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1. INTRODUCTION

In 1989, Bakhtin [1] approved the idea respecting a quasi—metric space as a generalized concept about
metric spaces. In 1993, Czerwik [2, 3] expanded abundant upshots concerning for b— metric spaces. In 1994,
Matthews [4] found the connotation concerning partial metric space at the self - distance in connection with
any point about space might not equal zero. In 1996, O'Neill assured that a connotation for partial metric space
through granting negative distances. In 2013, Shukla [5] assured together the connotation about b-metric &
partial metric spaces via send in the partial b-metric spaces. For example, researchers explored the concept &
its generalizations in several kinds of metric spaces [6-10].

Within this research, we proved a common fixed point theorem for four maps in partial b — metric
space and in this paper we generalize both the concepts of b-metric and partial metric spaces by introducing
the partial b-metric space. An analog of the common fixed point theorem for four maps in partial b — metric
spaces is proved. Some examples are included which illustrate the results obtained in new space. First, we
recall some definitions from b-metric and partial metric spaces.

Definition 1.1. [11-13] Let X be a nonempty setand let s> 1 be a given real number. A function d: X xX—[0,00)
is called a b-metric if for all x, y, z € X the following conditions are satisfied:

(i) d(x,y)=0ifand only if x = y;

(i) d(x, y) = d(y, x);

(iii) d(x, y) < s[d(x; z) + d(z; y)]:

The pair (X, d) is called a b-metric space. The number s > 1 is called the coefficient of (X, d)

Definition 1.2. [4] Let X be a nonempty set. A function p: X xX—[0,0) is called a partial metric if for all x,
y, z € X the following conditions are satisfied:
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(i) x =y ifand only if p(x, X) = p(x, y) = p(y ¥);
(i) p(x, X) < p(x, ¥);

(iil) p(x, y) = p(y, X);

(IV) p(X, Y) < p(X9 Z) + p(Z, y) - p(Z! Z):

The pair (X; d) is called a partial metric space.

Remark 1.3 Apparent the partial metric space not necessity be a metric spaces, "+ in a b - metric space whether
v=w,=d(v,v)=d(v,w)=d (w, w) =0. in a partial metric space if v=w

=p(v, v) = p(v, w) = p(w, W) not necessary be = 0. Thence the partial metric space not necessary be a b- metric
space.

So the else direction, Shukla [5] pressed the connotation of a partial b-metric space as pursue:

Definition 1.4. [5] If V be # @ set & $ > 1 be a givenR. function

P.:V xV — [0,) isexpressing a partial b —metric if V v, w, z € V the following conditions are convinced:
iiv=w e Py(v,v) =P, (v, w) =P, (W, w);

ii: Py(v, v) < Py(v, w);

iii: P, (v, w) =Py (W, V);

iv: P, (v, W) <S [P, (v, 2) + P, (z, W)] - P. (z; 2):

The (V; P,) is expressing a partial 5-metric space. The amount s >1 the parameter is called (V, P).

Remark 1.5. The kind of partial b-metric space (V, P,) is the most effective way the kind of partial metric
space - a partial metric space is a condition shape from a partial b-metric space. (V, P, ) while s = 1. Likewise,
the kind of partial b-metric space (V, P,) is effective way bigger than the kind from b-metric space, - a b-metric
space is a private condition from a partial s-metric space (V, P,) while the same —area p (v; v) =0.

The next exa. articulate this one a partial 5-metric on V requirement not be a partial metric, neither a
b-metric on V, look as well [14], [5].

Example 1.6. [5] Allowed V = [0,1). Realize a function B,: V XV — [0, ) S.T.
P. (v; w) = [max. {v, w}]*+ |v—-wJ?, Vv, w € V therefor (V, P,) is a partial b-metric metric & also not a partial
metric to V.

Definition 1.7. [14] Any partial b-metric P, is known a b — metric d,, whosesoever
dp, (v, W) =2P, (v; W) —P, (v, V) =P, (W, W), VvV, W E V.

Definition 1.8. [14] A sequence {v,} in a partial b-metric space (V, P, ) is called:
1- P,—convergent for v € V if lim P, (v,v,) =P, (v,v)
n—-oo
2- P,— Cauchy sequence if lim P, (v, v,,) subsist &is finite;
n,m—-oo

3- partial b-metric space (V, P,) became P,—complete whether v P,—Cauchy sequence {v.} in V is P, converges
forveV,ST.

lim P, (v, vy) = limP, (v, v)= B, (v,v)
n,m—oo n—-oo

Lemma 1.9. [14] A sequence {xn} is a Pp-Cauchy sequence in a partial b-metric space (X, Pp) if and only if it
is a b-Cauchy sequence in the b-metric space (X, dp, ).

Lemma 1.10. [14] A partial b-metric space (X, Pv) is Po-complete if and only if the b-metric space (X, dp,) is
b-complete. Moreover, lim dp, (xp,Xy) =0 if and only if
n,m-co

lim P, (x,,x) = lim P, (x,,,x) = P, (X,X)
n,m-oo n—-oo

Definition 1.11 [15]: A & S two self-maps from a metric space (V, d) are designation weakly compatible if, at
coincidence points those commute . Which, in case Av = Sv = ASv =SAv for vin V.
Presently we demonstrate our essential outcome.
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2.  MAIN RESULTS

Theorem: 2.1: aLet (w, p,) be a partial » — metric space for the coefficient $ > 1, consign A ,B,C
,D: V>V be mappings appropriate the next

pb(CV’ DW)' Pb(CV,AV)’ Pb(DW,BW)'
1
2_§ [Pb(CW’ Bw) + PB(DW,AV)]
Where Ke [0,%) ,Vuy,wevlV

(2.1.1) $.p,(AyB,,) < max.

(2.1.2) A(V) € B(V),B(V) € G(V)
(2.1.3) with regard to C(V) or B(V) is complete subspace of V.

(2.1.4) the (&; C) &(B, D) are weakly compatible.
So #, B, C & D include unique common fixed point in V

Proof : Select vy, w, € V. From (2.1.2) 3, sequences {v,} & {w, } inV s.t.
AVyp = PUgpiq = wyy
'Bv2n+1 = Cv2n+2 = Won+1 v n:0,1,2,3, ..........

Status: (i):-Assume w,,, = w,, 4 for some n.
Clam:  wyn41 = Wango

SUPP. Wony1 # Waonys
From (2.1.1) , then

S. P, (Wans1, Wony2) = S-Pb (AVan+2,BUans1)

B, (CV2n42,PV2n41), B, (CV2n42, AV2n 1), B,(PV2p11, BU2n g 1),
< k max.

1
P [P,(Cvan+1, BV2pi1) + P,(PVapns1, AV2p11)]

=k max. {

P, (Wans1,Wan), B,(Wans1, Wans2), B,(Wap, W2n+1)'}

1
3% [P,(Wan+1, Wans1) + P.(Wans1, Wans2)]

=k max {

Do (Wans1,Wani1)s Bo(Wane1, Wana2), B.(Wan i1, W2n+1)v}
1
% [P,(W2n+1, Want1) + B,(Wan, Wan42)]

=kp, W2n41, Wan+2),

that is a discrepancy.

“ Wont1 = Wopy2

Stay in same direction we ability ratiocinate that

Wan = Wan+k
=~ {w,,, } a Cauchy sequence in V

Status (ii):- Wy, # Wpe VN
From (2.1.1), consider

& @ B ) < {pb(CVZn,Dv2n+1)' P,(Cuap, AV,p), B,(PVany1, BU2n+1):}

. Vo, BU < max 1

Pe an antl g [Pb(CUZn: BUZn+1) + Pb (DV2n+1: AUZn)]
{pb(WZn—l,WZn)' B,(Wan_1, Wap), B,(Wop, W2n+1)'}

=k max

1
% [P,(Wan—1, Wans1) + B,(Wan, Wap)]
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pb(WZn—l,WZn)r Pb(WZn' WZn)' Pb(WZn' W2n+1)'}

1 .z
P [S[B,(W2n—1, W2n) + P,(Wapn, Wan41)]]

=k max{

=k max {p, Wan—1, W2r) , P, Wan, Wan+1)}

if p,(Wan, Won 1) IS maximum, then

S. Pe(Wan, Wany1) < kp,(Wan, Wany1)
which implies

Po(W2n, Wani1) < %PB(WZn: Wan+1) < Po(Wan, Want1)
which is a contradiction.

Hence p, (W,,_1, W,,,)is maximum. So that

é-Pb(WZn' Wons1) < kp,(Wan_1, Wan)
implies that
K
P, (Wan, Wansq) < pr(WZn—ll Wan) 1)

Put p2n = P, (Wan, Wans1)

Pt i .
Then { 2”} is decreasing sequence of non-negative R& must converges to some R
Assume | >0

Letting "M — % in (1), we obtain

k
I<—-el<l
S

Is the antinomy.
=1=0.So

lim

= pb(Wan W2n+1) :O (2)
Hence for def.1.4

lim

= pb(WZﬂ.’ WZn) =0 (3)

d
From (2) and (3) and by definition of Pb , We get

lim
n—e de(WZn' Won+1) = 0.

For m ,n€ N with m > n, we have
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Po(Wan, Wam) < S[D, Wan, Wans1) + o Wans1, Wam)] = Do (Wans1, Wans1)
< 8.0, (Wan, Wans1) + 2, Wans1, Wans2) + -+ + S22, (W g, Wpn)
, g2n+1 5o g2n+2 5 om—2n g2m
S S PWo, wh) + 8%z (W, W) + - + S Tom Do (Wo, w1)
_k2n 2 3 2m-2n
=arlk+ k2 +k + -tk 1. b (Wo, wy)
1
k e [O, —j

As S/ & $> 1, it follows from the above then

lim

MLm= pb(WZn,WZm) =0 (4)
Then {w,,} is a Cauchy sequence in V
Same that we competence likewise evince that{w,,,} is a Cauchy sequence in V.
Subsequently {w,,,} is a Cauchy sequence in V.
According to Lemma (1.9) , we name it{w,,} is a Cauchy sequence in (v, dp, ).
Suppose C(v) is a complete subspace of V.
 {Wzn41} is @ Cauchy sequence in complete b-metric space (C(v),dp, ).
This is a follow-up {w,,,,} converges to w in D(V). So

lim

e de(W2n+1' w) =0
Some of we C(V).3 a € V suchthat Ca € w .
 {w,, .1} is Cauchy sequence & w,, ., = w.
It follows that w,,, » w
According to Lemma (1.10 ) & (4), we possess that

lim lim
pb(W' W) = o pb(WvaW)z = pbW2n+llW) =0 (5)
lim
Here we evince it "% p, (Aa, w,,) =
P, (Aa, w)
dp

- that def. of P,

de (Aa: WZn) = ZPL(A(X’ WZn) - pb(Aa! A(Z) — Dy (WZn: WZn)

d
According to def. of R (4) & (5), we possess that
lim
dp, (Aa,w) = "2 2.p,(Aa, wyy,)

implies that
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lim
e 145 (Aa' WZn) =Ds (Aa' W) (6)

From, def. (1.4) we have

p,(Ba,w) < é[Pb(Aa, Wont+1) + Do Wani1, W — 0, (Wan41, Want1)

= é[Pb(Aa: Want1) + P (Wans1, W]

Allowing N —>

. lim
pb(Aa' W) < S. e pb(Aa’ W2n+1)

_ AILnOO S A B < !ILnOO k pb(ca! D172n+1)! Pb (C(X, Aa)' Pb(Dv2n+1l Bv2n+l)'
- Py (A BUzn i) < max %[Pb(cal Bvyn41) + P,(Dvpyq, Aa)]

LiLn ‘ {pb(VV,WZTl)' B,(w, Aa), P,(Wzy, W2n+1)'}
= © K. max 1
% [P, (W, Wan41) + P, (Won, Aa)]

=k.p, (Aa, w)

ItisclearthatAa = w = Ca .

* the pair (#, C) is a weakly compatible pair, we hold
Aw =C w

Here we demonstrate that .Aw=w. Consider

P:;}(AW' w) < é[pb(AW' Wont1) + P (Wani1, W] — D, (Wani1, Want1)
< S[p, (AW, Wan41) + D, (W41, W)]

Allowing N —>

_lim
o p,(Bw,w) < S. noe P, (AW, Bx;p41)

< !'Ln . {PL(CW' bvons1), B(w, Aw), B, (Pvznyy, BU2n+1)'}
< * k.max 1
L [R(CW, BUzns1) + Dy Aw)] O

Ilm 28 (AW,WZn)' Pb (AW' AW)' Pb (WZn' W2n+1)r
= N=* k. max 1
E [Pb(AW' W2n+1) + PL(AW' WZn)]

= kp,(Aw, w).

It is clear that Aw=w .

w is common fixed point of A & C.
Since, &(V) € B(V) we have thatw=Aw =D,V ¢t € V.From (2.1.1), =
p.(Cw, bt), P,(Cw, Aw), B, (Pt, Bt),}

Py (AW, BE) <k max{ L[R.(Cw,BE) + B, (DL, Aw)]
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pb(W' W)' Pb(W' W)' Pb(W' Bt)i
= k. max { }

2 [P.(w,Bt) + P, (w, )]

= kp,(w,Bt)

It apparent this Bt = w = Pt.

(B, D) is weakly compatible , so that Bw = Dw.
Again (2.1.1), =

; P, (Cw, Dw), F,(Cw, Aw), F,(Bw, Bw),
S.p, (Bw, Bw) <k. max. { }

% [B,(w,Bw) + B,(bw, Aw)]

v, (w,Bw), P,(w,w), B,(Bw, Bw),
= k. max { }

~[P.(Cw, Bw) + B, (w, Bw)]
= kp,(w, Bw)

Itis clear thatw = Bw = bw.

" w is common fixed point of &, B, C & D.

Now we demonstrate that w is unique common fixed point in V. Let us assume z is other common
fixed point of 4,B,C & D.

Claim:w =z.

From (2.1.1), =
S.p.(w,z) <S.p,(Aw, Bz)

< k.max{

p.(Cw, Dz2), B, (Cw, Aw), F,(Dz, B2),
[P,(Cw,Bz) + P,(Dz, Aw)] }

1
28

p.(w2), B,(w,w), B,(z,2),
=k. max { }

~[R.(w,2) + P,(z,W)]
<knp,(w,2).
Itis clear that w = z.

Hence w is the unique common fixed point of A, B, C& D. The next example Clear up our substantial
Theorem 2.1.

Example 2.2: Authorize w = [0,1) be partial b-metric space with. B:V XV — [0, o) realize b
P.(v,w) = [max.{v,w}]?,V v,w € V. Clearly (V, P,) is partial b-metric space with S=2.
Realize the mapping 4,B,C,b:V — V by

v2 v2
a A(”)zgm’ ﬁ(V) = i
b. C(U) = E' D(V) = E .

So #, B, C& D content with every stipulation of theorem (2.1) & 0 is the unique fixed point of 4 , B,
C&b
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3. CONCLUSION
In this paper, we gave a newly fixed point theorems for Partial b-metric space. We hope that our study
contributes to the development of these results by other researchers.
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