

 
 
 
 
 
 





   



1 2

2 3 1

1 1

n

n n

x x x

x x x

x x x 

 
 
 
 
 
 





  



=

1 0 0

0 1 0

0 0 0

 
 
 
 
 
 





  



(83)

This method can be used for obtaining the 1D in Equation (77).
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The structure of the D matrix plays an important role in the QC LDPC parity check
matrix. In [34] it was shown that QC LDPC codes based on D-matrix and Q-matrix, designed by
modified PEG, are more suitable to be used than identity matrix as they outperform than that of
identity matrix.

5.3. QC LDPC Encoder Hardware Implementation
QC–LDPC codes have encoding advantage over conventional LDPC codes and their

encoding can be implemented by shift register [35, 36] called shift register adder
accumulate(SRAA) with complexity linearly proportional to the number of parity bits as shown in
the Equation (69) of the code .Also QC-LPDC codes require less amount of memory as
compared to the general LDPC codes, since their parity check matrices consist of the circulant
permutation matrices or the zero matrices.

6. QC LDPC Decoder Hardware Design
QC LDPC codes are the family of implementation oriented codes. QC LDPC codes

have not only efficient encoding characteristic but has also solved the problem of decoding
complexity. QC LDP codes have got the following advantages;

1) Memory efficient;
2) Less Hardware Complexity;
3) High Convergence Speed through Layered decoding;
4) High Throughput

6.1. Layered and Non-layered LDPC Codes
Layered schedule considers the parity check matrix as layers of check equations and

update the variable node information right after check node information of current layer. Two
types of layer decoding has been considered in [37]. Many different approaches has been made
to improve it further in terms of memory, energy (power) and throughput [38-43].

The straight forward horizontal layered min-sum decoding algorithm is given below:
1) Initialization: 0 0 0 & C 0ji i jiL L Y   (as stated in chapter 2) where

0,1, 2 1i N 

2) Set maximum iteration max1 tok I
a) Layer initialization: (Here, in general each row of a parity check matrix is

considered as one layer). Set max1 to t  (No. of Rows or Row Blocks )t 

1 1t t t
ji i jiV L C   (84)

b) Check Node Update:

( )\
( )\

. ( ) min | |t t t
ji Vji Vji

i N j i
i N j i

C s f sign V V 

  (85)

c) Variable Node update:

t t
i jiL Y C  (86)

Go to step (a) until M reaches.

max

max

1    L 0ˆ
0    L 0

t
i

t
i

X
  


(87)
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If 1 2
ˆ ˆ ˆ ˆ( . ,2) ( , ,..... . ,2) 0T T

nrem X H rem x x x H  , or if the maximum number of iterations is
reached, then stop, else, continue iteration from Step 2.

6.2. Memory Efficient Layered LDPC Decoding
To minimize the interconnect complexity and memory size at the check node update

(horizontal processing), the MSA can be formulated in such a way not to store all the messages
but only the following four element [35-36], [40].

1) The 1st smallest magnitude
2) The 2nd smallest magnitude
3) The index of the 1st smallest magnitude
4) The signs of all the soft message of the row(variable messages).Note: This may not

require in software simulation only in case quantized values are not used.
In the check to variable message passing phase, a check node c sends only the 1st

smallest magnitude (min1), the 2nd smallest magnitude (min2) and the index of the 1st smallest
magnitude (index) where min1≤ min2.Now the check node (step 2) is updated in the layered
decoding in section (6.2) as:

. ( ).min1

. ( ).min 2

t
it

i t
i

sf sign V if i index
C

sf sign V ohterwise

  


(88)

7. QC LDPC Simulation and Performance Analysis
Consider a quasi cyclic parity check matrix 600 1500H  which has the each sub-matrices

(circulant) with ( , ) 150size m n   and LDPC code length 1500L  , 4vd  and 10cd  . The
code has been simulated for SPA, MSA with normalized and offset values and with the new
improved MSA [44].

 |H M D where D is square matrix such that it is full rank and is represented as:

1

2

0

0 i

D

D D

D

 
   
 
 



 



The diagonal elements are designed such that the parity check matrix H is regular and
the upper and lower triangular values are zero matrices.

11 12 13 14 15 16 1

21 22 23 24 25 26 2

31 32 33 34 35 36 3

41 42 43 44 45 46 4

0 0 0

0 0 0

0 0 0

0 0 0

C C C C C C D

C C C C C C D
H

C C C C C C D

C C C C C C D

 
 
 
 
 
  (89)

Here ,i jC is a circulant permutation matrix of size 150x150. The QC LDPC code is
simulated for SPA, simple MSA , layered normalized MSA which is based on the memory
efficient MSA as stated in section (6.2), offset MSA and new improved MSA [44]. In Figure 9,
the value of the offset is chosen by search and is considered here as the approximately good
one and there may be exist some other optimum or near optimum values. Also the normalized
values for MSA are chosen such that it gives good performance as well as the hardware
implementation is also simple.Recently adaptive normalized/offset min-sum algorithms [45, 46]
are proposed which further improve the performance.
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Figure 9. Simulations for QC LDPC code (1500, 4, 10), iterations=10

8. Design and Sparsity of LDPC Matrices
LDPC matrices are designed such that it can give good performance as well as easy to

implement in hardware and also offer good performance for MIMO/Cooperative Communication
[47]. One of the examples of LDPC matrices are illustrated in Figure 10 here for general idea.

Figure 10. Distribution of 1’s in H =[ M  D](size=250x750), where M & D are composed of
Circulant Permutation Matrices

9. Conclusion
This paper summarizes the encoding and decoding algorithms of LDPC and also

provides thedetail analysis to make it more comprehensible for those interested in LDPC. It also
shows the recent trends and challenges in LDPC codes and indicates the future direction of the
powerful coding for reliable communication. QC LDPC is specially elaborated in this paper to
show the practical importance and to give better insight for hardware implementation for many
applications. Better code construction; offering less delays, small memory size and fast
decoding with better performance, is still open for research.
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