
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 15, No. 1, July 2019, pp. 504~510

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v15.i1.pp504-510  504

Journal homepage: http://iaescore.com/journals/index.php/ijeecs

Evolutionary algorithms for path coverage test data generation

and optimization: a review

Deepti Bala Mishra1, Arup Abhinna Acharya2, Rajashree Mishra3
1,2School of Computer Engineering, KIIT University, India

3School of Applied Sciences, KIIT University, India

Article Info ABSTRACT

Article history:

Received Aug 25, 2018

Revised Nov 17, 2018

Accepted Mar 3, 2019

 Software testing is very time consuming, labor-intensive and complex
process. It is found that 50% of the resources of the software development

are consumed for testing. Testing can be done in two different ways such as
manual testing and automatic testing. Automatic testing can overcomes the
limitations of manual testing by decreasing the cost and time of testing
process. Path testing is the strongest coverage criteria among all white box
testing techniques as it can detect about 65% of defects present in a SUT.
With the help of path testing, the test cases are created and executed for all
possible paths which results in 100% statement coverage and 100% branch
coverage. This paper presents a systematic review of test data generation and
optimization for path testing using Evolutionary Algorithms (EAs). Different

EAs like GA, PSO, ACO, and ABCO based methods has been already
proposed for automatic test case generation and optimization to achieve
maximum path coverage.

Keywords:

Ant colony optimization (ACO)

Artificial bee colony

Optimization (ABCO)

Genetic algorithm (GA)
Particle swarm optimization

(PSO)

Path Testing
Copyright © 2019 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Deepti Bala Mishra,

School of Computer Engineering,

KIIT Deemed to be University, Bhubaneswar, India.

Email: dbm2980@gmail.com

1. INTRODUCTION

The runtime standard of the software is tested to maximum limits for qualitative software [1].

Software industry suffers with a heavy loss of $500 billion per year due to decrease in software quality or

software failure [2]. Software failure caused by different faults and those faults can be detected by

software testing. For high quality software that, satisfies the user specifications and requirements, testing are

required [3]. Software testing is the process of finding and resolving the error (s) through which, software
quality can be improved. The error(s) can be identified by executing the code with a set of test inputs called

as test data or test case [4-5], where test case is a triplet defined as [I, S, O], I is the input data to the system,

S is the state of the system at which data is input and O is the expected output [6-7]. Test case generation and

test case execution require lots of effort. It is not possible always as there is no limit on test data generation

but we have a limit to the cost and time of the testing process [8]. It is very time consuming, less reliable,

incomplete coverage and risky process as it suffers from the drawbacks such as operation speed, high

investment of cost and time, limited availability of resources, redundancy of test cases, inefficient and

inaccurate test checking [9]. These drawbacks can be overcome by automated testing, which leads to

decrease in cost and time of testing process. It is the most important aspect of automatic testing. So in recent

day’s automated software testing, and developing of high quality test cases, are two main objectives for each

and every software industry [9-10]. Software testing can be broadly divided in two different ways as random

based testing and search based testing [11].

a. Random Based Software Testing (RBST)

b. Search Based Software Testing (SBST)

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Evolutionary algorithms for path coverage test data generation and optimization… (Deepti Bala Mishra)

505

Random process is the simplest way for generating test data, but the probability of satisfying the

constraints of the tested programs is very low. It simply executes the program with random inputs and check

whether the expected output is satisfied or not. One of the major problem in RBST is sometimes none of the

test data reaches the target test data often called as critical data [12]. But search based approach is widely

used in recent years to solve many optimization problems in the field of Search Based Software Testing

(SBST). In search based technique the target criterion is converted to an optimization problem, so that

different types of Evolutionary Algorithms (EAs) such as GA, PSO, ACO, ABCO etc. are used to solve the

specified problem by providing a global optimum or nearer optimal solution [13-14].

This paper presents a systematic review on test data generation for path testing using different EAs.

The rest of the paper is organized as: Section 2 describes some basic concepts, which are used in our research
paper. Section 3 discusses related work on path coverage based testing using different EAs. In Section 4, the

conclusion of the paper along with some future works are outlined.

2. BASIC CONCEPTS

In this section a few background concepts and definitions arediscussed, which are used throughout

the research work.

2.1. Path Testing

Basically, testing is done in four different levelsviz. unit testing, integration testing, system testing

and acceptance testing. Among all kinds of software testing techniques,unit testing is the base of all other
types of testing [15]. It is done in the coding stage and if it is not done properly, thecost and time for other

testing will increase. So unit testing plays an important role in maintaining the software quality [14]. There

are two different ways to generate test cases for unit level testing as: [16-18].

a. White box approach (Glass box or structural approach).

b. Black box approach (Functional approach).

c. Structural testing mainly involves testing process of a unit or modules and is very important for software

developer. To test an unit or a module, different coverage based testing techniques are used such as

statement coverage, condition coverage, multiple conditions coverage and path coverage [17], [19].

Among all coverage based testing, path coverage based testing is the strongest criterion based testing as it

can detects about 65% of defects present in a Software Under Test (SUT). Literature says that many

studies have been already done for unit testing but it is seen that a less focus has been paid towards path

testing [19-20].

d. Path testing was first introduced by Howden in 1976.It allows finding a logical error(s) as errors/faults

associated with different number of iterations that are exposed in different paths. The detection of logical

errors may not possible in case of branch or statement coverage based testing [18]. In path testing, test

cases are designed in such a way that all linearly independent paths of a particular SUT, should be

executed at least once. A linearly independent path can be obtained from the Control Flow Graph (CFG)

of a program which shows the flow of sequence in a program [20-21]. McCabe’s Cyclomatic Complexity

gives the upper bound value of the linearly independent paths present in a program. The CC of a program

can be found by using (1).

𝑉(𝐺) = 𝐸 − 𝑁 + 2 (1)

One example is shown in Figure 1, which shows the different steps carried out to find the linearly

independent paths for a specific program. With the help of path testing, the test cases are created
and executed for all possible paths which results in 100% statement coverage and 100% branch

coverage [21-22].

2.2. Critical Path

During path testing, the path for which there is no test data generated and searching for the test data

to cover that particular path can never be succeed, is called as Critical path.In such cases some criterion is

needed to stop the searching process for the test data that covers the critical path and it is almost sure that

further searching is worthless [23-26].

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 15, No. 1, July 2019 : 504 - 510

506

Figure 1. CFG for GCD program

The linearly independent paths are as follows

1→6

1→2→3→5→6

1→2→4→5→6

2.3. Evolutionary Algorithm (EA)
Evolutionary algorithms (EAs) are based on biological behavior or evolution of population [27-28].

This algorithm is based on the principle of survival ofthe fittest and models some natural phenomena like

genetic inheritance and Darwinianstrife for survival, constitute an interesting category of modern heuristic

search [29-30].A strategy has been developed, to greatly reduce the necessary time and computational

costs to achieve maximum benefits in the form of soft computing techniques like Genetic Algorithm (GA),

Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Artificial Bee Colony Optimization

(ABCO) etc. [30-31].

2.3.1 Genetic Algorithm (GA)

Genetic Algorithm (GA) is an evolutionary algorithm, which was developed by John Holland in

1975 [27-28]. GA has emerged as a practical, robust optimization technique and search method. It is inspired
by the way nature evolves species using natural selection of the fittest individuals [29].

In the process of solving the problem, GA comes across a set of feasible solutions, called as the

search space, where the individual solution is marked by its fitness value or score towards the problem. The

fitness value or score of the individuals is determined through a predefined fitness function. This value

defines the fitness of individual solution towards the given problem and facilitates the decision making

regarding, which solution is to be included and which is to be discarded for next generation.It always aims

for the optimal solution using some extreme value like searching for a minimum or maximum in the search

space[30-31]. The algorithm provides the global optimum solution by employing its different operators, such

as selection, crossover, mutation and elitism [32-34].

It is an 8-tupled expression defined in (2) [25], [35-36].

𝑮𝑨 = (𝐂𝐨,𝐅, 𝐏𝐨, 𝐍, 𝐒, 𝐂,𝐌, 𝐓) (2)

Where,Co = Individual coding method,F =Individual fitness evaluation, Po= Initial population

N= Population scale, S= Preferred selection operator, C =Preferred crossover operator

M=Preferred Mutation operator, T =Suspension of operation algebra.

2.3.2 Particle Swarm Optimization (PSO)

PSO is an evolutionary computation technique developed by kennedy and eberhart in 1995, that

studies the social behavior of bird flocking or fish schooling. It begins with a group of randomly generated

individuals called as initial population. The best solution can be found by a number of particles constituting a

swarm, moving around in a particular real valued N-dimensional search space and adjusting their flying

according to own and other's flying experience [37]. A fitness is defined to evaluate each particle from the

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Evolutionary algorithms for path coverage test data generation and optimization… (Deepti Bala Mishra)

507

population. In this process each particle is asigned a coordinates in the form of location and velocity, which

are associated with best solution. At each steps of this process the velocity of each particle is changed to

achieve best fitness(pbest) than the overall best(gbest) value obtained by any particle in the population. The

particles are called as potential solution. Acceleration is weighted by a random term w called as weight

inertia. The velocity and new particles can be updated by using (3) and (4).So different new population are

generated for acceleration towards pbest and gbest locations. PSO has a premature convergence problem ie.

It convergence to the local best solution [38-39].

)()(2211

)1(t

i

it

ii

t

i grcxprcwvv 


 (3)

t

i

t

i

t

i xvx 
)1()1(

 (4)

2.3.3 Ant Colony Optimization (ACO)

ACO is a distributed meta-heuristic algorithm, inspired by biological behaviors of real-world ants
mainly used to solve many optimization problems. The Aunt System Algorithm was first proposed by Marco

Dorigo et al. in 1991 to solve combinatorial discrete optimization problems [40]. In this algorithm, the

optimization problem is represented as a graph and the artificial ants move around the paths of the graph

repeatedly to find the best solution. During food searching the ants leave a chemical level called as

pheromone on the randomly travelled paths so that other ants can coordinates with each other. Ants select

their paths according to the higher pheromone levels of the graph edges. After some traversals the pheromon

level of shortest path becomes higher than the others because the pheromon evaporation is more in longer

paths.For each iteration possible solutions are created and finally evaluate the best quality solution by using a

heuristic measure [41-42].

2.3.4 Artificial Bee Colony Optimization (ABCO)

ABCO is a population based process in which the independent and parallel of the scout bees,
employed bees onlooker bees finds the global optimum solution faster. It is a non pheromenon based

approach so no need of updation [43]. In this process the computational overhead and memory limit

problems are balanced. Here some dedicated scout bees are appointed to explore flower patches in the

sorrounding environment at random. The fitness value of a perticular flower patch is defined by taking the

nectar amount, the distance and the direction of the designated flower patch from the bee hive. Scout bees

gives the information to the onlooker bees in form of waggle dance and then the onlooker bees determine the

fitness value and the probability value of the food source. The food souce with maximum profitability is

selected for the exploration [44].

3. RELATED WORK
EAs are frequently used for path coverage based test data generation and optimization to achieve

maximum path coverage. In this section, a few related research works on software path testing using variants

of EAs has been discussed.

3.1. Test Case Generation and Optimization using GA

Hermadi et al. [19] developed a GA based approach to cover multiple path at a time. They have

applied different fitness on several bench mark problems. The fitness was designed by combining the features

of path traversal, neighborhood influence and normalization. They found the new GA based multiple path

test data generator gives better results than the previous method. Cao et al. [13] developed an approach to

generate test data, that covers only one specific path for a SUT. GA is used to increase the path coverage of a

SUT for achieving the goals like better quality and reliability and the fitness is designed by taking the
Overlapped Path Similarity (OPS) between the executed path and target path. The most popular program,

TCP is taken for their experiments and found that GA based OPS can generate a huge number of valid test

data with less consumption of time. Garg et al. [26] proposed a new fitness named as Extended Level Branch

(EXLB) for basic path testing using simple GA by using hill climbing method with selection operator, but the

proposed method could not cover all paths. Zhu et al. [34], 2017 proposed an improved GA to balance the

load of each calculation resources in target paths of a SUT. A grouping strategy of target paths is defined by

taking the common constraints of the target paths, to reduce the search space of test data. Symbolic execution

tool along with GA is used to accelerate the convergence of search process, which leads to improve the

efficiency of SBST. The proposed approach is implemented with four different programs such as bubble sort,

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 15, No. 1, July 2019 : 504 - 510

508

insertion sort, select sort, and shell sort. The experimental results shows a very good performance in terms of

both efficiency and load balancing of generated test data.

3.2. Test Case Generation and Optimization using PSO

Latiu et al. [37] used three different evolutionary algorithms to generate test data automatically for

path testing and found evolutionary testing strategies are very well suited to generate test data for a software

program. They have used GA, PSO, SA (Simulated Annealing) for their experiments. Huang et al. [38]

proposed a method SAF-GPSO (Swarm Activity Feedback-Gauss Particle Swarm Optimization), based on
Improved PSO for multipath test case generation and found their method gives better result in comparison to

GA and PSO. Han et al. [21] proposed a modified multiple path test data generator using PSO. Authors have

taken some bench mark problems and found their proposed approach is more effective and efficient for

complicated and large path sets. They have taken different population size and from the experimental result,

it is observed that the average iteration needed to cover all feasible paths, is decreases when population

size increases.

3.3. Test case generation and optimization using ACO

Biswas et al. [40] proposed an ACO based approach that guarantees full software coverage with

minimum redundancy. The proposed approach can generate optimal path in a prioritized order and also

generates test data sequence within the domain to use as inputs of the generated paths. Mann et al [42]

proposed an ACO based path prioritization to generate maximum path coverage test data. The algorithm is
named as PP-ACO, which is used to generate optimal path sequence in DD graph for a SUT. The most

popular search based program as TCP is taken for the experiment and the reported result shows that, the

proposed technique can generates test data for full path coverage as well as prioritizes those test data

according to the path strength.

3.4. Test case generation and optimization using ABC

Lam et al. [43] presented an approach for automatic generation of feasible independent test path by

using edge coverage criteria. They have used ABC optimization technique to optimize test suite and show the

efficiency of their proposed method by comparing with previous related approaches, but the proposed

approach could not eliminate the duplicate test data in the final test suite. Khari et al. [44] developed an

automated testing tool for test suite generation and optimization to test a software using ABC. Their proposed
method is able to provide a set of minimal test case with maximum path coverage. Authors have compared

their result with CSA (Cuckoo Search Algorithm) and found the ABC based method offers better result than

CSA in terms of path coverage. The reported results show that 90.3% path coverage is achieved for ABC

whereas only 75.4% path coverage is achieved for CSA.

4. CONCLUSION

This paper briefly reviewed some of the related research work on path coverage based testing, one

of the white box testing technique using different EAs viz. GA, PSO, ACO, ABCO. In path testing test data

is generated to cover the basic path of a specific SUT. It is observed that different EAs are frequently used

for test case generation and optimization to cover the basic path. However, as we move to higher path
coverage based test suite with more complex software, more efficient methods are needed. Researchers have

employed many different approaches, to achieve maximum coverage. However, it’s very difficult to achieve

100% path coverage in complex software i.e. in terms of LOC and a large number of test data is required

towards achieving a maximum. As a result, numerous algorithms have been proposed, implemented and

applied to achieve highest coverage over the past decades. Presence of critical paths is also one main issues

in achieving full path coverage. So detecting and generating the test data for a specific critical path is a very

challenging issue during path testing.

In future it is planned, to develop an efficient EA based algorithm which, generates an optimized

test suite to satisfy maximum path coverage for any SUT and simultaneously, validate the effectiveness and

efficiency of the proposed algorithm in covering the most critical paths. It is also planned to design a real

coded GA to generate and optimize the test data with maximum path coverage and minimum test data

generation count.

REFERENCES
[1] Chauhan, N., “Software Testing: Principles and Practices”, Oxford University Press, 2010.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Evolutionary algorithms for path coverage test data generation and optimization… (Deepti Bala Mishra)

509

[2] Mishra, D.B., Bilgaiyan, S., Mishra, R., Acharya, A.A. and Mishra, S., 2017. “A Review of Random Test Case
Generation using Genetic Algorithm”. Indian Journal of Science and Technology, 10(30).

[3] Mishra, D.B., Mishra, R., Acharya, A.A. and Das, K.N., 2019. “Test Data Generation for Mutation Testing Using
Genetic Algorithm”. In Soft Computing for Problem Solving (pp. 857-867). Springer, Singapore.

[4] Mishra, D.B., Mishra, R., Das, K.N. and Acharya, A.A., 2017. “A Systematic Review of Software Testing Using
Evolutionary Techniques”. In Proceedings of Sixth International Conference on Soft Computing for Problem
Solving (pp. 174-184). Springer, Singapore.

[5] Bhuyan, M.K., Mohapatra, D.P. and Sethi, S., 2016. “Software Reliability Prediction using Fuzzy Min-Max
Algorithm and Recurrent Neural Network Approach”. International Journal of Electrical and Computer
Engineering (IJECE), 6(4), pp.1929-1938.

[6] Srivastava, P.R. and Kim, T.H., 2009. “Application of Genetic Algorithm in Software Testing”. International
Journal of software Engineering and its Applications, 3(4), pp.87-96.

[7] Ahmed, M.A. and Hermadi, I., 2008. “GA-Based Multiple Paths Test Data Generator”. Computers & Operations
Research, 35(10), pp.3107-3124.

[8] Zhang, S., Zhang, Y., Zhou, H. and He, Q., 2010, October. “Automatic path test data generation based on GA-
PSO”. In Intelligent Computing and Intelligent Systems (ICIS), 2010 IEEE International Conference on (Vol. 1, pp.
142-146). IEEE.

[9] Zhang, Y. and Gong, D., 2014. “Generating Test Data for Both Paths Coverage and Faults Detection Using Genetic

Algorithms: Multi-Path Case”. Frontiers of Computer Science, 8(5), pp.726-740.
[10] Mohi-Aldeen, S.M., Mohamad, R. and Deris, S., 2016. “Application of Negative Selection Algorithm (NSA) for

Test Data Generation of Path Testing”. Applied Soft Computing, 49, pp.1118-1128.
[11] Manikumar, T., Kumar, A.J.S. and Maruthamuthu, R., 2016. “Automated Test Data Generation for Branch Testing

Using Incremental Genetic Algorithm”. Sādhanā, 41(9), pp.959-976.
[12] Sharma, A., Rishon, P. and Aggarwal, A., 2016. “Software Testing Using Genetic Algorithms”. Int. J. Comput. Sci.

Eng. Surv.(IJCSES), 7(2), pp.21-33.
[13] Cao, Y., Hu, C. and Li, L., 2009, July. “An Approach to Generate Software Test Data for A Specific Path

Automatically with Genetic Algorithm”. In Reliability, Maintainability and Safety, 2009. ICRMS 2009. 8th

International Conference on (pp. 888-892). IEEE.
[14] Torkamani, M.A., 2014. “Metric Suite to Evaluate Reusability of Software Product Line”. International Journal of

Electrical and Computer Engineering (IJECE), 4(2), pp.285-294.
[15] Alshraideh, M., Mahafzah, B.A. and Al-Sharaeh, S., 2011. “A Multiple-Population Genetic Algorithm for Branch

Coverage Test Data Generation”. Software Quality Journal, 19(3), pp.489-513.
[16] Khari, M. and Kumar, P., 2017. “An Extensive Evaluation of Search-Based Software Testing: A Review”. Soft

Computing, pp.1-14.
[17] Mansour, N. and Salame, M., 2004. “Data generation for Path Testing”. Software Quality Journal, 12(2),

pp.121-136.
[18] Gupta, M. and Gupta, G., 2012. “Effective Test Data Generation Using Genetic Algorithms”. Journal of

Engineering, Computers & Applied Sciences, 1(2), pp.17-21.
[19] Hermadi, I., Lokan, C. and Sarker, R., 2010, December. “Genetic Algorithm Based Path Testing: Challenges and

Key Parameters”. In Software Engineering (WCSE), 2010 Second World Congress on (Vol. 2, pp. 241-244). IEEE.
[20] Zapata, F., Akundi, A., Pineda, R. and Smith, E., 2013. “Basis Path Analysis for Testing Complex System of

Systems”. Procedia Computer Science, 20, pp.256-261.
[21] Han, X., Lei, H. and Wang, Y.S., 2016. “Multiple Paths Test Data Generation Based on Particle Swarm

Optimization”. IET Software, 11(2), pp.41-47.
[22] Boopathi, M., Sujatha, R., Kumar, C.S. and Narasimman, S., 2014, October. “The Mathematics of Software Testing

Using Genetic Algorithm”. In Reliability, Infocom Technologies and Optimization (ICRITO)(Trends and Future
Directions), 2014 3rd International Conference on (pp. 1-6). IEEE.

[23] Zhonglin, Z. and Lingxia, M., 2010, August. “An Improved Method of Acquiring Basis Path for Software Testing”.
In Computer Science and Education (ICCSE), 2010 5th International Conference on (pp. 1891-1894). IEEE.

[24] Thi, D.N., Hieu, V.D. and Ha, N.V., 2016, November. “A Technique for Generating Test Data Using Genetic
Algorithm”. In Advanced Computing and Applications (ACOMP), 2016 International Conference on

(pp. 67-73). IEEE.
[25] Shimin, L. and Zhangang, W., 2011. “Genetic Algorithm and its Application in the Path-Oriented Test Data

Automatic Generation”. Procedia Engineering, 15, pp.1186-1190.
[26] Garg, D. and Garg, P., 2015. “Basis Path Testing Using SGA & HGA with ExLB Fitness Function”. Procedia

Computer Science, 70, pp.593-602.
[27] Shahbazi, A. and Miller, J., 2016. “Black-Box String Test Case Generation Through A Multi-Objective

Optimization”. IEEE Transactions on Software Engineering, 42(4), pp.361-378.
[28] Yan, J. and Zhang, J., 2008. “An Efficient Method To Generate Feasible Paths For Basis Path

Testing”. Information Processing Letters, 107(3-4), pp.87-92.

[29] Mishra, D.B., Mishra, R., Das, K.N. and Acharya, A.A., 2019. “Test Case Generation and Optimization for Critical
Path Testing Using Genetic Algorithm”. In Soft Computing for Problem Solving (pp. 67-80). Springer, Singapore.

[30] Hermadi, I. and Ahmed, M.A., 2003, December. “Genetic Algorithm Based Test Data Generator”. In Evolutionary
Computation, 2003. CEC'03. The 2003 Congress on (Vol. 1, pp. 85-91). IEEE.

[31] Deb, K., 2012. “Optimization For Engineering Design: Algorithms and Examples”. PHI Learning Pvt. Ltd.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 15, No. 1, July 2019 : 504 - 510

510

[32] Jena, T. and Mohanty, J.R., 2016. “Disaster Recovery Services in Intercloud Using Genetic Algorithm Load
Balancer”. International Journal of Electrical and Computer Engineering(IJECE), 6(4), p.1828.

[33] Mishra, D.B., Mishra, R., Acharya, A.A. and Das, K.N., 2019. “Test Case Optimization and Prioritization Based on

Multi-Objective Genetic Algorithm”. In Harmony Search and Nature Inspired Optimization Algorithms
(pp. 371-381). Springer, Singapore.

[34] Zhu, Z., Xu, X. and Jiao, L., 2017, June. “Improved Evolutionary Generation of Test Data for Multiple Paths in
Search-Based Software Testing”. In Evolutionary Computation (CEC), 2017 IEEE Congress on
(pp. 612-620). IEEE.

[35] Malhotra, R. and Kumar, N., 2016, September. “Automatic Test Data Generator: A Tool Based on Search-Based
Techniques”. In Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO),
2016 5th International Conference on (pp. 570-576). IEEE.

[36] R. Khan, M. Amjad and A. K. Srivastava, "Optimization of Automatic Generated Test Cases for Path Testing

Using Genetic Algorithm," 2016 Second International Conference on Computational Intelligence &
Communication Technology (CICT), Ghaziabad, 2016, pp. 32-36.

[37] Latiu, G.I., Cret, O.A. and Vacariu, L., 2012, September. “Automatic Test Data Generation for Software Path
Testing Using Evolutionary Algorithms”. In Emerging Intelligent Data and Web Technologies (EIDWT), 2012
Third International Conference on (pp. 1-8). IEEE.

[38] Huang, M., Zhang, C. and Liang, X., 2014, December. “Software Test Cases Generation Based on Improved
Particle Swarm Optimization”. In Information Technology and Electronic Commerce (ICITEC), 2014 2nd
International Conference on(pp. 52-55). IEEE.

[39] Saravanan, C. and Panneerselvam, M.A., 2013. “A Comprehensive Analysis For Extracting Single Diode PV
Model Parameters By Hybrid GA-PSO Algorithm”. International Journal of Computer Applications, 78(8),
pp.16-19.

[40] Biswas, S., Kaiser, M.S. and Mamun, S.A., 2015, May. “Applying Ant Colony Optimization in Software Testing to
Generate Prioritized Optimal Path and Test Data”. In Electrical Engineering and Information Communication
Technology (ICEEICT), 2015 International Conference on (pp. 1-6). IEEE.

[41] Mohapatra, S.K. and Prasad, S., 2015. “Test Case Reduction Using Ant Colony Optimization for Object Oriented
Program”. International Journal of Electrical and Computer Engineering (IJECE), 5(6), pp.1424-1432.

[42] Mann, M., 2015. “Generating and Prioritizing Optimal Paths Using Ant Colony Optimization”. Computational
Ecology and Software, 5(1), p.1.

[43] Lam, S.S.B., Raju, M.H.P., Ch, S. and Srivastav, P.R., 2012. “Automated Generation of Independent Paths and
Test Suite Optimization Using Artificial Bee Colony”. Procedia Engineering, 30, pp.191-200.

[44] Khari, M., Kumar, P., Burgos, D. and Crespo, R.G., 2017. “Optimized Test Suites for Automated Testing Using
Different Optimization Techniques”. Soft Computing, pp.1-12.

BIOGRAPHIES OF AUTHORS

Deepti Bala Mishra received her M.Tech degree in Computer Science and Engineering from
BPUT in 2013. Currently, she is working as a full time research scholar in the School of
Computer Engineering, KIIT Deemed to be University, Bhubaneswar, India. Her research
interests include Software Engineering, Soft Computing, Cloud Computing, and Data Analytics.

She is a member of SCRS.

Dr. Arup Abhinna Acharya received his Ph.D. from Kalinga Institute of Industrial Technology
(KIIT), Deemed to be University, Bhubaneswar. He joined the School of Computer Engineering
at Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar in
2006, where he is now Associate Professor and Program Head of Information Technology. His
research interests include software engineering, Object-Oriented Systems and data analytics. He
has published more than forty papers in these fields. He can be reached at acharyafcs@kiit.ac.in

Dr. Rajashree Mishra, currently working as Assistant Professor in Department of Mathematics,
School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India. She
received her Ph. D Degree from KIIT Deemed to be University in 2014. Her areas of research

interest are Evolutionary Computing which specifically includes (Genetic Algorithm and
Bacterial Foraging Optimization), Fuzzy probabilistic Programming and Multi-objective
nonlinear optimization. She is having publications in reputed journals. She is also the Reviewer
to many International Conferences. She is a member to many research societies.

