High Performance Computing Clusters Design and Analysis Using Red Hat Enterprise Linux

Atiqur Rahman

Department of Computer Science & Engineering, University of Chittagong, Chittagong, Bangladesh E-mail: atiqcse09@cu.ac.bd

Abstract

The purpose of this paper was to configure a cluster computing system to improve performance over that of a single computer, while typically being much more cost-effective than single computers of comparable speed. High performance computing more and more issued in all kinds of fields. But, for the common user, there are several questions on implementing the process of competing on the specialized clusters: such as expense high, management difficulty and operation complex and so on. To overcome these problems, this article designs and realizes the high performance computing environment based on Linux cluster after studying the key technology of cluster and parallel computing. Finally, the performance of system environment is tested by interactive version of CPI algorithm. Before discussion on HPC the cluster computing system with its classification, the advantages and application of clustering system will also be discussed here.

Keywords: HPCC-high performance computing cluster, NTP-network time protocol, SSH-secure shell, NFS-network file share, PDSH-public domain super hero

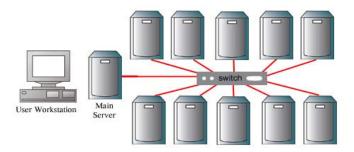
Copyright © 2015 Institute of Advanced Engineering and Science. All rights reserved.

1. Cluster Computing & Linux

A supercomputer is one of the biggest, fastest computers right this minute. So, the definition of supercomputing is constantly changing. Supercomputing is also called High Performance Computing (HPC). High-Performance Computing (HPC) is a branch of computer science that focuses on developing supercomputers, parallel processing algorithms, and related software [6]. It has brought service demand increases in line shape with network high speed advancement. Server can overload in very short time when visiting demand increasing. Therefore, clusters technology emerges as the times require from this. At present, clusters system has applied in many fields, such as scientific research calculation, petroleum exploration, weather forecast and biological information, signal handling and so on. What we can foresee, along with symmetrically multiprocessing machine product largely used and high performance network product perfected, as well as various software and hardware production produced, systematic and application software emerged, new generation high performance clusters system will become popular platform of computer field.

1.1. Why Linux?

Although clustering can be performed on various operating systems like Windows, Macintosh, Solaris etc., Linux has its own advantages which are as follows:


- a) Linux runs on a wide range of hardware.
- b) Linux is exceptionally stable.
- c) Linux source code is freely distributed.
- d) Linux is relatively virus free.
- e) Having a wide variety of tools and applications for free.
- f) Good environment for developing cluster infrastructure.

In the next chapter we will discussed about the overview of HPC cluster along with its features, uses and benefits. The rest of the paper will be organized according to the following structure: section 2 illustrated HPC cluster's framework along with its features, benefits and uses, section 3 different steps of implementation of HPC cluster, section 4 benchmarking, results and performance analysis of HPC cluster and section 5 concludes this paper.

2. Overview of High Performance Computing Cluster [6]

2.1. What is High Performance Computing Cluster?

High-Performance Computing (HPC) is used to describe computing environments which utilize supercomputers and computer clusters to address complex computational requirements, support applications with significant processing time requirements, or require processing of significant amounts of data. High-performance computing cluster use cluster nodes to perform concurrent calculations. A high-performance cluster allows applications to work in parallel, therefore enhancing the performance of the application. High performance cluster are also referred to as computational cluster or grid cluster of HPC cluster.

High Performance Cluster Figure 1. Graphical View of High Performance cluster

2.2. Cluster Framework

Figure 2 shows the structure of a cluster.

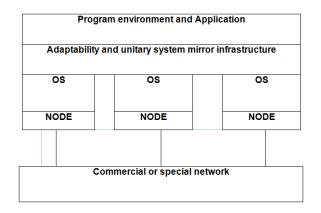


Figure 2. Cluster Framework

A cluster contains several of servers (at least two) which possess shared-data stock space. When any server runs an application, application data have been saved in the data space that shared. Operating system of server and file of application program of each server stores in local storage space. Each node in cluster server communicates with each other through internal area network. When a node of server occur fault, the running application program on this server will be taken over automatically by another node server.

Adopting the cluster architecture, there are many advantages such as free expansion, highly manageability, highly usability, high ratio of performance-to-price and so on, which solved the technology application task of crossing platform and operating system management, system software -hardware running state monitoring. It's ideal and strong system platform to undertake large-scale scientific project calculation.

High Performance Computing Clusters Design and Analysis Using Red Hat... (Atiqur Rahman)

2.3. Unique Benefits of HPC Clusters

The significance of high-performance computing (HPC) clustering is growing at a faster speed today. This is because more and more technical and scientific concerns are being analyzed on computer simulation. High performance computing is that using some processors parallel implements a task, which raises the efficiency of calculation. HPC clusters offer engineers, scientists, and technology analysts the required computing resources for making crucial decisions. This is required to promote product innovation, accelerate the pace of development, research and minimize the time to market. Leading service providers in this domain are supporting the R & D community by offering validated integrated solutions with optimized cluster configuration for certain applications.

3. Implementation of HPC Cluster [18]

3.1. Different Steps of HPC Cluster Implementation

Once Linux has been installed (preferably the same version) on all the nodes that need to be clustered. To realize the environment of parallel computing, we adopt four common PCs in design, select one of them as main supervision node computer that name is **hpcnd1** and IP address is **192.168.1.10**. The other three PCs are regarded as subordinate node computers that their name are **hpcnd2**, **hpcnd3** and **hpcnd4**, IP addresses are respectively **192.168.1.20**, **192.168.1.30**and **192.168.1.40**. All of these are connected through network which adopts NETGEAR FS-608 version 2 switcher and formed star shape LAN structure. Install Linux operating system and the necessary tools package on each PC of four computer nodes (notice that close the firewall).

3.1.1. SSH (Secure Shell) Configuration

A packet-based binary protocol that provides encrypted connections to remote hosts or servers. Secure Shell is a program to log into another computer over a network, to execute commands in a remote machine, and to move files from one machine to another. It provides strong authentication and secure communications over insecure channels. It is a replacement for rlogin, rsh, rcp, and rdist, telnet, ftp.

Connection to hpcnd2 closed.

The similar procedure will also have to apply respectively to the pair **hpcnd1-hpcnd3** and **hpcnd1-hpcnd4**, so that, the server (hpcnd1) can login into other clients securely without password button using a public key (using DSA-algorithm).

3.1.2. NTP (Network Time Protocol) Configuration

NTP stands for Network Time Protocol, and it is an Internet protocol used to synchronize the clocks of computers to some-time reference. NTP is an Internet standard protocol originally developed by Professor David L. Mills at the University of Delaware. Time usually just advances. If you have communicating programs running on different computers, time still should even advance if you switch from one computer to another. Obviously if one system is ahead of the others, the others are behind that particular one. From the perspective of an external observer, switching between these systems would cause time to jump forward and back, a non-desirable effect.

3.1.3. PDSH (Public Domain Super Heroes)

PDSH is an efficient, multithreaded remote shell client which executes commands on multiple remote hosts in parallel. Unlike rsh (remote shell) which runs commands on a single remote host, PDSH can run multiple remote commands in parallel. It is a threaded application that uses a sliding window (or *fan-out*) of threads to conserve resources on the initiating host and allow some connections to time out while all other connections continue.

3.1.4. NFS (Network File System) Configuration

NFS stands for Network File System, a file system developed by Sun Microsystems, Inc. It is a client/server system that allows users to access files across a network and treats them as if they resided in a local file directory. For example, if you were using a computer linked to a second computer via NFS, you could access files on the second computer as if they resided in a directory on the first computer. This is accomplished through the processes of exporting (the process by which an NFS server provides remote clients with access to its files) and mounting (the process by which file systems are made available to the operating system and the user). Simply we can say that NFS is a file system used for sharing of files over a network. Other resources like printers and storage devices can also be shared. This means that using NFS files can be accessed remotely.

3.1.5. MPICH2 Installation & Configuration

MPICH2 is a portable implementation of MPI (Message Passing Interface), a standard for message-passing for distributed memory applications used in parallel computing. It provides an MPI implementation that efficiently supports different computation and communication platform including commodity clusters, high-speed networks and propriety high-end computing systems. MPICH2 is Free Software and is available for most flavors of UNIX and Microsoft Windows. MPICH2 provides a separation of process management and communication. The default runtime environment consists of a set of daemons, called mpd (music player daemon), that establish communication among the machines to be used before application process startup, thus providing a clearer picture of what is wrong when communication cannot be established and providing a fast and scalable startup mechanism when parallel jobs are started.

4. Benchmarking, Results & Performance Analysis

4.1. Benchmarking [19]

Benchmarking is a systematic process for identifying and implementing best or better practices. Dimensions typically measured are quality, time and cost.

Now let's start some benchmarking:

[hpower@hpcc1 cluster]\$ cd mpich2-1.0.8p1/examples/ cpi file already complied and executeable -rw-r--r-- 1 hpower power 678 Nov 3 2007 child.c -rwxr-xr-x 1 hpower power 576450 Jun 6 14:34 cpi -rw-r--r-- 1 hpower power 1515 Nov 3 2007 cpi.c -rw-r--r-- 1 hpower power 1964 Jun 6 14:34 cpi.o -rw-r--r-- 1 hpower power 4469 Nov 3 2007 cpi.vcproj drwxr-xr-x 2 hpower power 4096 Jun 6 14:31 cxx drwxr-xr-x 2 hpower power 4096 Mar 27 01:40 developers -rw-r--r-- 1 hpower power 10446 Nov 3 2007 examples.sln drwxr-xr-x 2 hpower power 4096 Jun 6 14:31 f77 drwxr-xr-x 2 hpower power 4096 Jun 6 14:31 f90 -rw-r--r-- 1 hpower power 455 Nov 3 2007 hellow.c -rw-r--r-- 1 hpower power 1892 Nov 3 2007 icpi.c -rw-r--r-- 1 hpower power 6802 Jun 6 14:31 Makefile -rw-r--r-- 1 hpower power 6767 Mar 27 01:40 Makefile.in -rw-r--r-- 1 hpower power 1490 Mar 12 2008 Makefile.sm drwxr-xr-x 2 hpower power 4096 Mar 27 01:39 mpiexec -rw-r--r-- 1 hpower power 1049 Nov 3 2007 parent.c -rw-r--r-- 1 hpower power 46399 Nov 3 2007 pmandel.c -rw-r--r-- 1 hpower power 47798 Nov 3 2007 pmandel fence.c -rw-r--r-- 1 hpower power 4522 Nov 3 2007 pmandel fence.vcproj -rw-r--r-- 1 hpower power 45576 Nov 3 2007 pmandel service.c -rw-r--r-- 1 hpower power 4532 Nov 3 2007 pmandel service.vcproi -rw-r--r-- 1 hpower power 47510 Nov 3 2007 pmandel spaserv.c -rw-r--r-- 1 hpower power 4510 Nov 3 2007 pmandel spaserv.vcproj

From these examples we'll use icpi.c to which is the iterative version of cpi (cycles per instruction).

538 🔳

4.2. Results

To find the results as well as to test the performance of HPC cluster at first we have to run or compile the icpi.c program at the cluster. To compile the program we have to write the following commands:

[hpower@hpcnd1 ~]\$ whichmpiexec /cluster/mpich2/bin/mpiexec [hpower@hpcnd1 examples]\$ mpicc -o icpiicpi.c

Now execute it in different nodes and also open top -c to check the processes. First we will run with single node:

> [hpower@hpcnd1 ~]\$ /cluster/mpich2/bin/mpiexec -n 1 /cluster/mpich2-1.0.8p1/examples/icpi Or [hpower@hpcnd1 examples]\$ mpiexec -n 1 ./icpi Enter the number of intervals: (0 quits) 100000000 pi is approximately 3.1415926535921401, Error is 0.00000000023470 wall clock time = 19.196214 Enter the number of intervals: (0 quits)

top -c output : [root@hpcnd1 ~]# top -c top - 15:53:08 up 1:57, 3 users, load average: 0.21, 0.11, 0.03 Tasks: 188 total, 2 running, 186 sleeping, 0 stopped, 0 zombie Cpu(s): 12.5%us, 0.0%sy, 0.0%ni, 87.4%id, 0.1%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 3368196k total, 936760k used, 2431436k free, 140504k buffers Swap: 12289716k total, 0k used, 12289716k free, 634932k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 14289 hpower 25 0 2332 812 676 R 100 0.0 0:07.80./icpi 1 root 15 0 2032 640 552 S 0 0.0 0:01.82 init [5]

Let's run with two nodes:

[hpower@hpcnd1 examples]\$ mpiexec -n 2 ./icpi Enter the number of intervals: (0 quits) 100000000 pi is approximately 3.1415926535905170, Error is 0.0000000000007239 wall clock time = 10.303831 Enter the number of intervals: (0 quits) hpcnd1 top -c Output: [root@hpcnd1 ~]# top -c top - 15:56:46 up 2:01, 3 users, load average: 0.14, 0.10, 0.04 Tasks: 188 total, 2 running, 186 sleeping, 0 stopped, 0 zombie Cpu(s): 12.5%us, 0.0%sy, 0.0%ni, 87.4%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 3368196k total, 941472k used, 2426724k free, 140656k buffers Swap: 12289716k total, 0k used, 12289716k free, 634876k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 14312 hpower 25 0 2328 848 712 R 100 0.0 0:08.84 ./icpi 1 root 15 0 2032 640 552 S 0 0.0 0:01.82 init [5]

Let's run with three nodes:

[hpower@hpcnd1 examples]\$ mpiexec -n 3 ./icpi Enter the number of intervals: (0 quits) 100000000 pi is approximately 3.1415926535905170, Error is 0.000000000007239 **wall clock time = 6.869343** Enter the number of intervals: (0 quits)

Let's run with four nodes:

[hpower@hpcnd1 examples]\$ mpiexec -n 4 ./icpi Enter the number of intervals: (0 quits) 100000000 pi is approximately 3.1415926535905170, Error is 0.000000000007239 wall clock time = 4.211989 Enter the number of intervals: (0 quits)

The following screen shot showing the results of icpi.c compilation, i.e. wall clock time using single and multiple nodes.

Applications Maces System 🤣	🥥 1:00 PM
hpower@hpcndl:-	
<pre>The first year year the the the the the the the the the the</pre>	0.8pl/exam 0.8pl/exam
tpower@hpcnd1 - (root@hpcnd1 ~) froot@hpcnd1 ~) froot@hpcnd1 ~)	

The following screen shoot showing the top –c output of each compilation. 1. Using single node (hpcnd1)

									A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY AND A REAL PRO
									revighpendie 🔤 🖂 🗎
	t yew Jo								
									0.11, 0.06, 0.06
	148 tot					5 sleep			topped, 0 zombie
									a, 0.0%hi, 0.0%si, 0.0%st
2001	3983368			5989			338443		
way :	8193188	Bk lul	al,		- 86, u	ised, i	8193.18	18k. fr	neer, 383168k contred
	IISEB		_						TIME: COMMAND
	hereweer.	19	0	2360	808	5HR 5 672 8	heru	0.0	0:01.19 /cluster/mpich2-1.0.8p1/examples/icpi
	root	15		68356		5788 S	10	0.5	8:41.98 /usi/bim/Xuru :0 -br -outil 0 -outh /voi/adm/:0.Xouth -mulister
	rapi	15		97044		9304 8	10	0.4	5:52.25 promote terminal
	root	15				6552 S	÷ - 6	0.2	0:02.72 metacitysm-client-id=default1
	rant	15	Å	2864	616	528 5	Ă	0.0	A-62.72 Metally 'SH'CLIMICID-Metallici
	rant	BT.	- 5	1004	010	0 5		0.0	0:00.00 [minglion/0]
	rapi	34	19	õ		0.5	ĕ	0.0	0:00.00 [RsefLing/0]
	root	BT	- 5	ő	ě.	0 5		0.0	0:00.00 [walchdow/0]
	root	RT	- 5	ē	A.	0 5		0.0	0:00.00 [migration/1]
6	root	34	19	ē	ě	é S	ē	0.0	é:éé éé [ksoftird/1]
7	root	RT	- 5	0	8	8 5	8	0.0	8:00.00 [watchdog/1]
(3)	root	1.0	- 3	0	0	0.5		0.0	0:00.00 [events/0]
19	root	10	- 5		0	0 S		0.0	0:00.00 [events/1]
1.0	root	18	- 5	8	8	8 S		8.8	0:00 (khelper)
11	FOOT	18	- 5	8	8	8 5	8	8.8	8:89.88 [kthread]
	root	1.00	-5	83	8	8 5		81.8	8:00.88 [KDIOCKd/0]
	rant	1.0	- 5	ា	R.	8 5		0.0	R:RR.BR [kblockd/1]
	root	14	- 5	- 8	8	8 5		8.8	8:88.88 [kacp1d]
	FOOT	12	- 5	- 2	8	8 5	8	8.8	8:88.88 [cqueue/8]
	root	13	- 5	0	0	0 5		0.0	0:00.00 [kqueue/1]
	root	10	- 5	0	0	0 S		0.0	0:00.01. [khubd]
	root	18	- 5	8	8	8 S		0.0	0:00.00 [kseriod]
	root	17	θ	8	8	8 S	8	0.0	8:88.00 [pdflush]
	root	15	8	8	8	8 5		81. B	8:00.00 [pdflush]
	rant	17	- 1	10	0	8.5		0.0	http://www.community.com/action/community.com/action/community.com/action/community.com/action/community.com/action/community.com/action/community.com/action/com/a
	root	12	- 5		8	8 S		0.0	0:00.00 [slo/0]
	root	12	- 5	8	8	8 5		8.8	0:00.00 [a1o/1]
	raat	12	- 5	- 8	8	8 5	8	8.8	0:00.00 [kpsmoused]
	root	10	-5	8	8	8 S		0.0	8:88.59 [ata/8] 8:89.88 [ata/1]
	FOOT	14	- 3	8	8	85		8.8	8:60.60 [ata aux]
	FOOT	18	-3	8	8	85		0.0	
3/3 3/b		18	-2	6	8	85	8	0.0	0:00.00 [SCS1_en_0] H:01.10 [SCS1_en_1]
	root	1.0	- 22	10	8	8.5		10.0	BEBLIN [SECTION 1] BEBLIN [SECTION 2]
	root	18	- 33	8		8 5		8.8	8:00.00 [Scsi eh 3]
	FOOT	18	- 22	8	8	85	8	8.8	8160.03 [R16U7W310]
	PORK	TO	- 5	.0	0	0.2	0	0.0	e:ee.zs [k]eonace]

a a as rea 🖏

2. Using double nodes (hpcnd1+hpcnd3)

Applications Places System 😭

-phace	ations Plac	sys		0	_	_	_	_	_		🥥 1:02 P
		-								rootSh	
e Equ	t Yiew 3	erminal	Tabs	Help							
p - 1	13:02:4	1 up 3	7 m	in, 3	users	s, l:	ad a	vera	ge:	0.26, 0.1	. 0.08
	148 to			running) zombie
	: 50.9%		.2%	sy, 0.	0%n1,	, 48.	10.	0.	0%wa	, 0.0%h1	0.0%s1, 0.0%st
m: ap:	398336 819310	8k tot	al,	5993	156k I	used,	338	4212 3108	k fr		280k buffers 520k cached
ap:	919310	ok tot	at,		OK I	usea,	019	2100	K 11	ee, 303	20k cached
PID	USER	PR	NT	VIRT	RES	SHR	5 %C	PU %	MEM	TIME	COMMAND
	hpower	25	0		856	716			0.0		/cluster/mpich2-1.0.8pl/examples/icpi
404		15	0	60356					0.5	0:43.29	/usr/bin/Xorg :0 -br -audit 0 -auth /var/gdm/:0.Xauth -nolist
528		16	0	78396	15m	11m	s		0.4		gnome-panelsm-client-id default2
643		15	- 5	2188	1048	800	R 5		0.0	0:00.58	
606		20	- 5	22692					0.0	0:00.61	<pre>[ata/0] /usr/libexec/notification-area-appletoaf-activate-iid=0AF</pre>
	root	15		20092	616	528			0.0		init [5]
	root	RT	- 5	2004	0.0	0			0.0		[migration/0]
	root	34	19	ě	ĕ		ŝ	ĕ	0.0	0:00.00	[ksoftirad/0]
4	root	RT	- 5	0	0	0	s		0.0	0:00.00	[watchdog/0]
	root	RT	- 5	θ	Θ		S		θ.θ		[migration/1]
	root	34	19	θ	Θ		s		0.0		[ksoftirqd/1]
	root	RT 10	-5	0	0	0			0.0	0:00.00	[watchdog/1]
	root	10	- 2	0	0	9	s		0.0	0:00.00	[events/0] [events/1]
	root	10	- 2	9			s		0.0		[khelper]
	root	10	- 5	ĕ	ĕ	ě			0.0		[kthread]
	root	10	- 5	õ	õ	õ	ŝ		0.0	0:00.00	[kblockd/0]
	root	13	- 5	0	0		s		0.0	0:00.00	[kblockd/1]
	root	14	- 5	0	0	0		0	0.0	0:00.00	[kacpid]
100		12	- 5	0	0		s		0.0		[cqueue/0]
101		13	- 5	0	0		s	0	0.0	0:00.00	[cqueue/1]
104		10		0	0		s		0.0	0:00.01	[khubd] [kseriod]
173		17	- 5	0	0		5		0.0		[kseriod] [pdflush]
174		15	ĕ	ĕ	ĕ	ĕ	ŝ		0.0	0:00.00	[pdflush]
175	root	12	-5	0	0	0	s	0	0.0	0:00.00	[kswapd0]
176		12	- 5	ē	ē	ē			0.0	0:00.00	(aio/0)
177		12	- 5	θ	θ		S		θ.θ	0:00.00	[a10/1]
338		12	-5	0	0		s	θ	0.0	0:00.00	[kpsmoused]
370 371		10	- 5	0	0	θ	s		0.0		[ata/1] [ata aux]
375	root	14	- 22				s		0.0	0:00.00	[ata_aux] [scsi eh 0]
376		10	- 5	ő	ĕ		ŝ		0.0	0:00.00	[scsi eh 1]
377		10	- 5	ő	ő		ŝ		0.0		[scsi eh 2]
378	root	10	- 5	ö	ĕ	ĕ	ŝ	ĕ	0.0		[scsi eh 3]
	power@hpc			📑 root	_			1.00		Take Screens	
- 19	to the graph			root	emicne					, man streams	

3. Using three nodes (hpcnd1+hpcnd2+hpcnd3)

										rootish	ocndl:-
le Ed	iit Yiew Je	rminal	Tabs	Help							
										0.22, 0.13	
	148 tot			unning) zombie
											0.0%si, 0.0%st
m :	3983368			2991		used,			Ok fre		360k buffers
ap:	8193108	SK TOT	aι,		OK I	used,	8	19310	8k fre	ee, 383	364k cached
DID	USER	PR	NI	VIRT	RES	CUD	c	*CDN	OMEM	TTME .	COMMAND
	hpower	25	θ	2360	860	716		100	0.0		/cluster/mpich2-1.0.8pl/examples/icpi
	root	15		60356		5788		2	0.5		/usr/bin/Xorg :0 -br -audit 0 -auth /var/gdm/:0.Xauth -noliste
	root	15		17764				θ	0.2		metacity sm-client-id=default1
571	root	15	θ	75116	9936	7448	S	Θ	0.2		/usr/libexec/wnck-appletoaf-activate-iid=DAFIID:GNOME Wnckl
	root	15		92044		9348		Θ	0.4		gnome-terminal
	root	15	θ	2188		800		Θ	0.0	0:00.65	
	root	15	Θ	2064	616	528		θ	0.0		init [5]
	root	RT	-5	θ	Θ	θ		Θ	0.0		[migration/0]
	root	34	19	θ	0	θ		Θ	0.0		[ksoftirqd/0]
	root	RT	-5	θ	Θ	θ		0	0.0		[watchdog/0]
	root	RT 34	-5 19	0	0	0		0	0.0		[migration/1]
	root	34 RT	-5	0	0	0		0	0.0		[ksoftirqd/1] [watchdog/1]
	root	10	- 5	0	0	0		0	0.0		[watchdog/1] [events/0]
	root	10	-5	0	0	0		0	0.0		[events/1]
	root	10	-5	0	Ð	e		e	0.0		[khelper]
	root	10	-5	0	Ð	0		e	0.0		[kthread]
	root	10	-5	0	Ð	0		0	0.0		[kblockd/0]
16	root	10	- 5	θ	Θ	0	s	Θ	0.0	0:00.00	[kblockd/1]
17	root	14	-5	θ	Θ	θ		Θ	0.0	0:00.00	[kacpid]
	root	12	- 5	θ	Θ	θ		Θ	0.0		[cqueue/0]
	root	13	- 5	θ	Θ	θ		Θ	0.0		[cqueue/1]
	root	10	-5	θ	Θ	θ		Θ	0.0	0:00.01	
	root	10	- 5	Θ	Θ	θ		Θ	0.0		[kseriod]
	root	17	0	0	0	0		0	0.0		[pdflush]
	root	15 12	0 - 5	0	Ð	0		0	0.0		[pdflush]
	root	12	- 5	0	0	0		0	0.0	0:00.00	[kswapd0]
	root	12	- 5	0	0	0		0	0.0	0:00.00	
	root	12	-5	0	0	0		0	0.0		[kpsmoused]
	root	10	-5	0	Ð	0		0	0.0	0:00.60	
	root	10	-5	0	Ð	e		0	0.0	0:00.00	
371	root	14	- 5	θ	Θ	θ		θ	0.0		[ata aux]
	root	10	- 5	θ	Θ	θ	S	θ	0.0		[scs1 eh 0]
	root	10	- 5	Θ	Θ	θ		Θ	0.0		[scsi eh 1]
377	root	10	- 5	θ	Θ	θ	S	θ	0.0	0:00.00	[scsi_eh_2]

4. Using four nodes (hpcnd1+hpcnd2+hpcnd3+ hpcnd4)

Description Description Description 0n - 13:03:25 up 38 mLn. 2 lusers. Load average: 0.22, 0.12, 0.08 asks: 148 total. 2 running. 146 sleeping. 0 stopped. 0 zomble 0:(s): 51.44.01.3; 0.00xs, 0.00xi, 40.65ki, 0.00xa, 0.00xi, 0.00xi 10:(s): 51.44.01.3; 0.00xs, 0.00xi, 40.65ki, 0.00xa, 0.00xi, 10.00xi 10:00±1 0.00xi, 40.65ki, 0.00xa, 0.00xi, 40.65ki, 0.00xa, 0.00xi 10:00±1 0.00xi, 40.65ki, 0.00xa, 0.00xi, 40.65ki, 0.00xa, 0.00xi, 0.00xi 10:00±1 0.00xi, 40.65ki, 0.00xa, 0.00xi, 40.65ki, 0.00xa, 0.00xi, 0.00xi	1									root@h	cndl:~	
Take: L48 total, 2 running. 16 stepping. 0 stopped. 0 zombie 10:015: 51.4444. .004mi, 46.0544. .004mi, 46.0544. .004mi, 46.0544. 10:015: 51.4444. .004mi, 46.0544. .004mi, 46.0544. .004mi, 46.0544. 10:015: 0.0414. .004mi, 46.0544. .004mi, 46.0544. .004mi, 46.0544. 10:015: 0.0414. .0055. .0151.057. .0240. .0041. 10:015: 0.0176. .0005.10 .011111. .0040. .0011. 524 root 15 0.0244. .0004. .002.011. .0011.	Ele Ed	lit ⊻iew :	Jerminal	Tabs	Help							
Take: L48 total, 2 running. 16 stepping. 0 stopped. 0 zombie 10:015: 51.4444. .004mi, 46.0544. .004mi, 46.0544. .004mi, 46.0544. 10:015: 51.4444. .004mi, 46.0544. .004mi, 46.0544. .004mi, 46.0544. 10:015: 0.0414. .004mi, 46.0544. .004mi, 46.0544. .004mi, 46.0544. 10:015: 0.0414. .0055. .0151.057. .0240. .0041. 10:015: 0.0176. .0005.10 .011111. .0040. .0011. 524 root 15 0.0244. .0004. .002.011. .0011.						users	5. lo	ada	verage:	Э.22. Ө.1	. 0.08	
pu(s): 51.4%us, 0.0%sy, 0.0%n1, 48.6%id, 0.0%wa, 0.0%h1, 0.0%st 0.0%st e:: 39433646 ktolat, 59746 kused, 333606 free, 33360 ktored, 3360 k												
Way: Big13108k total, OK Used, Big3108k free, Big3308k free, Big3	pu(s)	: 51.49	sus, 6	. 0%:	у, 0.	0%ni,	48.6	%id,	0.0%wa	, 0.0%hi	0.0%si, 0.0%st	
PD USE: PR N1 VIA: RES SUB C VIA: PROVER PROVE					5997							
7694 hower 25 0 256 660 716 R 100 0.0 0:05.16 C/cluster/mpich2-1.0 051/2essel/cluster/ipich2 5544 root 15 0 05355 19 578 2 0.5 0:45.25 2/second	wap:	819316	08k tot	al,		Θkι	used,	819	93108k fr	ee, 383	64k cached	
7694 hower 25 0 256 660 716 R 100 0.0 0:05.16 C/cluster/mpich2-1.0 051/2essel/cluster/ipich2 5544 root 15 0 05355 19 578 2 0.5 0:45.25 2/second												
5464 root 15 0 60356 19m S788 S 2 0.5 0:45.25 Vusr/Light/S0 0												
5524 root 15 0 17764 9004 6552 0 0.2 002.2 10 11												de (. O. Venete
5571 root 15 9 9711 9936 7448 5 0 0.2 0:01.13 //// usr/libexec/unck-appletoaf-activate-iid=OAFID:GNOME_Mack 7643 root 15 0 2244 144 9348 0 0.0 0:03.33 gnome-treminal 7643 root 15 0 2248 1448 9348 0 0.0 0:03.35 gnome-treminal 7603 root 15 0 2248 104 0.0 0:00.00 11atin/01 7604 17 5 0 0 0 0.0 0:00.00 11atin/01 7607 34 19 0 0 0 0.0 0:00.00 11atin/01 7607 37 0 0 0 0 0.0 0:00.00 11atin/0701 7607 17 5 0 0 0.0 0:00.00 11atin/0701 7607 10 -5 0 0 0 <												Jam/:0.Xauth -notist
SB14 root 15 0 0.244 14.6 0.348 5 0 0.4 0.633.33 ground-terminal Terminal 1 root 15 0 2188 1048 000 0 </td <td></td> <td>- OAFTTD CNOME HE -I-</td>												- OAFTTD CNOME HE -I-
Téda root 15 0 2188 1048 800 R 0 0.0 0:00:05 700 - 1 root 15 0 266 616 528 0 0.0 0:00:05 20 11 [5] 2 root RT -5 0												d=04F11D.GNOHE_WICK
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
3 root 34 19 0 0 0 5 0 0.0 0 0.0 0 0.0 0 0.0 0												
	3	root	34	19	Θ	θ	Ø	s	0 0.0			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	root	RT	- 5	Θ	θ	Θ	5	0 0.0	0:00.00	[watchdog/0]	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	root	RT							0:00.00	[migration/1]	
8 root 10 -5 0 <td></td>												
9 root 10 -5 0 <td></td>												
10 root 10 -5 0 </td <td></td>												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	101	root	13	- 5	Θ	θ	Θ	s	0 0.0			
173 root 17 0 0 0 5 0 0.0 0	104	root	10	- 5	Θ	θ	Θ	5	0 0.0	0:00.01	[khubd]	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	106	root								0:00.00	[kseriod]	
175 root 12 -5 0<												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
338 root 12 -5 0<												
369 root 10 -5 0 0 5 0 0.0 0:400.62 [ata/d] 370 root 10 -5 0 0 5 0 0.0 0:400.62 [ata/d] 371 root 10 -5 0 0 5 0 0.0 0:400.60 [ata/aux] 375 root 10 -5 0 0 5 0 0.0 0:400.40 [ata/aux] 375 root 10 -5 0 0 5 0 0.0 0:400.40 [ata/aux] 376 root 10 -5 0 0 5 0 0.0 0:400.40 [ata/aux]												
370 root 10 -5 0 0 05 0 0.0 000.00 (star.1) 371 root 14 -5 0 0 05 0 0.0 000.00 (star.2) 375 root 10 -5 0 0 05 0 0.0 000.00 (star.2 nux) 376 root 10 -5 0 0 05 0 0.0 000.00 (star.2 nh 0)												
371 root 14 -5 0 0 0 5 0 0.0 0;00.00 [ata_aux] 375 root 10 -5 0 0 0 5 0 0.0 0;00.00 [ata_aux] 376 root 10 -5 0 0 0 5 0 0.0 0;00.00 [acsi_eh_0]												
375 root 10 -5 0 0 0 5 0 0.0 0:00.00 [scsi_eh 0] 376 root 10 -5 0 0 0 5 0 0.0 0:01.14 [scsi_eh_1]												
376 root 10 -5 0 0 0 S 0 0.0 0:01.14 [scsi_eh_1]												
	377	root	10	- 5	Θ	θ	Θ	S	0 0.0			

4.3. Performance Analysis [20]

The following table showing the wall clock time after compiling the icpi.c using single or multiple nodes by using different intervals.

7	Table 1				
No. of intervals(Cycles) Value of n in algorithm	100	10000	1000000	10000000	100000000
hpcnd1 (wall clock time)	0.00003	360.000228	0.019338	1.920956	19.196214
hpcnd1+hpcnd2 (wall clock time)	0.00273	320.000927	0.010423	0.962485	10.303831
hpcnd1+hpcnd2+hpcnd3 (wall clock time)	0.00570	050.000766	0.007697	0.685562	6.869343
hpcnd1+hpcnd2+hpcnd3+hpcnd4 (wall clock time	e)0.00622	240.000425	0.000259	0.425128	4.211989

Now we can represent the information of table with a graph to understand the performance analysis more easily through graphical representation.

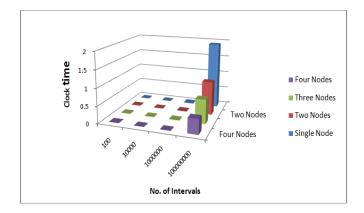


Figure 3. Graphical representation of number of intervals vs. wall clock time

5. Conclusion

With the popularity of high performance calculation and network technology, cluster system, which is the hot point of research and main stream of parallel computing in the world, is large advantage that can't be substituted. This paper offers the method of setting up the environment of parallel computing technology based on Linux and meets the needs of a large-scale scientific and engineering computing under the experimental environment. Here we have discussed the performance analysis of HPC cluster using only one algorithm, i.e. iterative cpi algorithm. There many others algorithm which are available for performance analysis. In future, the performance can be analyzed using other algorithms. The number nodes can also be increased to 8 to 16 nodes or more to improve the strength of HPC cluster. The HPC clusters can also be implemented using other version of Linux like Centos, Fedora or other operating system like UNIX or Mac etc.

References

- [1] Yang, Shin-Jer, Chung-Chih Tu, Jyhjong Lin. Design Issue and Performance Analysis of Data Migration Tool in a Cloud-Based Environment. Proceedings of the 4th International Conference on Computer Engineering and Networks. Springer International Publishing. 2015.
- [2] Hadjidoukas PE, et al. Π4U: A high performance computing framework for Bayesian uncertainty quantification of complex models. *Journal of Computational Physics.* 2015;284: 1-21.
- [3] Yao, Yushu, et al. SciDB for High Performance Array-structured Science Data at NERSC. *Computing in Science & Engineering.* 2015; 1: 1-1.
- [4] Younge, Andrew J, John Paul Walters, Geoffrey C Fox. Supporting High Performance Molecular Dynamics in Virtualized Clusters using IOMMU, SR-IOV, and GPUDirect. 2015.
- [5] Visser, Marco D, et al. S1 Text: Speeding up ecological and evolutionary computations in R; essentials of high performance computing for biologists. 2015.
- [6] Kaur, Arvinder, Shraddha Verma. Performance Measurement and Analysis of High-Availability Clusters. ACM SIGSOFT Software Engineering Notes. 2015; 40(2): 1-7.
- [7] Goudey, Benjamin, et al. High performance computing enabling exhaustive analysis of higher order single nucleotide polymorphism interaction in Genome Wide Association Studies. *Health Information Science and Systems.* 2015; 1: 3.
- [8] Yao, Yushu, et al. SciDB for High Performance Array-structured Science Data at NERSC. Computing in Science & Engineering. 2015; 1: 1-1.
- [9] Belgacem, Mohamed Ben, Bastien Chopard. A hybrid HPC/cloud distributed infrastructure: Coupling EC2 cloud resources with HPC clusters to run large tightly coupled multiscale applications. *Future Generation Computer Systems*. 2015; 42: 11-21.
- [10] Dumitrel Loghin, Bogdan Marius Tudor, et al. *A Performance Study of Big Data on Small Nodes*. Proceedings of the VLDB Endowment. 2015; 8(7).

High Performance Computing Clusters Design and Analysis Using Red Hat... (Atiqur Rahman)

- [11] Hartog, Jessica, et al. Performance Analysis of Adapting a MapReduce Framework to Dynamically Accommodate Heterogeneity. *Transactions on Large-Scale Data-and Knowledge-Centered Systems* XX. Springer Berlin Heidelberg. 2015: 108-130.
- [12] Du Jun, et al. Research on Linux-Based PC Cluster System and its Application in Numerical Simulation for Shallow Buried Soft Soil Tunnel. *Applied Mechanics and Materials*. 2015; 730
- [13] Kobayashi Hiroaki. Feasibility study of a future HPC system for memory-intensive applications: final report. *Sustained Simulation Performance 2014*. Springer International Publishing. 2015: 3-16.
- [14] Sharifi Hadi, Omar Aaziz, Jonathan Cook. *Monitoring HPC applications in the production environment*. Proceedings of the 2nd Workshop on Parallel Programming for Analytics Applications. ACM. 2015.
- [15] Gudivada, Venkat N, Jagadeesh Nandigam, Jordan Paris. Programming Paradigms in High Performance Computing. *Research and Applications in Global Supercomputing.* 2015: 303.
- [16] El-Moursy, Ali A, et al. Parallel PPI Prediction Performance Study on HPC Platforms. Journal of Circuits, Systems and Computers. 2015.
- [17] Ahmed Munib, Ishfaq Ahmad, Mohammad Saad Ahmad. A survey of genome sequence assembly techniques and algorithms using high-performance computing. *The Journal of Supercomputing*. 2015; 71(1): 293-339.
- [18] Islam Nusrat S, et al. *High performance RDMA-based design of HDFS over InfiniBand*. Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. IEEE Computer Society Press. 2012.
- [19] Danalis Anthony, et al. The scalable heterogeneous computing (SHOC) benchmark suite. Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics Processing Units. ACM. 2010.
- [20] Nichols J, et al. HPC-EPIC for high resolution simulations of environmental and sustainability assessment. Computers and Electronics in Agriculture. 2011; 79(2): 112-115.
- [21] Kopper Karl. The Linux Enterprise Cluster: build a highly available cluster with commodity hardware and free software. No Starch Press. 2005.
- [22] Bookman Charles. Linux clustering: building and maintaining Linux clusters. Sams Publishing. 2003.
- [23] Baker Mark. Cluster computing white paper. 2000.
- [24] Yang, Chao-Tung, Yu-Lun Luo, Chuan-Lin Lai. Designing computing platform for BioGrid. International journal of computer applications in technology. 2005; 22(1): 3-13.