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Abstract
To deploy the enormous hardware resources available in Multi-Processor Systems-on-Chip

(MPSoC) efficiently, rapidly and accurately, Design Space Exploration (DSE) methods are needed to
assess the different design alternatives. In this paper, we present a platform that makes fast simulation
and performance evaluation of MPSoC possible early in the design flow, thus reducing the time-to-market.
In this framework and within the Transaction Level Modeling (TLM) approach, we present a new definition
of Instruction Set simulation (ISS) level by introducing two complementary modeling sublevels ISST and
ISSPT. This later, that we illustrate an arbiter modeling approach that allows a high performance MPSoC
communication. A round-robin method is chosen because it is simple, minimizes the communication
latency and has an accepted speed-up. Two applications are tested and used to validate our platform:
Game of life and JPEG Encoder. The performance of the proposed approach has been analyzed in our
platform MPSoC based on multi-MicroBlaze. Simulation results show with ISSPT sublevels gives a high
simulation speedup factor of up to 32 with a negligible performance estimation error margin.

Keyword: multiprocessor systems, estimation of performance, MPSoC, TLM, SystemC, ISS, CABA,
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1. Introduction
The literature shows that much of the design time is spent in the performance

evaluation. In addition, the iterations in the design flow become prohibitive for complex systems.
Therefore, achievement of high performance MPSoCs is a challenge. The solution is strongly
linked to the availability of fast and accurate methods for the design and performance evaluation
[1]. A modeling approach to reduce the time of design and validation time for MPSoCs is to use
the Transaction Level Modeling models (TLM) [2]. So with TLM, we can validate the behavior for
both the hardware and the software components of MPSoC platform as well as the interaction
between them.

Besides, TLM cosimulation also allows the performance evaluation of the whole system
at the earlier stages of the design flow before making a prototype, which is faster than HDL
register-transfer level (RTL) simulation [3, 4].

For this work, an open source ISS is used and components modeled with SystemC
language Version 2.2.0 [5] and TLM methodology, derived from SocLib [6].

We adopt a strategy for estimating the performance at two levels: Cycle Accurate Bit
Accurate (CABA) and Instruction Set Simulator with priority management and timing ISSPT.

Our objectives in this publication are:
a) to develop a rapid exploration of performance of design MPSoC tool;
b) to show that the ISSPT model offers a better alternative than (a: fast simulation and

imprecise) and (b: simulation with an increased accuracy but at the cost of longer
simulation), but at the cost of an additional modeling effort. This latest effort is nevertheless
quite acceptable in contrast to the loss of accuracy in (a) or loss of simulation speed in (b). In
spite of these losses, (a) and (b) are now widely used in system evaluation, this is only
because it lacked a better alternative.

The rest of this paper is organized as follows: an overview of related work on ex-isting
platform of simulation with TLM for MPSoC is provided in section 2. Section 3 describes the
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architecture of the multi-MicroBlaze system. Section 4 presents the simulation platform and
modeling of ISSPT with round-robin approach. Section 5 describes the performance estimation
in ISSPT. Section 6 presents the exemples of software. Finally in section 7 describes the results
of the applications running on the platform.

2. Related Work
A lot of works on design exploration and performance evaluation for embedded systems

MPSoC have been conducted. As a result of these researches, many of exploration
environments are proposed, such as MILAN [7], STARSoC [8] and SimSoC [9]. The work
presented in this paper can be seen as complementary to these environments.

Since the first appearance of TLM in 2000 [10], an increasing number of research
projects have examined the problem of its definition, which led to several frameworks [11-13]
and a multitude versions latest is TLM 2.0.1. All these studies have two factors in common:

1) TLM is featured on several levels;
2) The aspects of communication and computing platforms are separated.
Viaud and al. [14] were the first who proposed have an efficient TLM with timing

modeling and simulation environment based on parallel discrete event principles. They obtained
a long runtimes simulation factor but they did not measure this runtimes on real applications.
Their model is also different from ours. Firstly, with our approach we can be applied for
hierarchical or distributed MPSoC design, and secondly, it is open-source.

Kim [15] and Boukhechem [8] propose a new technique for HW/SW co-simulation for
heterogeneous MPSoC platforms in timing model PVT, we have all advantages of PVT that we
refined in order to add it as a priority management. Also we integrated computation and
communication simulation.

3. Architecture
The basic architecture of the platform implemented in VHDL and generated from Xilinx

Platform Studio, consists of: 1, 2 or 3 MicroBlazes each one connected with a private memory
64 KB BRAM via the LMB bus processors. Processors are also connected to the OPB bus [17],
SRAM memory of 32MB [16], an interrupt handler, VGA controller, timer and GPIO. A high-level
view of the architecture of multi-core MicroBlaze is illustrated in Figure 1.

Figure 1. Multi-MicroBlaze basic architecture

The same concept that is implemented in VHDL, it is implemented in SystemC
environment. Figure 2 summarizes our framework proposal.

In our case study, in ISS (Instruction Set Simulator) simulation and by using inter-
process communication, we connect two ISSs (two processors) with SystemC communication
models. Therefore, it is easy to add or to remove a processor from the MPSoC design. The
interconnection is based on OPB bus [17] described in TLM SystemC. Communication model
uses communication mechanism for the shared memory, the bus arbitration mechanism is
managed by bus arbiter which implemented by the round-robin arbitration policy (described in
Network interconnection model section).
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Figure 2. Platform architecture with 2 processors

4. SystemC Simulation Platform
Provide a statement that what is expected, as stated in the "Introduction" chapter can

ultimately result in "Results and Discussion" chapter, so there is compatibility. Moreover, it can
also be added the prospect of the development of research results and application prospects of
further studies into the next (based on result and discussion).

4.1. Processor Model and Simulation
With the TLM approach, the behavior of a processor has two major descriptions ISS

and CABA (Cycle Accurate/Bit Accurate). In the ISS, the processor description is modeled with
a specific instruction level simulator. Instructions are executed sequen-tially without referencing
to the micro-architecture of the component. CABA models the behavior of the system at each
cycle similar to the RTL level, Indeed, the CABA level modeling is based on the theory of "finite
state machine (FSM) interconnected synchronous" (Synchronous Communicating Finite State
Machines) [19-21].

The estimated performance in new ISSPT (Instruction Set Simulation with timing and
priority management) level returns to evaluate performance of two parts calcula-tion and
communication time.

For calculation time, to assess the time of each task we used the simulator Micro-Blaze
processor ISS level but adding time. For this we mainly identified the number and type of
instructions executed as relevant activities in the processor component.

Timing execution instructions of MicroBlaze processor is estimated from the tech-nical
documentation provided by Reference Guide of MicroBlaze [16].

Below is an example of our thread implementation to implement the functionality of the
calculation part (processor) described in level ISSPT. For communication time is detailed in Bus
and Network interconnection model section.

void MicroBlazeIss::step(void) {
/* decode of instruction outstanding */
IDecode(m_ir, &ins_opcode, &ins_rd, &ins_ra, &ins_rb, &ins_imm);
switch (ins_opcode) {
//execution of instruction
case OP_ADD:
next_pc = r_npc + 4;
Wait(ADD_delay,sc_core::SC_NS)
break;
………
//load of data
case OP_LW:
…..
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LOAD(READ_WORD, addr, time);
next_pc = r_npc + 4;
Wait(Transaction_delay,sc_core::SC_NS)
break;
………….
}
}

4.2. Memory Model
The memory module that we designed is a passive component "slave" type is cur-rency

in two parts, one for instructions and one for data and transaction includes two methods: read
and write. This structure allows us to accelerate the simulation. These two methods are called
and executed directly in the thread initiator connected to the memory component.

In our environment, the target port is connected directly to the bus. Data part memory is
shared between the processors. Access time and cycle time parameters are added to the
component description to estimate performance.

4.3. Bus and Network Interconnection Model
Our architecture platform is designed around the OPB bus(On-Chip Peripheral Bus) that

its architecture was developed by IBM [17]. The bus supports various features depending on the
desired bus operations: single cycle read/write, multiple masters, block transfer. In our work, we
use OPB Bus connected Xilinx MicroBlaze processor.

In this paper, we have limited develop an integrated Bus crossbar, which is based on
two main features routing and arbitration see Figure 3 and 4. The router is a generic component
that directs a request from an initiator to the target in question, using a routing table specified.
When a new transaction get from initiator, the router reads the corresponding addresses and
selects an output port, this process is illustrated in Figure 3.

Figure 3. Router component

To manage conflicts between multiple simultaneous requests to a target, we developed
an active component called "arbiter” to schedule the access to shared resources. When initiator
needs access to a shared target, via the interconnection network, it sends a request using the
corresponding communication channel and waits for the response. At the arbiter, one thread
reads queries present in the FIFO of each communication channel and selects the priority
request based on the arbitration round-robin strategy. After processing by the target, the arbiter
transmits the response in the corresponding FIFO of the communication channel.

The initiator retrieves the response and completes the transaction. This communication
management blocks a router during the processing of the request by the target, which can be a
drawback. However, it has the advantage, simplification of the protocol and reduced the number
of ports. These two factors can accelerate the simulation. Our arbiter plays a second role very
important, is used for the estimation of delays in the interconnection network.
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Figure 4. Arbiter component

Figure 5 shows the implementation of a crossbar from the two modules "router" and
"arbiter". This architecture is relatively simple, but sufficient to achieve our objective to observe
the restraints and retrieve information about latencies. Several interconnection topologies can
be designed as multi-stage network.

Figure 5. Crossbar implementation

5. Performance Estimation in ISSPT
The moment when a processor performs its corresponding memory access can affect

the access time of the other processor in a collision. Figure 6 shows an example of contention
detection error in the interconnection network due to non -compliance with the deadlines events
(Packet setup, Routing and Arbitration). When the transmitted packet from processor 1 arrives
at the router (R & A in Figure 6), there is no possibility of detecting the occupation of the router
by the processing of the packet coming from processor 0. In effect, events in the sub-level ISST
are instantly executed (zero delay). This abstraction changes the behavior of the party in the
communication system, which reduces the precision of performance estimation. To solve this
problem, we have improved the sublevel ISS by introducing synchronization instructions. They
take into account the time of component activities, delays in forwarding packets and finally the
communication protocol. These are the characteristics of the ISSPT level.

To compare the estimation error between ISSPT level and CABA level in our platform,
we had to implement the specifications of the OPB protocol. To emulate the same behavior of
the OPB protocol in ISSPT sublevel and observe the behavior of components, the wait ()
statements have been added in the description of the components and before the transmission
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of orders and answer queries. The wait () statements added require arguments expressed in
units of time such as nano seconds (ns) or number of cycles. In our experiments, these
arguments are measured from CABA platform. Table 1 shows time made in the ISSPT level.

Figure 6. Timing estimation in ISSPT sublevel

Table 1. Time activities used in the experiments
Activities Time (cycles)
Preparing an OPB command
request

4

Preparing a response OPB
request

5

Execution of an instruction 1
read memory access 2
write memory access 2
VGA 360000

6. Software Integration
The application layer has two software was tested in the platform:
a) The game of life is an infinite two-dimensional orthogonal grid of square cells, each

of which is in one of two possible states, alive or dead. Every cell interacts with its eight
neighbors, which are the cells that are horizontally, vertically, or diagonally adjacent [18],

b) JPEG Encoder is a minimalistic JPEG encoder written in C. It is both “portable”
(tested on x86 and MicroBlaze) and “lightweight” (around 600 LOC). Application allows us to
write JPEG compressed images from input image data on memory. It works in “grayscale only”
(monochrome JPEG file): there is no support for color so far.

1) It produces baseline, DCT-based (SOF0), JFIF 1.01 (APP0) JPEG-s,
2) It supports “8x8 blocks only”,
3) It includes default quantization and Huffman tables that are not customizable at

runtime.
Generally, for each application, it executed by 1, 2 or 3 processors, it is stored in their

local memory and they executed in parallel and synchronized by the same clock system.

7. Results and Discussion
We present results that we carried out to validate our platform and evaluate its

performances. We also compare performances among the different abstraction levels.
The same environment was employed for simulation on different abstraction levels. The

results of simulation were gotten by running the platform on a core 2 duo with a RAM memory
size of 1GB, based on Linux Fedora 8 Core 3.1. ISS was built by the GNU cross-compiler (GCC
version 3.4.6).
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7.1. Simulation Results in CABA, ISST and ISSPT
Figure 7 and 8 shows Speedup and precision simulation results for CABA, ISST and

ISSPT with Game of Life as a software, and the same simulation shown in Figure 10 and 11
with JPEG Encoder. Speedup corresponds to the simulation or execution time of software at the
different simulation abstraction levels.

t2 = „end time‟, t1 = „start time‟.
Speed-up formula:

Precision formula: Δx -Δbit
With „x‟ = „CABA‟,‟ ISST‟ or „ISSPT‟.

Figure 7. Speedup simulation results for
CABA, ISST and ISSPT, software used: Game

of life

Figure 8. Precision simulation results for
CABA, ISST and ISSPT, software used:

Game of life

Figure 9. Speedup simulation results for
CABA, ISST and ISSPT, software used: JPEG

Encoder

Figure 10. Precision simulation results for
CABA, ISST and ISSPT, software used: JPEG

Encoder

Models were simulated: ISSPT, ISST and CABA, we tested CABA model by its
comparing a synthesizable RTL model (using VHDL generated from Xilinx Platform Studio and
simulated with ModelSim) [19]. The first two models are used to validate the software and the
system architecture (they include the ISSs, bus model at transaction level, and models of other
components, all blocks use SystemC models).

We validated the simulation by the same Testbenches, after running the environment
we obtained these experimental results:

a) The CABA has an important precision [19].
b) ISSPT model is about 20 times faster than the CABA model.
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c) ISSPT model is about 2 times faster than the ISST model.
d) The addition of new processors in the system increases the acceleration factor,

which is explained by the amplification of the communication between the
processors and shared memory modules.

e) The nature of the software running on the platform impacts performance in
differences levels.

A precise analysis of the trace produced by the SystemC simulator shows that 80% of
the simulation time is made for the execution of the function of the bus while the simulation time
of the calculation part is low which reflects our choice to treat the case of ISSPT.

7.2. Modeling Effort
So far we have shown the usefulness of our approach in terms of acceleration of the

simulation and in terms of performance estimation. However, this approach has proven effective
also in terms of modeling effort. It allows designers the development and validation of MPSoC
systems in less time. Table 2 presents the modeling effort expressed in terms of lines of code
(LOC) needed to design an MPSoC system in the CABA and ISSPT levels. According to the
results, the modeling effort with ISSPT is reduced of a factor of 59%. The use of a multi-level
simulation strategy (with objectives) quickly allows focusing on a subset of MPSoC systems
without having to increase the modeling efforts for each level of abstraction.

Table 2. Comparing the modeling effort
Abstract level CABA ISSPT
Modeling effort(LOC) Processor 1578 1259
Bus 399 170
Memory 312 133
VGA 650 167
Timer 340 231
Total 3279 1960
Reduction (%) 59%

8, Conclusion
In this paper, we have presented and validated our methodology for MPSoC

cosimulation at a high level of abstraction (SystemC-TLM) within a single simulation
environment based on SystemC language. Our environment is based on the use of open source
ISSs models of MicroBlaze wrapped under SystemC by using UNIX inter-process
communication. Comparing three different abstraction levels, namely, ISSPT which implement
ISS (Instruction Set Simulator) with priority and timing management, ISST level which
implement ISS with timing and finally, CABA Cycle Accurate Bit Accurate.

The experimental results show that the use the ISSPT approach with SystemC-TLM
reduces the design validation time and permit developing models rapidly with an acceptable
precision.

This motivates our choice for SystemC and TLM as a system design methodology,
dedicated to architecture exploration in our project which is the main contribution of this work.
As perspective, we think to develop models for estimating the energy consumption at different
levels.
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