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 Word completion and word prediction are two important phenomena in typing 

that have extreme effect on aiding disable people and students while using 

keyboard or other similar devices. Such autocomplete technique also helps 

students significantly during learning process through constructing proper 

keywords during web searching. A lot of works are conducted for English 

language, but for Bangla, it is still very inadequate as well as the metrics used 

for performance computation is not rigorous yet. Bangla is one of the mostly 

spoken languages (3.05% of world population) and ranked as seventh among 

all the languages in the world. In this paper, word prediction on Bangla 

sentence by using stochastic, i.e. N-gram based language models are proposed 

for autocomplete a sentence by predicting a set of words rather than a single 

word, which was done in previous work. A novel approach is proposed in order 

to find the optimum language model based on performance metric. In addition, 

for finding out better performance, a large Bangla corpus of different word 

types is used. 
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1. INTRODUCTION 

Innovation in writing and typing of a language is so important. Especially for disable persons and 

early learners of the language. A person having disability can live a comfortable life if he or she has the 

opportunity of typing a note, an email or anything else comfortably with the aid of autocomplete. In addition, 

for the early learners in any field (i.e. students, novice researchers) the autocomplete technique might be 

beneficial during the learning process by providing most suitable suggestions while searching for new topics 

with keywords. Though Bangla is one of the most widely spoken languages (3.05% of world population) and 

considered seventh language of all languages in the world [1], no work was found on automated Autocomplete. 

In recent couple of years, very few efforts have been made for word prediction, specially focused on Bangla 

language. In the research work on Bangla word prediction [2], stochastic, i.e. N-gram based language models 

are proposed for completing a sentence by predicting a single word. The next improvement took place in the 

work of M. T. Habib et. al. [3], where word prediction on sentence by using stochastic, i.e. N-gram based 

language models. They have used a novel metric to assess the performances of their proposed model. Although 

they achieved good accuracy, it is a matter of fact that opportunities still remain for improvement. Artificial 

Intelligence used for word prediction in Spanish is also observed in [4], in which using the chart bottom-up 

technique, syntactic and semantic analysis is done for word prediction. H. Al-Mubaid [5] presented an effective 

method of word prediction in English using machine learning. In [6] Nagalavi and Hanumanthappa have 

applied N-gram based word prediction model in order to establish the link between different blocks of a piece 

of writing in e-newspaper in English retaining with the sentence reading order. Some related work use N-gram 
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language model for Autocomplete in Urdu language [7] and in Hindi language [8] for detecting disambiguation 

in Hindi word. Some research works in Bangla language, e.g. Bangla grammar checker [9] using N-gram 

language model, checking the correctness of Bangla word [10], verification of Bangla sentence structure [11], 

and validity determination of Bangla sentences [12] are also conducted. There are some different word 

prediction tools such as AutoComplete by Microsoft, AutoFill by Google Chrome, TypingAid, LetMeType 

etc. In [13] software with improved training and recall algorithms are suggested to solve the sentence 

completion problem using the cogent confabulation model, which can remember sentences with 100% 

accuracy in the training files. An N-gram model is constructed in [14], which was used to compute 30 

alternative words for a given low frequency word in a sentence, and human judges then picked the best impostor 

words, based on a set of provided guidelines Index-based retrieval algorithm and a cluster-based approach are 

proposed at [15] for sentence-completion. Bickel et al. [16] learned a linearly cast N-gram model for sentence 

completion. Bhatia et al. [17] extracted frequently occurring phrases and N-grams from text collections and 

deployed them for generating and ranking auto-completion candidates for partial queries in the absence of 

search logs. A new approach is proposed in [18], for learning to personalize auto-completion rankings based. 

Word prediction means guessing the next word in a sentence. Auto complete or Autocomplete works 

so that the user types the first letter or letters of a word and the program provides one or more higher probable 

words. If the word he intends to type is included in the list, he can select it, for example by using the number 

of keys. If the word that the user wants is not predicted, the user must type the next letter of the predicted word. 

At this time, the word choice(s) is altered so that the words provided begin with the same letters as those that 

have been selected or the word that the user wants appears it is selected.  

Autocomplete technique complete word by analyzing previous word flow and first letter of the word 

for auto completing a word and sentence with more accuracy and reduces misspelling. N-gram language model 

is important technique for word prediction. 

The problem addressed in this paper is about stochastically predicting a suitable word to complete an 

incomplete sentence, which consists of some words and a single character. Let w1w2 w3 … wm-1 wm be a sentence 

i.e. sequence of words, where wm = c1c2c3……cn and w1w2 w3 … wm-1c1  has already been typed. The problem is 

to build a language model which takes w1w2 w3 … wm-1c1 as input and predicts an n-tuple of word fragments 

(vm1,vm2, vm3, …vmn) as output in order to match the remaining untyped word fragment c2 c3c4……cn, as shown 

in Figure 1.  

 

 
 

Figure 1. Language Model 

 

 

We use large data corpus for training in N-gram language model for completing correct Bangla word 

to complete a Bangla sentence with more accuracy. In this paper, we propose an investigating design of 

optimum stochastic language model for Bangla autocomplete using supervised machine learning technique 

based on different N-gram language modeling. Probability is based on counting things or word in most cases. 

In our previous works [2, 3], we used different types of language models for word prediction. Both these two 

works are different from the work presented in this paper because word prediction obviously differs from 

autocomplete, i.e. word completion. In these earlier works word [2] or word set [3] is predicted based on one 

or more preceding words, but in this work, word fragment set is being predicted based on one or more words 

and a single character. 

The rest of the paper is organized as follows. In Section 2, comes the description of our approach to 

solve the problem. Section 3 describes how we apply our entire methodology and what results are achieved. In 

Section 4, we investigate results obtained in order to develop an understanding about the merits of our proposed 

approach. Finally, we summarize our work along with limitations, and discuss the scope for future work in 

Section 5. 

 

 

2. PROPOSED METHOD 

We begin with five language models, namely unigram, bigram, trigram, backoff and linear 

interpolation. All these language models are based on N-gram approximation. Bayesian classifiers have been 
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used in [19-21]. As opposed to Bayesian, classifier assumes no correlation between words in the same text, 

where N-gram language model assume relationships between the words, and evaluate the probability of a word 

being before or after another word. The ordinary equation for the N-gram approximation to the conditional 

probability of the next word in a sequence is: 

 

𝑃(𝑤𝑛|𝑤1
𝑛−1) ≈ 𝑃(𝑤𝑛|𝑤𝑛−𝑁+1

𝑛−1 ) (1) 

 

Equation 1 shows that probability of a word wn given all the previous words can be presumptive by 

the probability given only the previous N words. If N = 1, 2, 3 in (1), the model becomes unigram, bigram and 

trigram language model, respectively, and so on. 

We train our full corpus along with our five language models. We calculate each word N-gram 

portability. We predict the word, which have the most frequency based on N-gram probability. Then we check 

the first character of the predicted word with our given character. If the first character of the predicted word 

and given word matched we select the word as predicted or result word. 

The performance of each language model is measured by taking both the matching of predicted word 

with intended word as well as the order of matching into account. Therefore, accuracy and failure rate are used 

in order to address this issue. If is mention that the equation 2 & 3 used from our previous paper [3]. If wm 

matches with vmi, (i.e. wm equals vmi, where 1 ≤ i ≤ n + 1), then the accuracy is 

 

Accuracy = 
%100

1




n

in  (2) 

 

Failure occurs when i equals n + 1. (n + 1)-th match means no match has taken place, i.e. accuracy 

equals 0. If in an experiment a language model fails to predict f times, i.e. f failures occur, out of p predictions, 

then the failure rate is 

 

Failure rate = %100
p

f  (3) 

 

Another aspect of the problem is empirical. Given a number of language models, we need to come up 

with the one, which outperforms all other models in terms of accuracy for possibly small value of n. 

 

 

3. RESEARCH METHOD  

We train a language model based on a corpus setting n, the prediction length, with 1. Then accuracy 

of the trained model is tested. The value of n is increased by 1 and the language model is trained and tested. 

The process continues until insignificant change in accuracy occurs and the value exceeds the average word 

length of corpus, |w |. Here is to mention that as the value of n increases, so is for accuracy too. Although larger 

value of n involves better accuracy, it increases the value of i, the number of position in n-tuple at which 

prediction matches. Thus, it also involves larger number of key strokes required. This is why the average word 

length of corpus is used in looping condition. In this way, n*, the considerable optimum value of n is 

automatically calculated for every language model stated earlier, which is given as pseudocode in Algorithm 

1 of [3]. The best model is chosen by the technique, which was describe in our previous paper [3]. 

A set of training modules of word prediction were developed to compute unigram, bigram, trigram, 

backoff as well as linear interpolation based on N-gram. The implementation is different in respect to the 

previous work [4] as the prediction is built with a set of words and a character instead of a single one during 

finding out the best language model among these language models. These models are used to determine 

different probabilities by counting frequencies of words in a very large corpus, which has been constructed 

from the popular Bangla newspaper the “Daily Prothom Alo”. The corpus contains more than 12 million 

(12,203,790) words and about 1 million (937,349) sentences, where total number of unique words is 294,371 

and average word length (|w |) is 7. 

During this work, we divided the entire corpus into two parts, namely training part and testing part. 

The holdout method [22] is used to split the corpus at the proportion of two-thirds for training and one-third 

for testing. Therefore, this work starts with a training corpus of size more than seven (7) hundred thousand 

sentences. In order to avoid model over-fitting problem (i.e. to have lower training error but higher 

generalization error), a validation set is used. In accordance with this approach, the original training data is 

divided into two smaller subsets. One of the subsets is used for training, while the other one (i.e. the validation 

set) is used for calculating the generalization error. Two-thirds of the training set is fixed for model building 

while the remaining one-third is used for error estimation. The holdout method is repeated for five times in 

order to find the best model. After finding out the best model, the accuracy of the model is computed using the 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 13, No. 2, February 2019 :  671 – 676 

674 

test set, through which the considerable optimum prediction length (n*) is determined automatically based on 

Algorithm 1of [3].The entire approach is shown in Figure 2. 

 

 

 
 

Figure 2. Proposed approach for specific model 

 

 

4. RESULT AND DISCURTION  

The optimum prediction length (n*) along with the accuracy of each model is shown on Table 1. 

 

 

Table 1. Optimum prediction length (n*) of all language models 

Language Model 
Prediction Length 

Optimum value of n (n* ) 
n=1 n=2 n=3 n=4 n=5 n=6 n=7 

Unigram 3.4% 12.65% 21.32% 25.37% 29.48% 33.75% 38.62% 7 

Bigram 59.90% 65.35% 69.14% 72.52% 74.95% 77.06% 79.12% 7 

Trigram 75.74% 79.21% 81.02% 81.93% 82.48% 83.03% 83.38% 7 

Backoff 75.74% 80% 82.39% 83.41% 84.73% 85.42% 85.96% 7 

Linear Interpolation 73.76% 79.70% 83.33% 86.39% 88.42% 90.10% 91.58% 7 

 

 

In addition, a detailed investigation is conducted (shown on Table 2) to evaluate the performance of 

the classifier for all models by varying the length of test sentences, i.e. unigram, bigram, trigram, backoff and 

linear interpolation. After finding out the different accuracy rate of top three models with the test set consists 

of sentences with different lengths, the average accuracy of the model’s (i.e. trigram, backoff and linear 

interpolation) is computed(see Figure 3) which might lead us in finding out the best language model. During 

finding out the accuracy of each model, it is noticed that, sometimes models show almost same accuracy during 

the process of predicting the suitable word. Therefore, keeping track of the failure rate is considered as a 

significant task, as some models might show same accuracy but with different failure rate. In Table 3, the 

failure rate of all the models is presented. After finding out the different failure rate of top three models with 

the test set consists of sentences with different lengths, the average failure rate (see Figure 4) of the top model’s 

(i.e. trigram, backoff and linear interpolation) is computed which might lead us in finding out the best language 

model; as during the process of finding out the accuracy some models have shown almost similar accuracy 

which makes the selection process difficult. 

 

 

Table 2. All models’ accuracy across the 

availability of words 
Available 

Words in Test 

Sentences 

Accuracy of Language Model 

Trigram Backoff 
Linear 

Interpolation 

1 15% 20% 37.78% 

2 34.22% 44% 61.07% 

3 59.99% 74.16% 63.57% 

4 60.68% 76.21% 64.56% 

5 61.30% 79.2% 73.21% 

6 61.52% 79.99% 73.40% 

7 67.5% 82.63% 74.28% 

8 68.26% 83.43% 74.34% 

9 68.69% 85.40% 75% 

10 70.12% 85.75% 75% 

11 70.71% 87.40% 76.73% 

12 71.59% 90% 82.63% 

13 83.57% 91.11% 83.92% 

14 83.57% 91.99% 92.14% 

15 87.85% 93.6% 93.57% 
 

Table 3. All models’ failure rate with the 

availability of the words in test sentence 
Available 

Words in Test 

Sentences 

Failure Rate of Language Model 

Trigram Backoff 
Linear 

Interpolation 

1 64.44% 54.28% 60.00% 

2 39.28% 25% 35.71% 

3 38.63% 21.62% 30.43% 

4 36.95% 20% 28.57% 

5 36.95% 19.04% 25% 

6 32.14% 16.34% 25% 

7 30.43% 15.78% 25% 

8 30.43% 13.51% 23.91% 

9 28.76% 12.12% 22.72% 

10 28.76% 12.04% 21.73% 

11 28.57% 10.71% 19.56% 

12 27.27% 9.52% 14.54% 

13 14.28% 7.40% 14.28% 

14 14.28% 5.71% 7.14% 

15 10.71% 4.21% 3.57% 
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During experiment, as shown on Table 1, it is noticeable, the top three models have shown good 

accuracy among all the models, though linear interpolation model shows slightly better performance in terms 

of predicting next possible word with optimum prediction length seven, i.e. n* = 7. Therefore, to find out the 

best model, in the second phase, a further deep investigation is conducted, as shown on Table 2, to find out, 

how the top three models behave against the test sets with different sizes (average) of sentences. From the 

experiment in second phase, all the top models behave similar like before consequently, a third phase is 

required, in which the failure rate of the top models is computed (see Table 3). Though, in some cases the 

trigram, backoff and linear interpolation method show almost same accuracy, but the failure rate of the other 

two models (trigram and backoff) is higher compared to the linear interpolation. Moreover, from the average 

accuracy and average failure rate of all models (Figure 3 and Figure 4 respectively) it is obvious to come up 

with the final decision that linear interpolation model accomplishes most accuracy among all other models 

during the word prediction process. The accuracy rate along with the increment of the prediction length of the 

linear interpolation model is shown on Figure 5. 

 

 

  
  

Figure 3. Average accuracy of language models Figure 4. Average failure rate of language models 

 

 

 
 

Figure 5. Accuracy and Failure along with the prediction length of Linear Interpolation model 
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Although the linear interpolation model has shown better performance than other top models (91.98% 

with n* = 7) and the experiment result is promising. 

 

 

5. CONCLUSION 

The focus of this research was modeling, training and apply techniques that can assist in automatic 

Bangla word completion. For the purpose of this research, a large and rich Bangla corpus is applied and 

supervised machine learning technique based on popular N-gram language model is used. Among five-

language model to determine the best language model is the main contribution of the research. Though during 

the several phases of experiments, in terms of both accuracy and failure rate, the linear interpolation 

outperforms the other models. For the future work, a further testing with the present models is planned with 

larger corpus. An adaptive software for Bangla automated word completion based on this work will be 

developed. 
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