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Abstract

Recently, shape-based matching and retrieval of 3D polygonal models has become one of the
most fundamental problems in computer vision. Dealing with families of objects instead of a single one
may impose further challenges on regular geometric algorithms. In this paper we focus on the classification
of 3D objects based on their geodesic distance & path calculated on a mesh using an iterative algorithm
for solving the Eikonal equation. For the classification process, we use both Multiclass Support Vector
Machine (M-SVM) classifier and K-Nearest Neighbors (KNN), Decision Tree (DT) and Artificial Neural
Networks (ANN) to better evaluate our descriptors. We illustrate the potential of extracted characteristics
by two 3D benchmarks. The recognition rates achieved in all experiments show that a small number of
curve between 9 and 12 can correctly categorize a family of 3D objects.
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1. Introduction

Three-dimensional object recognition is subject to researches of several authors [1-2].
This domain has numerous applications in the real world such as a robotics, artificial intelligence
and more [1-3]. Many approaches have been proposed [4-5]. The first one is to use the
characteristic views of 3D object for feature extraction. This approach is most often taken in the
recognition systems of 3D objects. D. Naji al [4] have proposed a method based on the
characterization of 3D objects by a set of 7 characteristic views, A.Theetten& al [5] used the
visual hulls to find how many characteristic views are required and what relative positions are
optimal.

The second kind involves techniques designed to handle either polyhedral or conic
objects [6]. Many approaches based on 3D Shape descriptors were proposed [7]. Extended
Gaussian Images [8-9] were frequently used, based on a mapping of normal surface of an
object onto the unit sphere (Gaussian sphere.) extended to include areas of each face. The
downsides of this approach are the face position information is lost and which faces are
connected.

The Shape-Diameter Function (SDF) [10] is a scalar function defined on the mesh
surface. It expresses the diameter of the object’'s volume in the neighborhood of each point on
the surface. The SDF was used for segmentation, skeleton detection and extraction.

Shapira et al [10] proposed to use the normalized histogram of SDF as a geometrical
attribute to represent each part of the objects. To find similarity between objects, they measures
similarity between the two objects parts using a metric as normalized histogram of the part,
using SDF values.

To reinforce their approach Shapira et al [10] use a tree scheme to define the structure
of parts inside the object. By using the part context (the path between the node representing the
part, and the root of the tree) as a part of the retrieval process, the SDF based system is very
useful to detect and compare objects with simple geometry for complex objects we can notice
two problems:

a) The level of decomposition: which means that a finger is a hand part or it should be
considered as separate part.

b) The number of parts to be detected.
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¢) The way to distinguish object with different number of parts. Some time we can find
similar object with different number of parts.

In the 2D/3D approach a 3D object is represented by a set of 2D view (they use a large
dataset of 2D views). Features are extracted among the different single-view [9].

Since every object is a set of 2D view, a linear classifier can be trained in a
discriminative manner (or a binary SVM classifier can be trained) to categorize each object (set
of view).

In practice, this method has two major disadvantages in the 3D objects recognition
process. When the image is seen from different angles of view, different objects might be
confused. On the other hand, the presence of shadows and spatial distortions leads to losses of
information.

K. Ding et al [9] propose a 3D model descriptor called Sphere Image, which is defined
as a collection of view features. The model is an improvement of the characteristic views
approaches.

A. Eitz et al [10] propose 3D object retrieval based on sketched feature lines as input,
the system turns out to be generally quite fast and useful for simple object.

In my knowledge no single shape descriptor and classification performs best for all 3D
objects representation. This field has attracted many researches.

In this paper, we use a system based on the extraction of features by the calculation of
the geodesic distance [9] on a mesh using an iterative algorithm for solving the Eikonal
equation. For good classification results we adopt M-SVM to achieve excellent recognition rates
in experiment. The method has been implemented as a system of 3D object recognition. After
outlining the system, the rest of this paper describes the recovery of 3D information by the
geodesic distance, the object recognition algorithms (Figure 1) shows an overview of the
system. Experimental results are finally shown to demonstrate the effectiveness of the method.
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Figure 1. Flow-chart of recognition system

This paper is organized as follows; in section 2 we describe the mathematical
background used. Section 3 deals with classification approach. The last section describe the
databases and experiments results.

2. Riemannian Manifold

Traditionally, methods [11-14] for calculating the geodesic path are classified into two
categories, depending on whether we calculate the distance between a source vertex and all
other vertices or the distance between a pair of fixed vertices which will be called starting point
and arrival point. The Dijkstra’'s algorithm [15] which allows exhaustively finding the shortest
path between a starting vertex and all other vertices of the mesh.

In this section, we illustrate some basic definitions of the Riemannian manifold [9] which
unifies the solution to all the problems discussed in this summary. This concept requires only
designing a local metric, which is then integrated over the entire domain to obtain the distance
between pairs of points. The important point is that the geodesic distance to a set of starting
points satisfies a nonlinear differential equation. The Eikonal equation is solved numerically by
calculating the geodesic distance.

A Riemannian manifold is a set equipped with a metric space M € R? — H(x) € R3*?
positive definite.

Using the Riemannian metric, we can calculate the length of the curve y as follows:
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y:[0,1] -
L) = [ Y OTHG )Y (©dt (1)

The Remote U, set to M with respect to the starting set of points § = (x,), € M is
given by:
Let (M, H) be a Riemannian space M c R?, the geodesic distance is defined by:

V(x,y) € M2, dp(x,y) = MiNyepry) L) = L(y") and y* = argmingp(xyy L(¥) (2)

With respect to the starting set of points.
The distance function U defined on M relative to the starting set of points § = (x;), <
M is given by Equation (3) [12]:

Vx €M, Us(x) = ming dae(x, %) @)

If the metric H is continuous, then for every starter set ScM the distance function U is
the unigue solution of the Hamilton-Jacobi equation.

{"vxuS”H{x)—l =1

‘us(xk) =0,Vk (4)

The geodesic curve y that realizes the minimum between x and the points of S is the
solution of the following Hamilton-Jacobi equation:

v HE Ty Us
[Y © = lHG) =27y Ul (5)
y(0) = x

For the discretization of Eikonale Equation we consider a small neighborhood B(x) of
each point x € O\S such that B(x) n S = @, where U, is the unique solution of the equation:

{Vx € Q U(x) = miny,cope U(y) +d(y,x),

vx €S,U(x) =0 (6)

Where d(y, x) is the geodesic distance defined above by the Equation (7):

U=r)
{U(x) =0ifx€Ss (7)

Where I is an operator defined as follows:
V=T) & V(x) = mincype UQ) +d(y,x) (8)

The U, (x)distance function for x € Q can be approached numerically by a vector u € R"
such that each component u; represents an approximation of the value of U, (x;). Then discrete
Eikonal equation is given by (9) [11]:

{in € Qu; = Minyeapy uy) + Iy — xi-]ln—l ; ©)

Vx; €S uy; =0,

Where T; is the metric tensor associated with the point x;.
To calculate numerically the solution of the Eikonal equation [12] which is nonlinear, we

can use the method based on iterations of Jacobi, giving it an initial iterate u(®, we can

calculate the value of the solution u as follows [11]:

¥ = r(u*) (10)
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In practice we choose three starting points and three arrival points, each distance is the
sum of geodesic distance on every mesh from the starting point to the end point.

3. Classification

Support Vector Machines (SVM) [18] are a class of learning algorithms that can be
applied to any problem that involves a phenomenon f that produces output y=f(x) from a set of
input x and the goal is to find f from the observation of a number of couples input/output.

The solution of binary classification problems using the Support Vector Machines (SVM)
method is well developed [19-20].

However, the SVM was originally developed for binary decision problems, and its
extension to multi-class problems is not straightforward. Multi-class pattern recognition
problems (where one has 2 classes) are typically solved using voting scheme methods based
on combining several binary classification decision functions [21, 22].

The popular methods for applying SVMs to multi-class classification problems
decompose the multi-class problems into many binary-class problems and incorporate binary-
class SVMs (M-SVM). Although the “one-against-one” approach demonstrates superior
performance [23-24], it may require prohibitively-expensive computing resources for many real-
world problems. The “one-to-the others” approach shows somewhat less accuracy, but still
demands heavy computing resources, especially for real-time applications. After doing the
following comparison [25], "one-against-one" is a good method whose performance is
comparable to "one-against-the rest.” We do latter simply because it's being used widely in the
Multiclass Support Vector Machines literature to solve multi-class pattern recognition problems;
because it's training time is shorter as in [21, 22].

4. Results and Analysis
4.1. Databases

We tested our method on two databases: the Princeton benchmark [26] and the
Watertight dataset [27].

4.1.1. Princeton
The Princeton Shape Benchmark [26] is a set of 3D polygonal models collected from

the web, the benchmark contains 907 models for training, and the test database contains 907.
For each 3D model, there is an Object File Format (.off) (Figure 2) present some objects from

the same family.
Figure 2. Different object of the family Fly

4.1.2. The Watertight Datasets

Watertight datasets [27] consists of 400 non-rigid 3D models which are classified into
400 categories.Objects are represented by seamless surfaces. This database provides a family
of 3D object of different classes as show in the Figure 3.

WLEXE

Figure 3. some views of 3D objects
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4.2. Experiments

The first goal of this experiment is to detect the minimal number of curves needed to
categorize a family of 3D objects. After that we are going to evaluate the selected number using
different techniques.

To identify the number of geodesic curve needed to categorize a family, we tested the
following combinations:

a) 2 starting points and 3 arrival points, (6 curves).

b) 3 starting points and 3 arrival points, (9 curves).

c) 3 starting points and 4 arrival points, (12 curves).

d) 4 starting points and 4 arrival points, (16 curves).

e) 4 starting points and 5 arrival points, (20 curves).

We choose the SVM classifier to evaluate the proposed combinations. Table 1 present
recognition rate using different kind of kernel. We should notice that the runtime and the system
performance, dependent essentially of the complexity of the object. In general, it depends on
the number of vertices and faces of each mesh.

Table 1. The recognition rate for different number of curve using geodesic distance and M-SVM

applied to the Watertight dataset
M-SVM ( kernel) 6curves 9curves 12curves 16curves 20curves

Rbf 69,18% 98,46% 96,46% 94,47%  91,46%
Polynomial 41,13% 72,31% 73,31% 71,21% 68,31%
Quadratic 65,20% 98,23% 98,78%  95,13%  87,43%

Linear 68,36% 96,46% 97,16% 94,76%  89,55%

The kernel is effectively a similarity measure, so choosing a kernel according to prior
knowledge is a good idea. In the absence of expert knowledge, we choose to perform our test
using the four kernels.

Except for the polynomial kernel, all kernels present good results. Concerning the
number of curves needed to classify family of 3D objects the best results was found for the two
sets composed of 9 and 12 curves. The decreasing of classification rate for objects represented
by 20 geodesic curves can be explained by the fact that more the number of curve increase the
descriptors become more specific. As a result it can be used to categorize a single object or to
separate object from the same family.

In the second test, we try to evaluate the effectiveness of 9 curves in similarity
detection. Table 2 show some results obtaining by using the KNN with K=4.

Table 2. 3D objects retrieval using geodesic distance
Requested Image Results using geodesic distance
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Table 2 show the efficiency of the geodesic distance; all returned object can be
considered similar.

In the next part of the experiment we evaluated 9 curve set using different techniques.
Firstly by evaluating the intra-connection of objects from the same class and secondly by the
quality to separate object from different class using the Princeton dataset.

4.2.1. Evaluation of Classes Intra-Connection

By using the k-means clustering algorithm [28] we found the same repartition of vectors.
(Figure 4) present the projection of vectors of each class while (Figure5) present the class
centers.
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Figure 4. Repartition of Watertight dataset
using K-means algorithm

Figure 5. Class centers of Watertight dataset
using K-means algorithm

Using K-means clustering more than 97% of vectors was assigned correctly to their

class of member ship.

4.2.2. Evaluation of Classes Inter-Connection

Table 3. Geodesic distance evaluation using PCA

Axis Eigen Difference Proportion Histogram Cumulative
value (%) (%)
1 107.977441  97.909587 59.00 % 59.00 %
2 10.067854 0.340559 5.50 % 64.51 %
3 9.727296 2.395702 5.32% 69.82 %
4 7.331594 1.973111 4.01 % 73.83 %
5 5.358483 0.359001 2.93 % 76.76 %
L
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To evaluate class inter connection of Watertight dataset we start by using the Principal
Component Analysis (PCA) [29] to analyze the matrix representing the data set. Table 3 shows
the first five components.

Just by using two axis we can notice the distinction between the different classes of
member ship (Figure 6).

4.2.3. Evaluation Using Data Mining Algorithms

The data set of models has been split into a training and a test Database. Algorithm
should be trained on the training database (without influence of the test database). Then, after
all exploration has been completed and all algorithmic parameters have been frozen, results
should be reported for the test database.

Table 4. Recognition rate of Watertight dataset

Class KNN ANN C4.5 Random Tree
Al 0.3158 0.7895 0.7368 0.99
A2 0.45 0.85 0.7 0.98
A3 0.5 0.15 0.85 0.98
A4 0.25 0.1 0.5 0.97
A5 0.55 0.7 0.6 0.97
A6 0.4 0.8 0.5 0.96
A7 0.5 0.65 0.6 0.96
A8 0.4 0.3 0.6 0.95
A9 0.15 0.8 0.5 0.95
Al10 0.2 0.45 0.75 0.94
All 0.8 0.35 0.85 0.94
Al2 0.45 0 0.6 0.93
Al13 0.55 0.1 0.5 0.93

Computing times  936ms 4618 ms  1888ms 172ms

We evaluate the proposed descriptors (using 9 curves) using multiclass classification
technics like ANN, KNN, C4.5, Random Tree (Table 4).
The classifiers parameters used in the experimental are the following:
a) KNN parameters: Neighbors 5 and the HEOMDistance (Heterogeneous Euclidean
Overlap Metric).
b) ANN parameters: One hidden layer, Neurons in the hidden layer 10, Validation set
proportion is equal to 0.2, and Error rate threshold 0.01.
c) Decision tree (C4.5); parameters: Min size of leaves 5, Confidence-level for
pessimistic 0.25. Number of nodes 71, Number of leaves 36.
d) Random Tree: Number of attribute for split = -1, Number of nodes 251, Number of
leaves 126.
We can notice the very good results achieved using Random Tree: more than 93% as
classification rate for all class of membership are obtained.

5. Conclusion

In this article, we have presented an approach for 3D objects retrieval based on
geodesic distance, applied to an inhomogeneous database. We focus on study of number of
geodesic curves needed to categorize a family of 3D objects. Based on various test using
clustering, statistical and classification technics. We can conclude that a small humber of
geodesic curves between 9 and 12 are enough to characterize a family of 3D objects.
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