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 A sub-1V opamp based β-multiplier CMOS bandgap voltage reference 
(BGVR) with high power supply rejection ratio (PSRR) and low temperature 
coefficient (TC) is proposed in this paper. A current mode regulator scheme 
is inserted to isolate the supply voltage of the operational amplifier (opamp) 
and the supply voltage of the BGVR core from the supply voltage source in 
order to reduce ripple sensitivity and to achieve a high PSRR. The proposed 

circuit is designed and simulated in 0.18-μm standard CMOS technology. 
The proposed voltage reference delivers an output voltage of 634.6mV at 
27°C. Tthe measurement temperature coefficient is 22,3ppm/°C over 
temperature range -40°C to 140°C, power supply rejection ratio is -93dB at 
10kHz and -71dB at 1MHz and a line regulation of 104μV/V is achieved 
over supply voltage range 1.2V to 1.8V. The layout area of the proposed 
circuit is 0.0337mm2. The proposed sub-1V bandgap voltage reference can 
be used as an internal voltage reference in low power LDO regulators and 

switching regulators.  
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1. INTRODUCTION 

Many analog and mixed integrated circuits, such as low dropout (LDO) regulators [1], switching 
regulators [2], analog-to-digital converters, digital-to-analog converters, smart sensors and other precise 

industrial control systems require a fixed voltage reference to be compared to for the sake of reliability and 

accuracy. This voltage reference also called bandgap voltage reference is a circuit used to generate a fixed 

voltage, VREF, that is in theory independent of the power supply voltage VDD (where VREF<VDD), 

temperature and process variations. The classical design of BGVR circuits has commonly an output voltage 

VREF around 1.25V (close to the theoretical 1.17V bandgap voltage of silicon at 0 K) [3]-[6]. 

As the technology scales less than 350 nanometers, so do the supply voltages. Recently, the supply 

voltages tend to be in the range of 0.6V-1.2V. The supply voltage scales with the technology, but the 

threshold voltage of the transistors does not scale at the same rate. This makes it difficult to incorporate 

classical design of bandgap voltage reference to operate properly in the low supply voltages. For the low 

voltage bandgap reference design many approaches have been proposed; resistive divider networks [7-9], 
current summing and a voltage summing circuits [10], transimpedance amplifier [11], dynamic threshold 

mosfets [12] and other work [13]. 

Recent applications such as image sensors using LDO regulators require an accutare voltage 

refrence with very large PSRR value not only in the low frequencies but also in the high frequencies.  

https://en.wikipedia.org/wiki/Bandgap
https://en.wikipedia.org/wiki/Silicon
https://en.wikipedia.org/wiki/Absolute_zero
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To achieve this performance, various works has been proposed [14-18], but the performances of these works 

are limited in terms of PSRR, especially in the high frequencies.  

This work propose a novel technique to improve the value of PSRR of sub-1V bandgap voltage 

reference circuit which provides an output voltage reference VREF with low TC and high PSRR in wide 

frequency range compared with related works previously mentioned. 

 

 

2. CONVENTIONAL SUB-1V BANDGAP VOLTAGE REFERENCE 
The sub-1V bandgap voltage reference is an analog circuit that provides a stable output voltage less 

than 1V. This is achieved by adding a voltage, which is proportional to the absolute temperature (PTAT), to a 

base-emitter voltage of diode connected Bipolar Junction Transistor (BJT) NPN or PNP type which is a 

complementary to the absolute temperature (CTAT) in order to compensate for its first-order temperature 

dependency [19]. 

The conventional sub-1V bandgap voltage reference suitable for low power supply voltages is 

shown in Figure 1 [7]. He use an OpAmp based β-multiplier architecture with resistive division, where the 

operational amplifier (OpAmp) will form an inverted feedback loop to enforce the two input nodes X and Y 

of this OpAmp having the same voltages. 

The current mirror is formed by the PMOS transistors M1, M2 and M3 having identical size, so that 

the currents flowing through this three transistors are the same. The β-multiplier consists of two diode 

connected NPN transistors Q1 and Q2, with their emitter area ratio being 1:K to provide the required 
temperature dependent voltage to make the voltage reference circuit. 

The output voltage reference VREF is expressed as: 
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Where,
1BEV is the base-emitter voltage of BJT Q1 witch has a negative temperature coefficient and 

represents the CTAT voltage, and VT is the thermal voltage (VT=25.9mV at 300K) expressed as : 

 

q

Tk
V B

T 

 (2) 
 

Where kB is the Boltzmann’s Constant (kB=1.381×10-23J.K-1), q is the electron’s charge (q=1.602×10-19C) and 
T is the absolute temperature. 

VOS presents the input offset voltage of the OpAmp. 

VT has a positive temperature coefficient and represents the PTAT voltage. If we neglect the value 

of VOS, the (1) becomes:  
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Figure 1. Schematic of Conventional sub-1V BGVR 
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The temperature behavior of the VREF is: 
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A voltage reference independent of the absolute temperature is obtained if 0
T

VREF 



, then: 

 

TV

TV
lnK

R

R

T

BE

1

2 1






 (5) 
 

Noted that 0
T

V
1BE





 and its value depends on the CMOS technology used and can be extracted by 

simulation, while 0
T

VT 



and it value can easily be calculated. 

The conventional sub-1V BGVR using opamp β-multiplier architecture ensures a low temperature 

coefficient for VREF but remains very limited in terms of PSRR caused by the input offset voltage problem of 

the opamp, although some modifications have been proposed to improve the PSRR. 

 

 

3. PROPOSED SUB-1V BANDGAP VOLTAGE REFERENCE 

The schematic of proposed sub-1V BGVR is shown in Figure 2. A current mode regulator scheme is 

inserted to isolate a supply voltage of the opamp and supply voltage of the BGVR core from a supply voltage 

source VDD in order to reduce ripple sensitivity and to achieve a high PSRR. 

The schematic of the opamp used is shown in Figure 3. A self biased cascode current mirror load is 
adopted to achieve a high gain [20]. This opamp needs a network compensation to achieve a sufficient phase 

margin in order to guarantee closed-loop stability. The supply voltage of the opamp is VREG which is equal to 

regulate source-drain voltage of M5. The proposed sub-1V BGVR needs a start-up circuit shown in Figure 4 to fix it 

at the proper operation point. 
 

 

 
 

Figure 2. Schematic of proposed sub-1V BGVR 
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Figure 3. Schematic of opamp and his Bias circuit 
 

 

 
 

Figure 4. Schematic of start-up circuit 

 

 

3.1.   Analysis and Design of Proposed BGVR Core 

The core of the proposed BGVR uses the same principle of the conventional scheme with some 

modifications on the resistive voltage divider in order to compensate the error introduced by the input offset 

voltage of the OpAmp and consequently to have the same voltage level in the X and Y nodes. 

The PMOS transistors M1, M2, M3 and M4 have identical size, such that the currents flowing 

through this four transistors are the same as DDDD IIII
321


. The β-multiplier consists of two diode 

connected PNP transistors Q1 and Q2, with their emitter area ratio being K:1 to provide the required 

temperature dependent voltage to construct the voltage reference circuit. 

Let us establish the literal expression of the reference voltage VREF generated, we have: 
 

3R3REF IRV 
 (6) 

 

Where 3RI
is the current flowing through the resistor R3, it is expressed as: 

 

DRR III
23


 (7) 

 

Where 2RI
is the current flowing through the resistor R2, it is expressed as:  
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2
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Where 2RV
is the voltage across the resistor R2.  

We also have: 

 

21 RRD III 
 (9) 

 

And,  
 

211 EBEBR1 VVIR 
 (10) 

 

Where 2EBV
is the base-emitter voltage of PNP transistor Q2, it is expressed as: 
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Where 
2SI is the transport saturation current of Q2, expressed as:  

 

222 ESS AJI 
 (12) 

 

Where 
2SJ is the saturation current density of Q2 and 

2EA is the emitter area of Q2 and 
1EBV is the base-

emitter voltage of PNP transistor Q1, expressed as: 
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Where 
1SI is the transport saturation current of Q1, expressed as:  

 

111 ESS AJI 
 (14) 

 

Where 
1SJ is the saturation current density of Q1 and 

1EA is the emitter area of Q1. 

We have:  

 

21 EE KAA 
 (15) 

 

The transistors Q1 and Q2 have the same transport saturation current, as a result, the saturation 

current density 
1SJ  is K times larger than the saturation current density

2SJ . By substituting (11), (12), (13), 

(14) and (15) in (10), we find:  
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Note that the current
1RI forms the PTAT current and is usually symbolized by IPTAT. 

We also have: 

 

REFEBR VVV
22


 (17) 
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By substituting (7), (8), (9) and (17) in (6), we find: 
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With,  
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If we take into account the input offset voltage VOS, we have VX=VY+VOS. Thus the expression of 

VREF becomes: 
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As shown in (20) showns that the factor amplifying the input offset voltage is reduced in half in 

proposed circuit compared to that of the conventional scheme see (1). 

Differentiating (19) with respect to absolute temperature yields: 
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To achieve a near-zero TC of VREF, 
0

T

VREF 




. Thus, 
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For the CMOS technology used in our design, CmV/1.89
T

V
2EB





, and by using (2), we have 

CmV/0.0862
q
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, from where we get: 
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The value of K is set to 8, thus: 

 

12 R21R 
 (24) 

 

Note that the final values of the resistances calculated by the hand must be adjusted during the 

design of the circuit to obtain an optimal value of the temperature coefficient of VREF over the required 

temperature range. 

The minimum supply voltage to ensure proper operation of the proposed circuit and obtain an output 

voltage reference VREF less than 1 V with a small variation in the required temperature range is such that the 

following two constraints are met: 

 

6,7sat3,4sat SDSDREFDD VVVV 
 (25) 

 

And, 

  



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

A sub-1V high PSRR OpAmp based β-multiplier CMOS bandgap voltage reference with… (Anass Slamti) 

161 

6,7sat1,2sat SDSDEBDD VVVV
2


 (26) 

Where
3,4satSDV  is the overdrive voltage of M3 and M4,

1,2satSDV is the overdrive voltage of M1 and M2 and 

6,7satSDV is the overdrive voltage of M6 and M7. 

 

3.2.   PSRR Analysis 

In order to reduce ripple from the supply voltage which directly influences the performance of the 

PSRR, a pre-regulation stage is added to isolate the supply voltage VDD from both the supply voltage of the 

operational amplifier and the supply voltage of the BGVR core generator. 

To establish the expression of the PSRR, the high frequency small signal model of the proposed 

circuit is realised see Figure 5. For the calculation of the PSRR, a similar method to that adopted in [21], is 

applied. The body effect is ignored and both Q1 and Q2 BJT transistors can be considered as short-circuited. 

The voltage vdif shown in Figure 5 is the small signal part of the differential input voltage of the 

OpAmp. 
We have: 
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Where vdd(s) is the high frequency small signal part of VDD, vref(s) is the high frequency small signal 

part of VREF and s is the complex variable of Laplace. 

We can write that:  
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Where vreg(s) is the high frequency small signal part of VREG. For a simple notation the variable s is 

omitted in the voltages symbols. 

In the node D3, the Kirchhoff’s Current Law gives: 
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Where, vd1 is the high frequency small signal part of VD1, and, 

 

sCgY 3ds033 
 (30)  

 

sCRY 3gd
1

311  

 (31) 
 

In the node D1, the Kirchhoff’s Current Law gives: 

 

ref1
2011

1
2

reg1
2011

1m

1d v
)RY(Y

R
v

)RY(Y

)Y(g
v 1





 







 (32) 
 

Where, 

 

sCgY 1ds011 
 (33) 
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 (34) 

 

By substituting (32) in (29), we obtain: 
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Where, 
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In the node D6, the Kirchhoff’s Current Law gives: 
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Where,  
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And, vd4 is the high frequency small signal part of VD4, vg5 is the high frequency small signal part of 

VG5 and vg6 is the high frequency small signal part of VG6.  

In the node D4, the Kirchhoff’s Current Law gives: 
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Where,  
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In the node G5, the Kirchhoff’s Current Law gives: 
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Where, Av is the open-loop gain of the opamp, rout is its output resistance, Cout is all capacitance connected 

from the output of the opamp to ground and, 
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sCrY out
1
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In the node G6, the Kirchhoff’s Current Law gives: 

888666 smreggddd1ggd1b v)Y(gvCsvCvs])C(C[Y 
 (51) 

 

Where, vs8 is the high frequency small signal part of VS8 and, 
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Where Rb represent the output resistance of current source bias network and, 
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In the node S8, the Kirchhoff’s Current Law gives: 
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Where, 
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 (57) 

 

By substituting (56) in (51), we obtain: 
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By substituting (32), (35), (47), (49) and (58) in (38), we obtain: 
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Note that gmi represents the small signal source-drain conductance of the MOSFET Mi and Yi 

represents the equivalent admittance for the shunt connection of the impedance of the capacitor and a 

resistor. 

By substituting (35) and (62) in (28), we obtain: 
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The expression of the PSRR(s) shows that its transfer function has 7 poles and 7 zeros, and 
consequently the transient response is convergent and the proposed circuit system is stable. 

The expression of low frequency PSRR is obtained by replacing s=0 in all the terms containing the 

complex variable s. Thus, 
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 (70) 
 

 

 
 

Figure 5. High frequency small signal model of proposed sub-1V BGVR 

 

 

4. SIMULATION RESULTS AND DISCUSION 

The proposed design of sub-1V bandgap voltage reference using the opamp based β-multiplier with 

resistive division configuration was simulated in 0.18-μm standard CMOS technology using Cadence 

Virtuoso Spectre Simulator. The proposed circuit generates an output voltage reference VREF of 634.6mV at 

27°C when the supply voltage is set to 1.8V. Figure 6 showns the variation of the output voltage reference 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

A sub-1V high PSRR OpAmp based β-multiplier CMOS bandgap voltage reference with… (Anass Slamti) 

165 

over temperature range -40°C to 140°C for different values of the supply voltage VDD, the maximum value 

of the temperature coefficient of VREF is less than 36ppm/°C with a minimum supply voltage of 1.2V. As it 

is shown in Figure 7, the DC value of PSRR is -93dB whene the supply voltage is 1.8V. The measurement 

line regulation of VREF is 104μV/V as is it shown in Figure 8. As it is shown in Figure 9, the two input 

voltages of the opamp have exactly the same value witch is equal to 0.6255 V whene the supply volage varies 

from 1.2 V to 1.8 V and therefore the error introduced by the input offset voltage of the opamp is eliminated. 

The layout of the proposed sub-1V bandgap voltage reference circuit is shown in Figure 10.  

For resistors implementation, the non-silicide P+ poly-resistor type is chosen wich has a very low 

temperature coefficient in order to ensure robustness of the circuit to variations in temperature and voltage. 

The layout area is 0.0337 mm2.  
Table 1 summarizes performance characteristics of the proposed sub-1V BGVR and comparison 

with related works is given. As it is shown in Table 1, the proposed circuit provides a high value of the PSRR 

at high frequencies ranging from 1MHz up to 10MHz, which is significantly higher than the value found in 

the related work see Table 1. 

 

 

 
 

Figure 6. Simulated temperature dependence of 

output voltage reference for different values of  

power supply voltage 

 

 

 
 

Figure 7. Simulated PSRR of the proposed sub-1V 

BGVR 

 

 
 

Figure 8. Simulated line regulation of the proposed 

sub-1V BGVR 

 
 

Figure 9. Simulation of the error introduced by input 

offset voltage of the OpAmp in proposed 
sub-1V BGVR 

 

 

 
 

Figure 10. Layout of proposed sub-1V BGVR reference 
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Table 1. Performance of Proposed Sub-1V BGVR and Comparison 
Performance [14] [15] [16] [17] [18] This work 

Technology (CMOS) 0.09 μm  0.13 μm  0.18 μm 0.18 μm 0.5 μm 0.18 μm 

Area (mm2) 0.0137 0.054    0.037 

VDD,min (V) 2.7 0.93 1.2 2.5 1.2 1.2 

VDD,max (V) 3.6 2.0 10 6 3.6 1.8 

VREF (V) 0.21398 0.594 0.681 1.194 0.561 0.6346 

TC (ppm/°C) 6.07 18.2 2.235 6.51  22.3 

Temperature operation range (°C) -20 to 120 -30 to 80 -50 to 115 -25 to 80 -20 to 120 -40 to 140 

Line regulation (μV/V) 16,67 35  1143  104 

PSRR DC  -82.7 dB 

 at 100 Hz  

-103 dB 

 at 100 Hz 

-102.5 dB 

 at 10 Hz 

-125 dB  

at 10 Hz 

-70 dB 

at 1kHz 

-93 dB 

 at 10 kHz 

PSRR@ 1MHz    >-20dB -40 dB >-20 dB -71 dB 

PSRR@ 10MHz       -52.8 dB 

 

 

5. CONCLUSION 

In this paper, a novel design of sub-1V bandgap voltage reference circuit with opamp based β-

multiplier and resistive divider architecture is proposed. The important contribution of this work is the 

obtaining of an accurate voltage reference with a high value of the PSRR in a very wide frequency range.  

The proposed architecture of the voltage divider has made it possible to elimlate the undesirable effect of the 

input offset voltage of the opamp in order to obtain a very accurate value of the output voltage reference and 

to improve the DC value of the PSRR. In order to reduce ripple from the supply voltage which directly 

influences the performance of the PSRR, an improved PSRR scheme is added to isolate the supply voltage 

source from the supply voltage of the operational amplifier and also the supply voltage of the BGVR core 

generator which allows improving the value of the PSRR in high frequency. The proposed voltage reference 

can be used as an internal comparison voltage in LDO regulators. 
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