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1. INTRODUCTION 

Uncovering a solution to a general broad degree nonlinear optimization Problem: 

 
nRx    ,)x(Min   (1) 

 

whеre where   is a“smooth function”of n variables, by quasi-Newton methods is painstaking. Quasi-Newton 

methods are awfully useful utensils for solving unrestrained optimization problems [1]. At the k th iteration 

of the quasi-Newton method, a symmetric and non negative definite kB  is known, and a search direction is 

computed by: 

 

,1
kkk JBd   (2) 

 

where kJ  is the gradient of   evaluated at the current iterate kx . One then computes the next iterate by: 

 

kkkk dxx 1  (3) 

 

It computed a step length k  that make sure the approval of the Wolfe conditions: 
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k
T
kkkkkk dJxdx   )()( 

 (4) 

 

k
T
kkkk

T
k JddxJd  )(  

” (5) 

 

where 10   . For more details can be found in [2]. By tradition,  kB  satisfies the“quasi-Newton 

equation: 

 

 “
, 1 kkk pB   (6) 

 

where kkk xx  1  and kkk JJp  1 . Let kH  be the inverse of kB . The famous inverse update kH  

is the standard BFGS formula: 
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Certainly, BFGS method is one of the most excellent methods and doing to now for solving (1). For more 

details can be found in [3]. A lot of approaches have been suggested to find better the quasi-“Newton Hessian 

estimate updates. In this fragment we sketch a few latest suggested updates take by modifying the vector kp , 

as shown in Table 1. 

 

 

Table 1. Modifying The Vector 
Name methods Difference in gradients References 

P 
kkkkkk Bpp  )1(*   

[4] 
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[5] 
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[6] 

ZDC 

k
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k
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kkkk
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JJ
pp 




 

2

11* )(3)(6 
 

[7] 

The idea of variant QN methods had been studied by many researchers for example, [8], [9]. 

 

 

Now we will derive new quasi-Newton equations and analyze its convergence. 

 

 

2. DERIVING NEW QUASI-NEWTON EQUATION AND AALGORITHM 

In this fragment we derive the new quasi-Newton equations. Therefore we can apply it to functions 

more general than quadratic as from: 

 

kk
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kkk TUJ   1111
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1
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1


 (8) 

 

where 1kT  is the tensor of   at the point kx . we attain, by revoking the conditions which comprise the 

tensor: 

 

k
T

kkkkk
T
kkk

T
k JJpU   )(3)(6 111 

 (9) 
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For more details can be found in [10]. So, would like derivative of manages to formulate general quadratic, 

we have: 

 

k
T

kkkkk
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The step size scalar ,k  which minimizes ),( kx  is approximated by:  
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  (11) 

 

After some algebraic manipulations one obtains: 
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Since kkB 1  is need to estimated ,1 kkU   it is reasonable to need: 
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A good choice to estimate kkB 1  is known by: 
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where ku  is any vector such that 0 k
T
k . 

Varieties of this quasi-Newton equations differ in the way of selecting the vector k  in (14) we 

have the forms: 

1. First case kk p  gives: 
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2. Second case 1 kk J  gives: 
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Different change gradient used in quasi-Newton equation for yield different quasi-Newton methods. 

The new CBFGS algorithm can be stated formally as follows. 

Step 1: Data 
nRx 0  and IH 0 . Set 0k . 

Step 2: Stop if 0kJ . 

Step 3: Calculate kd  by: 

                            kkk JHd   

Step 4: Finds a k  which satisfies the (4) and (5). 

Step 5: Iterative process be as kkkk dxx 1 . 
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Step 6: Update 0H  for times to find 1kH  by (7) and (14). 

Step 7: Put 1 kk . Go to step 2. 

 

A property positive definite of kH  is awfully important, can be verify in the next theorem. 

 

Theorem 2.1.  

Let “ ),,,( 111  kkkk dJx ”be generated by the new algorithm. Then 1kB  is positive definite 

for all k provided that 0*  k
T
k p . 

 

Proof. 

Now, we evaluate the quantity 
*
k

T
k y . If the step length k  satisfies the Wolfe conditions (4) and 

(5), then we have: 
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(17) 

 

To attain this intention, prefer the values of   and   with 3/12/1    and 032/1   . Noting 

the 0 k
T
kkk

T
k JdJ  , we know that there exists a constant 0m  such that: 

 

0*  k
T
kk

T
k Jdmp  (18) 

 

The proof is complete. 

 

 

3. GLOBAL PROPERTY  

We ready the“local convergence property”of the modified BFGS method. The following assumption 

is required. 

 

Assumption  

(i) The level set  )()( 0xxRxS n    is bounded. 

(ii) “The function f is“twice continuously differentiable”on S  and there exists a constant” 0L  

such that: 

 

yxLyJxJ  )()(  (19) 

 

Since  k  is a diminishing series, it is obvious that the series  kx  generated by new Algorithm is enclosed 

in S , and there exists a constant 
*  such that: 

 
*lim  


k

k
 (20) 

 

(iii) “The function   is “uniformly”convex, i.e., there exist positive constants M  and m  such that: 

 
22

)( dMdxUddm T   (21) 
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holds for all Sx and ,nRd   where )()( 2 xxU  . These assumptions are the same as those in [11]. 

 

Theorem 2.2.  

“Let  kx  be generated by the new algorithm. Then we have: 
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Proof. 

Following the definition of 
*
kp  and the Taylor's series, we get: 
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By using Taylor’s series, and mean value theorem, we get: 
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From )24(  and )25(  we get: 
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By using quadratic function, and mean value theorem, we have: 
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Therefore, it follows from )26(  and )27(  that: 
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where 

 

)( 1 kkkk xxx    and )1,0(  (29) 
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Mingling with Assumption (iii), it is simple to catch: 
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Using definition of 
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kp  and the Taylor's series once more, we get: 
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Now we turn to the proof of (23). By the WWP rule (4) and Assumption (ii) we obtain: 
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Conversely, from (1), we obtain: 
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Thus, 
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which mixed with the WWP law (4) that is: 
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Currently we established the worldwide convergence of new Algorithm. 

 

Theorem 2.3.  

Let  kx  be created by new Algorithm and let   satisfies Assumptions i and ii. Suppose to facilitate 

there exists constants 1  and 2  such the subsequent relation: 
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kkkB  1  and 
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k B    (37) 

 

holds, Then we have: 
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where the inequality follows from 
~

kk    inequalities kkkB  1  and 
2

22 kk
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concludes the proof. 

 

 

4. NUMERICAL RESULTS AND DISCUSSION 

Now, we details the numerical results for Algorithms CBFGS and BFGS. The problems that we 

tested are from [12,13]. Himmeblau used the next stop law see in [14] “If ,10)( 5kx  let 

;)(/)()(1 1 kkk xxxstop    Otherwise, let )()(1 1 kk xxstop  . For each problem, if 

kJ  or 
5101 stop was satisfied, the program will be stopped. All codes were written in MATLAB 4.4 

and Windows XP operation system. The parameters are chosen as: 
510,9.0,1.0    and the initial 

matrix IB 0  is the unit matrix”. Table 1 explains the results, where the columns contain the following 

implying: 

 

Problem : the name of the test problem in MATLAB; 

Dim: the dimension of the problem; 

NI : the number of iterations; 

NF : the number of function evaluations.  

 

 Their numerical experience signify that numerous updates from this idea labored well in applied, 

specially the modified update 1 kk J  but the modified update kk p  give a slight improvement over 

the original BFGS method. Comparison of several amounts between different quasi-Newton methods as 

shown in Table 1. 

Generally, we can compute the percentage performance of the new proposed algorithms compared 

against the standard BFGS algorithm for the general tools NI and NF as follows. Relative efficiency of the 

new algorithms as shown in Table 2. 
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Table 1. Comparison of Several Amounts Between Different Quasi-Newton Methods 

                                               BFGS algorithm                      CBFGS with kk p           CBFGS  with  1 kk J  

       P. No.                 n                     NI                   NF                   NI                    NF                   NI                    NF 

‘48’ ‘8’ ‘146’ ‘37’ ‘140’ ‘35’ ‘2’  Rose  

‘16’ ‘5’ ‘23’ ‘8’ ‘26’ ‘9’ ‘2’  Froth 

‘11’ ‘3’  ‘142’ ‘39’ ‘166’ ‘43’ ‘2’  Badscp 

‘30’ ‘3’  ‘30’ ‘3’’  ‘30’ ‘3’  ‘2’  Badsc 

‘21’ ‘6’ ‘43’ ‘13’ ‘50’ ‘15’ ‘2’  Beale 

‘27’ ‘2’  ‘27’’ ‘2’  ‘27’ ‘2’  ‘2’  Jensam 

‘20’ 7 ‘90’ ‘28’ ‘113’ ‘34’ ‘3’  Helix 

‘19’ ‘6’ ‘55’ ‘17’ ‘54’ ‘16’ ‘3’  Bard 

‘4’  ‘2’  ‘4’  ‘2’  ‘4’  ‘2’  ‘3’  Gauss 

‘27’ ‘2’  ‘27’ ‘2’  ‘27’ ‘2’  ‘3’  Gulf 

‘27’ ‘2’  ‘27’ ‘2’  ‘27’ ‘2’  ‘3’  Box 

‘17’ ‘5’ ‘35’ ‘11’ ‘60’ ‘20’ ‘4’  Sing 

‘13’ ‘4’  ‘60’ ‘19’ ‘61’ ‘19’ ‘4’  Wood 

‘13’ ‘5’ ‘117’ ‘21’ ‘65’ ‘21’ ‘4’  Kowosb 

‘17’ ‘5’ ‘46’ ‘15’ ‘54’ ‘17’ ‘4’  Bd 

 ‘27’’ ‘2’  ‘27’ ‘2’  ‘27’ ‘2’  ‘5’  Osb1 

‘12’ ‘4’  ‘48’ ‘8’ ‘72’ ‘25’ ‘6’  Biggs 

‘31’ ‘3’  ‘13’ ‘3’  ‘31’ ‘3’  ‘11’  Osb2 

‘13’ ‘4’  ‘97’ ‘31’ ‘102’ ‘31’ ‘20’  Watson 

‘17’ ‘5’ 109 ‘35’ ‘209’ ‘64’ ‘400’  Singx 

‘27’ ‘2’  ‘27’ ‘2’  ‘27’ ‘2’  ‘400’  Pen1 

‘5’ ‘2’  ‘5’ ‘2’  ‘5’ ‘2’  ‘200’  Pen2 

‘27’ ‘2’  27 ‘2’  ‘27’ ‘2’  ‘100’  Vardim 

‘28’ ‘8’ ‘32’ ‘9’ ‘33’ ‘9’ ‘500’  Trig 

‘4’  ‘2’  ‘4’  ‘2’  ‘4’  ‘2’  ‘500’  Bv 

‘16’ ‘6’ ‘19’ 7 ‘61’ ‘6’ ‘500’  Ie 

‘16’ ‘5’ ‘82’ ‘15’ ‘281’ ‘57’ ‘500’  Band 

‘4’  ‘2’  ‘4’  ‘2’  ‘4’  ‘2’  ‘500’  Lin 

‘7’ ‘3’  ‘7’ ‘3’  ‘7’ ‘3’  ‘500’  Lin1 

‘7’ ‘3’  ‘7’ ‘3’  ‘7’ ‘3’  ‘500’  Lino 

551 118 1380 345 1756 453  Total 

 

 

Table 2. Relative Efficiency of the New Algorithms 

                                        BFGS algorithm                      CBFGS with kk p           CBFGS  with  1 kk J     

26.04% 76.15% 100% NI 

43.37% 78.58% 100% NF 

 

 

5. CONCLUSIONS 

In this paper, supported the new QN-equation, we've got projected some new quasi-Newton 

strategies. The convergence results and also the understanding experimentation make sure that the approach 

explicit during this paper is fruitful. 
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