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ABSTRACT

A concept similarity measure is one classical problem in Description Logic
which aims at identifying similarity between concepts in an ontology. Mea-
suring a distance between concepts is an essential process. Most methods used
for measuring, they usually do not take semantic for consideration. This work
introduces a new method for concept similarity measure. The proposed method
semantically analyzes structures of two concepts and then computes the similar-
ity score based on the number of shared structures. The efficiency of the pro-
posed algorithm is measured by means of the satisfaction of desirable properties
and intensive experiments on the SNOMED CT ontology.
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1. INTRODUCTION
With a rapid increasing of internet users and a massive online data, retrieving a relevant information

from a given query is one of the most challenging topics. Semantic querying [1] is one recent aspect of infor-
mation retrieval [2], which aims at representing knowledge in a well-found way and incorporating intelligence
into the system. With the help of Description Logics (DLs) [3, 4], the use of Web Ontology language (OWL)
[5, 6] to model the knowledge has been introduced and is lately recommended as a new standard for knowl-
edge representation by W3C. A family of Description Logics (DLs) is a common tool to formally equip the
knowledge base and offers several decidable reasoning services which are sufficient for several scenarios. For
example, determining whether or not a concept is a subclass of another one can be done using a concept sub-
sumption. Besides a usefulness of classical reasoning services [7], there are some cases in which the classical
reasoners are inapplicable. An example includes a measuring similarity score between concepts. By using a
classical DL reasoner, it is evidently insufficient since subsumption reasoning service simply returns a boolean
value so they cannot provide a degree of similarity between concepts.

Several methods have been proposed for measuring similarity between concepts. The most well-
known techniques are the distance-based [8] and the pattern-based analysis [9, 10]. These methods basically
can be used for only learning a new pattern of concept. However, due to the fact that they have a lack of semantic
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analysis. They can only provide rough concept similarity outputs. To address this problem, modern semantic-
based techniques, which aim at quantitatively analyzing values of concepts by means of their definitions, are
lately introduced. The techniques are normally equipped to work with a different family of DLs. Distel et
al. [11] proposed a new method for concept dissimilarity measure. The difference between two concepts C
and D is measured by means of the number of operations required for relaxing a concept D until subsumed
by a concept C. If the two concepts are concluded to be totally similar, the method returns 0 as an output.
In addition to the method they proposed, the dissimilarity score is computed based on the number of relaxing
operations.

Jaccard [12] proposed a simple method for computing similarity between concepts. However, the
proposition merely supports the concept conjunction, which is mostly not practical in many real life ontologies.
For example, it has been proved that building a large-scaled ontology requires at least a family of DL ELH
(see e.g. SNOMED CT [13] and gene ontology). Recently, a similarity measures for a less-expressive DL FL0

was proposed by Racharak and Suntisrivaraporn [14]. Lehmann and Turhan [15] extended the work of Jaccard
to support more constructors. They proposed a new similarity framework for DL ELH. The operators of the
proposed formulas are described by means of desired properties and left for interested users to customize.

In the work proposed by Janowic [16], a more refined semantic measure was proposed to employ high
expressive DLs, e.g.ALN . The extension to support DL SHI is subsequently proposed in the later work [17].
d’Amato et al. [18] introduced a new method forALE concept similarity measure. The method satisfies several
desirable properties including symmetric, equivalent invariant, structural dependent, and reverse subsumption
preserving property. The adoption for DL ALC, which equally satisfies the same properties, is proposed in
their later work [19].

In this work, we introduce a new algorithm for computing similarity between concepts based on
shared features. Unlike any other approaches which are tailored for a specific domain, this work proposes
a new notion for a concept similarity measure for a general domain. The proposed method is designed to
work with the knowledge base modeled using at most the lightweight DL ALEH family. Comparing to more
expressive DLs, modeling the knowledge base using the family of ALEH is more practical since a computing
time is polynomially bounded. Moreover, it is more convenient to meet a large-scale expansion. Examples
include the modeling of knowledge bases using the DL EL, e.g. the well-known knowledge bases for clinical
terms (SNOMED CT), lexical terms (WordNet), and genes (Gene ontology).

To enable semantic measure, we first transform the concept descriptions to their equivalent descrip-
tion trees. The level of similarity from one concept to another is then measured based on how well the two
description trees can be mapped. The overall similarity rate is lastly reported as an average of similarity. The ef-
fectiveness of the proposed method is measured by means of satisfactory of desirable properties and compared
to state-of-the-art methods.

In the next section, we briefly introduce the notion of DLs, describe the expansion process for a
concept description, describe the rules which we use to normalize expanded concept description, and also
provide steps which we use to construct a so-called concept description tree. Later sections introduce notions
of a homomorphism score which measures a similarity from one concept description tree to another. The notion
of ALEH semantic similarity measure is introduced. The example of computation is exemplified by means
of a prototypical family ontology. More intensive experiments are performed on the well-known SNOMED CT
ontology and reported in the experiment section. The last section gives a conclusion of this work.

2. BACKGROUND
In DL ALEH, concepts are used to describe classes of objects and roles are used to describe their

relations. In this work, we use CN to represent a set of concept names and RN to represent a set of role names.
Complex concept descriptions can be formulated based on CN, RN, and concept constructors such as a concept
conjunction u (the upper section of Table 1 show all constructors for DL ALEH). Conventionally, we use
the symbols r and s to represent role names (r, s ∈ RN), A and B to represent concept names (A,B ∈ CN),
and C and D to represent complex concept descriptions. For example, let Female,Male,Person ∈ CN and
child ∈ RN, we can define a concept of Woman by means of the following concept description:

Female u Person.

Likewise, we can define a concept of Mother based on the existing concept Woman as follow:
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Woman u ∃child.Person.

Formally, we define the semantics of DL ALEH by means of an interpretation I = (∆I , ·I), which
is a pair of an interpretation domain ∆I (i.e. a finite set of individuals of the domain of interest), and an
interpretation function ·I (i.e. a function that maps A ∈ CN to a subset AI of ∆I and r ∈ RN to a binary
relation rI on ∆I). There are two facilities to define a new concept: a) concept equivalence (≡) and b) concept
inclusion (v). See the syntax in the lower part of Table 1. For example, we can define the concept Mother
using the concept equivalence as shown below:

Mother ≡ Woman u ∃child.Person.

This infers that a mother is a woman who has some child person and vice versa. However, if a concept is
defined using the concept inclusion, it will be interpreted merely in a forward direction. For example, if we
define a concept Father as follows:

Father v Man u ∃child.Person

this infers that a father is a man who has some child person. However, it is still unknown whether a man who
has some child person will be a father. Nevertheless, for each concept inclusion B in which B v D, it can be
equally transformed to a concept equivalence B ≡ F uD where F is a fresh concept name (F is unknown).
Therefore, the concept Father can be transformed to the following form:

Father ≡ F u Man u ∃child.Person.

In addition, assume that each defined concept has only one definition and does not contain any cyclic depen-
dencies, by recursively replacing defined concepts with their definitions, we have a new equivalent concept
definition which contains only primitive concept names (concept names that appear only on the right-hand side
of concept definitions). Symbolically, we denote by CNpri a set of primitive concepts.

We call a set of concept definitions a knowledge base or a terminology (TBox). For instance, we can
define the TBox for a family domain as a set of concepts shown in Figure 3. A TBox is unfoldable if all concept
definitions are expandable. Given, for example, the definition of MotherNoSon:

MotherNoSon ≡ Mother u ∀child.Woman

By replacing Mother with Woman u ∃child.Person and Woman with Female u Person, we then have an
equivalent definition of MotherNoSon as follows:

MotherNoSon ≡ Female u Person u ∀child.(Female u Person) u ∃child.Person

where Person,Female ∈ CNpri. In symbol, for everyALEH concept which defined in an unfoldable TBox, we
assume without lost of generality in the following form:

ll

i=1

Pi u
ml

j=1

∃rj .Cj u
nl

k=1

∀sk.Dk (1)

where Pi ∈ CNpri, rj , sk ∈ RN, and Cj , Dk ∈ CN ∪ {>,⊥}. For simplicity, we assign PC := {P1, . . . , Pl},
EC := {∃r1.C1, . . . ,∃rm.Cm}, and AC := {∀s1.D1, . . . ,∀sn.Dn} where l is the size of PC , m is the size of
EC , and n is the size of AC . Additionally, given that v∗ be the transitive closure of v over the role names, we
use the symbolsR∃r = {s ∈ RN | r v∗ s} to represent a set of super-roles of r andR∀r = {t ∈ RN | t v∗ r}
to represent a set of sub-roles of r.
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Table 1. Syntax and semantics of the DL ALEH
Name Syntax Semantics

bottom ⊥ ∅
top > ∆I

concept name A AI ⊆ ∆I

atomic negation ¬A ∆I\A
concept conjunction C uD CI ∩DI

existential restriction ∃r.C {x | ∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI}
universal restriction ∀r.C {x | ∀y ∈ ∆I : (x, y) ∈ rI ⇒ y ∈ CI}

concept inclusion B v D AI ⊆ DI

concept equivalent B ≡ D AI = DI

role hierarchy r v s rI ⊆ sI

In addition to the expanded form of the ALEH concept description, there may exists a case which
makes the description implicit. This can be eliminated by applying the following rules over the expanded
description:

∀r.C u ∃r.D →∀r.C u ∃r.(C uD),

∀r.C u ∀r.D →∀r.(C uD),

∀r.> →>,
∃r.⊥ →⊥,
C u ⊥ →⊥.
A u ¬A →⊥,
C u > →C,

To be more illustrative, by applying the rules above to the expanded form of MotherNoSon, we have the
following normalized definition:

Female u Person u ∃child.(Female u Person) u ∀child.(Female u Person)

3. RESEARCH METHOD
In the work proposed by Baader and Kusters [20], a characterization using homomorphism for an

unfoldable ALEH TBox has been proposed. The authors proved that if the concept C is subsumed by D, then
there must exist a homomorphism from a concept description tree of D to that of C. Our proposed concept
similarity measure is directly derived from a concept homomorphism, which is one important characterization
of a concept subsumption. The measure is, however, extended for the case where the two concepts are out of a
subsumption relation but there still exist some shared structures.

Definition 1. (ALEH concept subsumption) Let C and D are ALEH concept descriptions which defined in
the terminology O, we say that C v D if CI ⊆ DI . Moreover, C ≡ D if C v D and D v C.
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Figure 1. An overview of the similarity measure system

Figure 1 depicts the overview of our similarity measure system. Starting with two input concept
descriptions, we expand and transform them into the normal forms. A so-calledALEH description tree is then
constructed. For example, given C an expanded and normalized concept description, we construct a concept
description tree GC := (V,E, v0, `, ρ) where V is a set of nodes, E ⊆ V × V is a set of edges, v0 is the root,
` : V → 2CN

pri

is a function representing a set of node labels, and ρ : E → 2RN is a function representing a set
of edge labels. The following shows the steps for constructing an ALEH description tree:

i. Create a new node v0 and assign PC to `(v0).

ii. For each ∃r.Dj ∈ EC , create a new node w and then introduce a new edge (v0, w) with w an r-successor
of v0 and assignR∃r to ρ(v0, w) . Repeat from step (i) by treating Dj as C and w as v0.

iii. For each ∀s.Dk ∈ AC , create a new nodew′ and then introduce a new edge (v0, w
′) withw′ an s-successor

of v0 and assignR∀s to ρ(v0, w
′). Repeat from step (i) by treating Dk as C and w′ as v0.

Theorem 1 shows that the concept subsumption can be characterized by means of a homomorphism mapping
from an opposite direction.

Theorem 1 ( Let C and D be ALEH concept descriptions, and GC and GD be the corresponding ALEH
concept description trees. We say that C v D if there is a homomorphism h : GD → GC which maps all nodes
and edges of GD to the corresponding nodes and edges of GC [21]). .

Figure 2. A homomorphism (dashed arrows) mapping GMother to GMotherNoSon and a failure of mapping (dotted
arrows) GMother to GNonAdoptiveFather.

To be more visible, consider the normalized description of the concept MotherNoSon and the following nor-
malized description of the concept Mother and NonAdoptiveFather:

Mother ≡ Female u Person u ∃child.Person,
NonAdoptiveFather ≡ ¬Female u Person u ∃child.Person u ∀achild.⊥. (2)

We can construct the ALEH description trees GMotherNoSon, GMother, and GNonAdoptiveFather using the
process previously described. Figure 2 shows a successful attempt of the homomorphism mapping from GMother
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to GMotherNoSon. It is obvious that all nodes and edges GMother can be mapped to GMotherNoSon. The figure also
shows a failed attempt of a homomorphism mapping from GMother to GNonAdoptiveFather. By Theorem 1, we can
conclude that MotherNoSon v Mother but NonAdoptiveFather 6v Mother.

By employing a classical subsumption reasoning service, it is obvious that MotherNoSon is Mother
and NonAdoptiveFather is not Mother. However, by analyzing the structure of GNonAdoptiveFather and GMother,
there are some shared structures (e.g. both are person and have some child). Thus, there must exist some
similarity between these two concepts though out of subsumption relation. Our interest is to measure their
degree of similarity.

3.1. Homomorphism score
From Theorem 1, it is obvious that a subsumption relation can be characterized by means of a ho-

momorphism mapping in a reverse direction. In this section, we consider a case where the homomorphism
condition is not fully satisfied but there is some shared structure between two description trees.

Symbolically, let C and D be ALEH concept descriptions, PC and PD be sets of primitive concepts,
EC and ED be sets of existential restrictions,AC andAD be as sets of universal restrictions, and GC and GD be
ALEH concept description trees. We measure the similarity fromC toD by means of the homomorphism score
hd(GD,GC). The homomorphism score function hd : GALEH ×GALEH → [0, 1] is mathematically defined
as follows:

hd(GD,GC) := (1− µe − µa) · p hd(PD,PC) + µe · e set hd(ED, EC) + µa · a set hd(AD,AC)

Where each component constituting this function is defined in the following manners. The parameter µe =
|ED|

|PD ∪ ED ∪ AD| and µa = |AD|
|PD ∪ ED ∪ AD| assign the weights indicating how important the existentially and

universally quantified subconcepts are to be considered. Intuitively, if the number of top-level primitive con-
cepts PD is greater than the number top-level existential restrictions ED and the number of top-level existential
restriction AD, we consider that the similarity between nodes is more important than the similarity between
edges, which results in an increasing of µ. Otherwise, the similarity between edges is more important than that
of between nodes, which results a decreasing of µ. Additionally, the homomorphism score hd is a measure
from GD to GC . It is defined as a weighted summation of the similarity between nodes (p hd), existential
restrictions (e set hd), and universal restrictions (a set hd). The function p hd determines the similarity score
between nodes and is defined as follows:

p hd(PD,PC) :=

{
1 if PD = ∅ or PC = {⊥}
|PD ∩ PC |
|PD| otherwise, (3)

where | · | represents the set cardinality. To identify the similarity among edges, we consider the similarity from
ED to EC , and also from AD to AC using the function e set hd(ED, EC) and a set hd(AD,AC), respectively.
The function e set hd(ED, EC) is defined as follow:

e set hd(ED, EC) :=


1 if ED = ∅
0 if ED 6= ∅, EC = ∅∑

εi∈ED

max{e hd(εi,εj):εj∈EC}
|ED| otherwise,

(4)

where εi, εj are existential restrictions; Note that all ∃r.⊥ will be transformed to ⊥ during the normalization
process. Therefore, we need not to treat this case in Equation 4. For each existential restriction εi, we compute
the similarity to each εj using the function e hd.

e hd(∃r.X,∃s.Y ) := γe(νe(r) + (1− νe(r)) · hd(GX ,GY )) (5)

where νe : RN → [0, 1) is a role weight function. It assigns different weight to each role name. Moreover,
we use γe = |R∃r ∩ R∃s|

|R∃r| to indicate an inclusion score between labels of two edges. For the case γe = 0,
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this infers that the two edges have no feature in common. Therefore, the homomorphism score of a successor
can be omitted. The function e hd returns the similarity score if there is an existential edge label in common;
However, the successors’ structures must be recursively checked using the function hd(GX ,GY ). Similar to the
existential restrictions, we apply the same operations for the universal restrictions as shown below:

a set hd(AD,AC) :=


1 if AD = ∅,
0 if AD 6= ∅,AC = ∅,∑

αi∈AD

max{a hd(αi,αj):αj∈AC}
|AD| otherwise

(6)

where αi, αj are universal restrictions; and

a hd(∀r.X,∀s.Y ) :=

{
γa if PY = {⊥},

γa(νa(r) + (1− νa(r)) · hd(GX ,GY )) otherwise (7)

where γa = |R∀r ∩ R∀s|
|R∀r| and νa : RN→ [0, 1).

ω1 Woman≡ Female u Person

ω2 Man≡¬Female u Person

ω3 Parent≡Person u ∃child.Person
ω4 Mother≡Woman u Parent

ω4 Father≡Man u Parent

ω5 MotherNoSon≡Mother u ∀child.Woman

ω5 MotherNoDaughter≡Mother u ∀child.Man

ω5 AdoptiveFather≡Man u ∃achild.Person
ω5 NonAdoptiveFather≡ Father u ∀achild.⊥
ω5 achildv child

Figure 3. An example ALEH terminology Ofamily; here child, achild are shorthands for hasChild and
hasAdoptedChild, respectively.

To demonstrate how the algorithm works, we consider the similarity measure between the concepts
Mother and NonAdoptiveFather depicted in Figure 2. By using µe, µa, γe, and γa as previously defined and
fixing νe(r) and νa(r) to 0.4 for each r ∈ RN, the following show the computing steps. Note that, for simplicity,
the abbreviations of concept names M and NAF for Mother and NonAdoptiveFather are used, respectively.

hd(GM,GNAF) := 2
3p hd(PM,PNAF) + 1

3e set hd(EM, ENAF) + (0)a set hd(AM,ANAF)

:= 2
3 [ 12 ] + 1

3e hd(εi, εj)

// with µe = 1
3 , µa = 0, εi = ∃child.Person and εj = ∃child.Person

:= 2
3 [ 12 ] + 1

3 [ 11 ][ 25 + 3
5hd(GPerson,GPerson)] := 2

3 [ 12 ] + 1
3 [ 25 + 3

5 [ 11 ]] := 0.67

The homomorphism score of the opposite direction is computed as follows:

hd(GNAF,GM) := 2
4p hd(PNAF,PM) + 1

4e set hd(ENAF, EM) + 1
4a set hd(ANAF,AM)

:= 2
4 [ 12 ] + 1

4e hd(εi, εj) + 1
4a hd(αi, αj)

// with µe = 1
4 , µa = 1

4 , εi = ∃child.Person and εj = ∃child.Person αi = ∀achild.⊥ and αj = ∅
:= 2

4 [ 12 ] + 1
4 [ 11 ][ 25 + 3

5hd(GPerson,GPerson)] + 1
4 [0] := 0.50
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By applying the above computation steps, the homomorphism score from GMother to GNonAdoptiveFather
is 0.67, and that from the GNonAdoptiveFather to GMother is 0.50. For the other pairs of concepts defined in Ofamily,
we apply the same steps. Table 2 shows the homomorphism scores among concepts in Ofamily.

Table 2. Homomorphism scores among defined concepts in Ofamily.
hd(↓,→) Woman Man Parent Mother Father MNS MND AF NAF
Woman 1.00 0.50 0.50 0.67 0.33 0.50 0.50 0.33 0.25
Man 0.50 1.00 0.50 0.33 0.67 0.25 0.25 0.67 0.50
Parent 0.50 0.50 1.00 0.67 0.67 0.43 0.43 0.50 0.50
Mother 1.00 0.5 1.00 1.00 0.67 0.68 0.68 0.50 0.50
Father 0.50 1.00 1.00 0.67 1.00 0.43 0.43 0.83 0.75
MotherNoSon (MNS) 1.00 0.50 1.00 1.00 0.67 1.00 0.85 0.50 0.55
MotherNoDaughter (MND) 1.00 0.50 1.00 1.00 0.67 0.85 1.00 0.50 0.55
AdoptiveFather (AF) 0.50 1.00 1.00 0.67 1.00 0.43 0.43 1.00 0.75
NonAdoptiveFather (NAF) 0.50 1.00 1.00 0.67 1.00 0.68 0.68 0.83 1.00

By observing the values in Table 2 and by using Proposition 2, it is obvious that that the closer the
hd(GD,GC) is equal to 1, the more likely the subsumption may hold in a reverse direction. Moreover, ifC v D,
this means that hd(GD,GC) = 1 and vice versa. From Theorem 1 [20, 22], it implies Proposition 2 stated as
follows;

Proposition 2. Let C and D beALEH concept descriptions, and GC and GD be concept description trees, the
following are similar:

1. hd(GD,GC) = 1.

2. C v D,

3.2. ALEH Semantic Similarity
The homomorphism score function returns a value that represents the similarity of a concept com-

paring to another concept. The value, however, measures the similarity only in one direction. For example,
hd(GM,GNAF) = 0.67, whereas hd(GNAF,GM) = 0.50. Since the homomorphism scores of both the forward
and the backward direction indicates the similarity score of the two concepts, we therefore define the similarity
for ALEH concept descriptions using the average value. The following Defintion 2 provides the definition
of the ALEH similarity measure. The proposed measure is the average of the homomorphism score in both
directions, which ensures that sim(C,D) = sim(D,C). Table 3 shows the similarity score among concepts in
Ofamily.

Definition 2. Let C and D be ALEH concepts. A similarity score between C and D is calculated as follows:

sim(C,D) :=
hd(GC ,GD) + hd(GD,GC)

2
, (8)

Table 3. Similarity score among defined concepts in Ofamily.
sim(↓,→) Woman Man Parent Mother Father MNS MND AF NAF

Woman 1.00 0.50 0.50 0.83 0.42 0.75 0.75 0.42 0.38
Man 1.00 0.50 0.42 0.83 0.38 0.38 0.83 0.75
Parent 1.00 0.83 0.83 0.71 0.71 0.75 0.75
Mother 1.00 0.67 0.84 0.84 0.75 0.71
Father 1.00 0.55 0.55 0.92 0.88
MotherNoSon (MNS) 1.00 0.85 0.46 0.61
MotherNoDaughter (MND) 1.00 0.46 0.59
AdoptiveFather (AF) 1.00 0.79
NonAdoptiveFather (NAF) 1.00

Corollary 3. Let C and D be concept descriptions, PC and PD be sets of primitive concepts, EC and ED be
sets of existential restrictions, and AC and AD be sets of universal restrictions. We say that C v D if
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(a) PD ⊆ PC ,

(b) for each ∃r.D′ ∈ ED there exists ∃s.C ′ such that s v∗ r and C ′ v D′, and

(c) for each ∀r.D′ ∈ AD there exists ∀s.C ′ such that s v∗ r and C ′ v D′.

Corollary 4. Let C, C ′, D, and D′ be concept descriptions, we say that ED ∼= EC iff for each ∃r.D′ ∈ ED
there exists ∃s.C ′ ∈ EC such that s v∗ r, r v∗ s, C ′ v D′, and D′ v C ′.

Corollary 5. Let C, C ′, D, and D′ be concept descriptions, we say that AD ∼= AC iff for each ∀r.D′ ∈ AD
there exists ∀s.C ′ ∈ AC such that s v∗ r, r v∗ s, C ′ v D′, and D′ v C ′.

Corollary 6. Let C and D be concept descriptions, C ≡ D iff PD = PC , ED ∼= EC , and AD ∼= AC .

3.3. Desirable Properties for Concept Similarity
To identify whether the proposed similarity measure has a good performance, it is important to check

the satisfactory of desirable properties. This section describes all important similarity properties and gives
mathematical proofs.

Let C, D and E be ALEH concept descriptions, we say that the similarity measure is:

i. symmetrical if sim(C,D) = sim(D,C),

ii. equivalence closed if sim(C,D) = 1 iff C ≡ D,

iii. equivalence invariant if C ≡ D then sim(C,E) = sim(D,E),

iv. subsumption preserving if C v D v E then sim(C,D) ≥ sim(C,E),

v. reverse subsumption preserving if C v D v E then sim(C,E) ≤ sim(D,E),

vi. structurally dependent if lim
n→∞

sim(D′, E′) = 1 where D′ :=
d

i≤n
Ci uD, E′ :=

d

i≤n
Ci u E, Ci and Cj

are atom comcepts in C where Ci 6v Cj .

vii. triangle inequality if 1 + sim(D,E) ≥ sim(D,C) + sim(C,E).

The proposed similarity measure sim(·, ·) are symmetric, equivalence closed, equivalence invariant, subsump-
tion preserving, structurally dependent, not reverse subsumption preserving, and not satisfying triangle inequal-
ity. The following are the proofs

i. From Definition 2, it is obvious that sim(C,D) = sim(D,C).

ii. (=⇒) By Equation 8, sim(C,D) = 1 implies that hd(GC ,GD) = 1 and hd(GD,GC) = 1. From Propo-
sition 2, we have C v D and D v C. Therefore, C ≡ D. (⇐=) Given that C ≡ D, using the same
proposition, we have C v D and D v C. This implies that hd(GC ,GD) = 1, and hd(GD,GC) = 1,
therefore sim(C,D) = 1.

iii. Given that C ≡ D, from Corollary 6, we have PC = PD, EC ∼= ED, and AD ∼= AC . Therefore,
GC = GD and this implies hd(GC ,GE) = hd(GD,GE) and hd(GE ,GC) = hd(GE ,GD). Such that
sim(C,E) = sim(D,E).

iv. From Definition 2, it is sufficient to prove that

hd(GC ,GD)+hd(GD,GC)
2 ≥ hd(GC ,GE)+hd(GE ,GC)

2
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Given that C v D v E, this implies that C v E. From Proposition 2, we have hd(GE ,GC) =
hd(GD,GC) = 1. Therefore, it is sufficient to show that hd(GC ,GD) ≥ hd(GC ,GE).

On both sides of the inequality, if expanded, we have the same µe and µa, where

µe = |EC |
|PC ∪ EC ∪ AC | , and µa = |AC |

|PC ∪ EC ∪ AC | ;

Therefore, it is enough to prove that

a) p hd(PC ,PD) ≥ p hd(PC ,PE)

b) e set hd(EC , ED) ≥ e set hd(EC , EE)

c) and a set hd(AC ,AD) ≥ a set hd(AC ,AE)

In a), we need to show that |PC ∩ PD||PC | ≥ |PC ∩ PE ||PC | . In short, we need to show that

| PC ∩ PD | ≥ | PC ∩ PE | (9)

By Corollary 3, C v D v E ensures that PE ⊆ PD ⊆ PC . Therefore | PD |≥| PE |
and Equation 9 is true. To prove that b) is true, we show that

∑
εi∈EC

max{e hd(εi,εj):εj∈ED}
|EC | ≥

∑
εi∈EC

max{e hd(εi,εj):εj∈EE}
|EC | (10)

∑
εi∈EC

max{e hd(εi, εj) : εj ∈ ED} ≥
∑

εi∈EC
max{e hd(εi, εj) : εj ∈ EE}.

Let ε̂i ∈ EE such that e hd(εi, ε̂i) = max{e hd(εi, εj) : εj ∈ EE}, but since ε̂i ∈ EE ⊆ ED, then
max{e hd(εi, εj) : εj ∈ ED} ≥ e hd(εi, ε̂i).

Therefore, Equation 10 is true. By applying the same steps, it implies that c) is also true.

v. Let D′ :=
d

i≤n
Ci uD, E′ :=

d

i≤n
Ci u E, and n = nP + nE + nA be the number of all atomic sequences

in C where nP , nE , nA be the number of primitive concepts, the number of existential restrictions, and the
number of universal restrictions, respectively. To prove this, we consider the following case distinctions.

(a) If nP → ∞, and both nE and nA are finite, it suffices to show i) lim
nP→∞

µe = 0, ii) lim
nP→∞

µa = 0

and iii) lim
nP→∞

p hd(PD′ ,PE′) = 1. Therefore, hd(GD′ ,GE′) = hd(GE′ ,GD′) = 1 which implies

sim(D′, E′) = 1. Starting from
µe = |ED′ |

|PD′ ∪ ED′ ∪ AD′ | = |ED′ |
|PC | + |PD| + |ED′ | + |AD′ | = |ED′ |

nP + |PD| + |ED′ | + |AD′ | (11)

since | PD |, | ED′ | and | AD′ | are constants, lim
nP→∞

µe = lim
nP→∞

|ED′ |
nP + |PD| + |ED′ | + |AD′ | = 0.

To show ii) lim
nP→∞

µa = 0, consider the formula defining

µa = |AD′ |
|PD′ ∪ ED′ ∪ AD′ | = |AD′ |

nP + |PD| + |ED′ | + |AD′ |

Therefore,
lim

nP→∞
µa = lim

nP→∞
|AD′ |

nP + |PD| + |ED′ | + |AD′ | = 0.

For iii) lim
nP→∞

p hd(PD′ ,PE′) = 1, we consider the definition of p hd.
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p hd(PD′ ,PE′) = |PD′ ∩ PE′ |
|PD′ | = |PC | + |PD ∩ PE |

|PC | + |PD| = nP + |PD ∩ PE |
nP + |PD|

where | PD ∩ PE | and | PD | are constants. Thus,

lim
nP→∞

p hd(PD′ ,PE′ ) = lim
nP→∞

nP + | PD ∩ PE |
nP + | PD |

= 1. (12)

(b) If nE → ∞, nA and nP are finite, it suffices to show that lim
nE→∞

µe = 1 and

lim
nE→∞

e set hd(ED′ , EE′) = 1 which implies hd(GD′ ,GE′) = hd(GE′ ,GD′) = 1, and sim(D′, E′) =

1. From Equation 3.1., we have µe of the following form:

µe = |ED′ |
|PD′ ∪ ED′ ∪ AD′ | = |EC |+|ED|

|PC | + |PD| + |EC | +|ED| + |AC | + |AD|

= nE +|ED|
|PC | + |PD| + nE +|ED| + |AC | + |AD|

(13)

Since | PC |, | PD |, | ED |, | AC |, and | AD | are constants, by taking limit, we have

lim
nE→∞

µe = lim
nE→∞

nE +|ED|
|PC | + |PD| + nE +|ED| + |AC | + |AD| = 1

To show that lim
nE→∞

e set hd(ED′ , EE′) = 1, we have

e set hd(ED′ , EE′) =
∑

ei∈ED′

max{e hd(ei,ej):ej∈EE′}
|ED′ | =

∑
ei∈E

D′
max{e hd(ei,ej):ej∈EE′}

|ED′ |

=

∑
ei∈EC

max{e hd(ei,ej):ej∈EE′}

|EC ∪ ED| +

∑
ei∈ED

max{e hd(ei,ej):ej∈EE′}

|EC ∪ ED|

Since EC ⊆ EE′ , for each εi ∈ EC there exists εj ∈ EE′ such that εi = εj . Thus,

e set hd(ED′ , EE′) = nE + p
|EC | + |ED| = nE + p

nE + |ED|

where p =
∑

ei∈ED
max{e hd(ei, ej) : ej ∈ EE′}, and p ≤ | ED |. Therefore, the following relation-

ship is true.

lim
nE→∞

e set hd(ED′ , EE′) = lim
nE→∞

nE + p

nE + | ED |
= 1.

(c) If nA →∞, and nE and nP are finite, by applying the same steps as described in (b), it is obvious that
lim

nA→∞
µa = 1 and lim

nA→∞
a set hd(AD′ ,AE′) = 1 which implies hd(GD′ ,GE′) = hd(GE′ ,GD′) =

1, and sim(D′, E′) = 1.

(d) For the other cases (e.g. nP → ∞, nE → ∞, and nA → ∞), these follow the previous cases and
can be concluded that sim(D′, E′) = 1.

vi. To prove this, we show a counter example. Given concepts C, D, and E as defined in Figure 4. From the
definitions, it is obvious that C v D v E. By computing, we have sim(C,E) := 0.7125 and sim(D,E)
:= 0.6667. Hence, there is the case in which sim(C,E) 6≤ sim(D,E).

C ≡ ∃r.(G u H) u ∃s.G u ∃s.H u ∃r.(G u I)
D ≡ ∃r.(G u H) u ∃s.G u ∃s.H
E ≡ ∃r.(G u H)

Figure 4. Examples of concept descriptions.
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vii. Given the concept descriptions C, D, and E shown in Figure 4, we have 1 + sim(D,E) 6≥ sim(D,C) +
sim(C,E). We have sim(D,E) := 0.6667, sim(D,C) := 0.9625, and sim(C,E) := 0.7125. It is obvious
that 1 + 0.6667 6≥ 1.675.

To ensure that the proposed method have hold sufficient properties comparing to those reported in the-
state-of-the-art methods, Table 4 lists all properties of sim and compares to those reports in other methods. It is
obvious that the proposed method together with that of Lehmann and Turhan [15] have hold several significant
features.

Table 4. A comparison of desirable properties of different concept similarity measures.
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sim ALEH 3 3 3 3 3
Lehmann and Turhan [15] ELH 3 3 3 3 3
Janowicz and Wilkes [17] SHI 3 3
d’Amato et al. [19] ALC 3 3 3 3
d’Amato et al. [18] ALE 3 3 3 3
Janowicz [16] ALCHQ 3 3
d’Amato et al. [23] ALC
Fanizzi and d’Amato [24] ALN 3 3 3 3

Table 5. The number of concepts in each category of SNOMED CT.
Snomed-concept categories Number of concepts
Social context 10,482
Procedure 54,624
Physical force 798

Substance 61,083
Body structure 99,262
Specimen 36
Situation 1,529
Attribute 1,121
Staging and scales 1,108
Physical object 4,351
Event 1,641
Environment 1,665
Qualifier value 12,144
Observable entity 15,228
Special concept 63,660
Pharmaceutical product 4,329
Clinical finding 20,798
Organism 25,810

4. EXPERIMENTS ON SNOMED CT
SNOMED CT (Systematized Nomenclature of Medicine – Clinical Terms) is a large-scale clinical

knowledge base, which stores definitions of clinical terms used by physicians. The terminology is divided into
18 categories containing 379,691 clinical terms. Table 5 depicts the majority of concepts in each category.

4.1. Computing similarity score between SNOMED CT concepts
In this experiment, we randomly select 30 concepts from each concept category and compute the simi-

larity score for each possible pair. For each category, we compute similarity scores for 16,200 pairs of concepts.
Table 6 reports the average similarity scores between concept categories. From the results, it is obvious that
the average scores of concepts from the same category are higher than those from different categories. This is
because the shared structures in the same category are higher than those across categories.
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As shown in Table 6, the average similarity scores of concepts from different categories become zero
(or nearly) since they are mostly out of subsumption relations (i.e., there is no shared feature). The accumulated
time taken for each concept category is measured and reported in Figure 5. From the graph, it reveals that the
time taken by the Procedure and Body structure category are a bit higher than those of other categories. This
should infer that these two categories are likely to have complicated concept definitions, which would require
some time for both the description tree construction and the similarity measure.

To ensure that the time used by the system is reasonable, we randomly select 10000 pairs of concepts
C and D from SNOMED CT (C and D are different concepts). Table 7 shows the number of concept pairs.
One may have noticed that the number of concept pairs between each category is directly proportional to the
majority of concepts reported in Table 5. In addition, for each pair of C and D, we measure the time taken
by the system. From the results reported in Figure 6, it is obvious that the system requires only a few seconds.
Though, the worst case has shown that the time taken by the system can be up to 18 seconds, this is a rare case
which occurs only once during the entire experiment. Figure 7 shows that the accumulated time required for
all 10000 of concept pairs is merely 343 seconds, which is about 0.034 second in average.

5. SYSTEM USABILITY EVALUATION
By performing experiments on the large scale and so-called SNOMED CT ontology, in this section we

describe the correctness of the proposed similarity measure through a manual assessment by physicians. For
each concept category K in SNOMED CT, we randomly select concepts D1, D2, . . . , D10. Moreover, for each
concept Di, we randomly select concepts F1, F2, ...F10 from the same category such that Di 6v Fi and Fi 6v
Di. This is in order to focus on overall concept similarity and not merely similarity due to concept subsumption.
Figure 8 shows the example of questions. We then let the physicians manually pick the most similar concept
H out of 10 randomized concepts F1, F2, . . . , F10 where F1, F2, . . . , F10 are ordered descendingly according
to the similarity score to the given concept Di. The following score is computed.

score =


1.0 if H = F1

0.5 if H = F2

0.33 if H = F3

0.0 otherwise

As shown in Table 8, it is obvious that the average score obtained from each physician is slightly variant and
essentially depended on the background knowledge of the physicians. However, in average, they are all above
0.5. This indicates that the choices selected by the 4 physicians are mostly within the first three most similar
concepts F .
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Figure 7. The accumulated time used for computing similarity for 10000 concept pairs.

Table 8. Average similarity scores of medical terms evaluated by 4 physicians.
Physician ]1 Physician ]2 Physician ]3 Physician ]4

Average similarity score 0.599 0.783 0.716 0.860
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Instruction: From the given keyword, select the most similar concept
from the given list.

Keyword: "Exposure of tooth pulp"
1) Abrasion or friction burn of gum with infection
2) Cutaneous actinobacillosis of sheep AND/OR cattle
3) On ground bystander victim in aircraft accident
4) Edema bullosum vesicae
5) Open fracture of ilium
6) Hemolytic jaundice
7) Onychotillomania
8) Displacement of cardiac device
9) Edema of nasopharynx
10) Alveolitis of jaw

Figure 8. Example of questions for physicians to evaluate.

6. CONCLUSION
This paper presents a new method for measuring similarity between concepts in an ontology. The score

obtained from the proposed method is in a range between 0 and 1 which will facilitate users to adopt a good
strategy for concept categorization. To demonstrate the usability of the proposed algorithm, the well-known
clinical domain SNOMED CT is employed in our experiments. The effectiveness of the proposed algorithm has
been revealed by means of desirable properties, the time consumption, and the corresponding results obtained
from the assessment by the domain experts. Apart from the scenario expressed in the experiments, we believe
that the proposed similarity measure can be useful in different cases. Examples include a checking for similarity
between genes, an identification for a disease with similar symptoms, and a checking for similarity between
texts known as plagiarism checking.

For future works, there are some possible steps which we can focus on. One is an extension to more
expressive features, such as a concept disjunction and a concept negation. The other possible direction is to
enhance the algorithm to work with cyclic TBox, such as the one containing a set of general concept inclusions
and cyclic definitions. Moreover, it is also possible to extend the capability of the proposed method to measure
similarity between individuals. An example application is a query for the most similar image given a sample
image.
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