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 Cochlear implant (CI) listeners encounter difficulties in communicating with 

other persons in noisy listening environments. However, most CI research 

has been carried out using the English language. In this study, single-channel 

speech enhancement (SE) strategies as a pre-processing approach for the CI 

system were investigated in terms of Thai speech intelligibility improvement. 

Two SE algorithms, namely multi-band spectral subtraction (MBSS) and 

Weiner filter (WF) algorithms, were evaluated. Speech signals consisting of 

monosyllabic and bisyllabic Thai words were degraded by speech-shaped 

noise and babble noise at SNR levels of 0, 5, and 10 dB. Then the noisy 

words were enhanced using SE algorithms. The enhanced words were fed 

into the CI system to synthesize vocoded speech. The vocoded speech was 

presented to twenty normal-hearing listeners. The results indicated that 

speech intelligibility was marginally improved by the MBSS algorithm and 

significantly improved by the WF algorithm in some conditions. The 

enhanced bisyllabic words showed a noticeably higher intelligibility 

improvement than the enhanced monosyllabic words in all conditions, 

particularly in speech-shaped noise. Such outcomes may be beneficial to 

Thai-speaking CI listeners. 
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1. INTRODUCTION 

Most CI listeners can achieve high speech intelligibility which is close to the capability of normal-

hearing (NH) listeners in quiet listening environments. This is because almost all the sound coding strategies 

used by modern CI devices perform well in quiet listening environments [1]. However, most CI listeners 

suffer from decreased speech intelligibility more than NH listeners in noisy listening environments. The 

higher the noise level, the lower the speech intelligibility performance [2]. One of the specific limitations of 

CI devices in terms of frequency, temporal and amplitude resolutions [3] is related to transmitting speech 

information to the auditory nerves. Another limitation is the effect of channel interaction, which results from 

the overlap of electrical fields between electrodes [4]. Electric stimulation of one electrode may be distorted 

by the stimulation of other electrodes. Such interactions can decrease intelligibility performance. Therefore, 

CI researchers have increasingly attempted to improve speech intelligibility performance, particularly by 

developing speech enhancement (SE) strategies for use in adverse noisy environments. 

Generally, single-channel SE strategies are used in most traditional CI systems, and this can be 

extended to apply to multi-channel SE strategies. Therefore, single-channel SE strategies were employed in 

this study. Several studies have indicated that these single-channel SE algorithms improved speech 

intelligibility significantly for hearing-impaired (HI) listeners. SE algorithms such as the pre-processing 
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approach have been applied to CI systems, including subspace-based, Weiner filter, and spectral subtractive 

algorithms. Loizou et al. [5] demonstrated that the subspace-based algorithm proposed by Hu and Loizou [6] 

significantly improved sentence recognition in speech-shaped noise at a 5 dB signal-to-noise ratio (SNR) 

among a group of fourteen Clarion CI listeners, with an average improvement of 44%. However, this 

algorithm can also provide recognition benefits for stationary noise (e.g. speech-shaped noise (SSN)), but the 

algorithm does not guarantee improvement for non-stationary noises (e.g. babble noise (BBN)).  

Bolner et al. [7] showed that a Weiner filter (WF) based on a priori SNR estimates [8] significantly improved 

sentence recognition in a SSN condition at 0 dB SNR in a group of ten NH listeners, but there was no 

improvement in a BBN condition. Additionally, a study by Koning et al. [9] showed that the WF algorithm, 

applied as an envelope-weighting approach, provided both speech intelligibility and speech quality 

improvement for a group of six Dutch-speaking CI listeners and six Dutch-speaking NH listeners. 

Over almost four decades, spectral subtraction (SS) algorithms have been developed in many 

versions, and some of these have been applied in CI systems. An SS algorithm referred to as the INTEL SE 

algorithm was first applied by Hochberg et al. [10]. Consonant-vowel-consonant words corrupted by SSN at 

SNR ranging from -10 to 25 dB for NH listeners and from -5 to 25 dB for CI listeners were processed by the 

INTEL SE algorithms. The enhanced words were presented to ten NH listeners and ten Nucleus CI listeners. 

Word recognition was significantly improved for CI listeners but not for NH listeners. A study by Weiss [11] 

indicated that when the noisy speech signals were enhanced by the INTEL SE algorithm, the error of the 

second formant extraction was considerably reduced in the Nucleus implant coding strategy. These effects 

were used to improve speech perception in the prior study.  

Yang and Fu [12] found significant improvements with the SS algorithm proposed by  

Gustafsson et al. [13] when it was applied to sentence recognition in SSN at different SNRs (i.e. 0, 3, 6, and 9 

dB) in a group of seven CI listeners who used different CI devices (i.e. Nucleus, Med-El, and Clarion). 

Verschuur et al. [14] indicated that sentence recognition with the nonlinear SS (NSS) algorithm proposed by 

Lockwood and Boudy [15] was significantly improved in SSN at both 5 and 10 dB SNRs for seventeen 

Nucleus CI listeners. However, such benefits may be limited to suppressing non-stationary noise. A later 

study by Kallel et al. [16] applied the NSS algorithm proposed by Berouti et al. [17] and the multi-band SS 

(MBSS) algorithm proposed by Kamath and Loizou [18] to three bilateral Neurelec CI listeners and fifty NH 

listeners. The results showed that the average word recognition improvement was 4–9% for bilateral 

Neurelec CI listeners and 7–13% for NH listeners at all SNRs (i.e. -3, 0, 3, and 6 dB). Moreover, the results 

also indicated that the MBSS algorithm enhanced speech intelligibility more than the NSS algorithm for 

single and multiple interfering noise sources.  

Nevertheless, most SE strategies for CI listeners have been evaluated using the English language. A 

few studies have evaluated strategies using French, Hebrew, Dutch/Flemish, and Chinese, but SE strategies 

have never been evaluated using the Thai language. Different languages have different acoustic cues and 

phonemics, which may produce different intelligibility performances using the same SE techniques. English 

is a non-tonal language, whereas Thai is a tonal language which is similar to many Asian languages (e.g. 

Chinese and Vietnamese). A tonal language uses a tonal level which is distinguished by the fundamental 

frequency (F0) contours to represent lexical meaning. Each tone of a word represents a different meaning. 

Normally a Thai syllable consists of an initial consonant (a single/clustered consonant), a vowel (short/long), 

an optional final consonant and a tonal level. There are five distinctive tones in Thai syllables: the middle /¯/, 

the low /ˋ/, the falling /ˆ/, the high /ˊ/, and the rising /ˇ/. The Thai tones of monosyllabic words are commonly 

available. Examples of monosyllabic words with five tones differentiating their meaning are /pāa/ (throw), 

/pàa/ (forest), /pâa/ (aunt), /páa/ (dad) and /pǎa/ (dad). These components are important to the performance of 

speech intelligibility among Thai-speaking CI listeners. 

No studies have specifically evaluated SE methods with Thai-speaking CI listeners. Therefore, the 

objective of the present study is to investigate the speech intelligibility performance of existing SE 

algorithms and to assess whether different SE algorithms provide different intelligibility performance in 

various noisy environments for Thai-speaking CI listeners. The investigation of the improvement of Thai 

word recognition concentrates on SE algorithms as the pre-processing approach, namely multi-band spectral 

subtraction (MBSS) and Weiner filter (WF) algorithms. Both achieve a trade-off between effective noise 

reduction, speech distortion, and low computation costs for real-time implementations [8, 14]. The WF 

algorithm with nonvocoded speech has shown high speech intelligibility scores in three languages: English, 

Chinese, and Japanese [19]. The MBSS algorithm is one version of the spectral subtraction algorithm which 

has been shown to yield a speech intelligibility improvement for French-speaking and Mandarin-speaking CI 

listeners. Some previous studies support selecting both SE algorithms. A speech intelligibility evaluation was 

conducted on NH listeners in a CI simulation with a noise-band vocoder. The present study was extended 

from a study by Dachasilaruk et al. [20] with a larger number of subjects. 
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2. SPEECH ENHANCEMENT FOR THE CI SYSTEM 

2.1.   Speech Enhancement Algorithms 

Figure 1 presents a CI simulation with a noise-band vocoder based on speech enhancement. The 

noisy speech is processed with a SE algorithm to generate enhanced speech. After that, the enhanced speech 

is fed into the CI system to produce vocoded speech. Further descriptions of the MBSS and WF algorithms 

are given in Kamath and Loizou [18] and Scalart and Vieira [8] respectively. Both algorithms are briefly 

described in this section. Assume that noisy speech signals (y) at a sampling rate of 16 kHz are generated by 

adding noise (n) to clean speech signals (x). Then, the power spectrum of the noisy speech signals can be 

approximately estimated as follows: 

 
2 2 2

( ) ( ) ( )Y k X k N k   (1) 

 

The MBSS algorithm is slightly different to the NSS algorithms. The MBSS uses a factor of 

subtraction estimated in each frequency bin and each frequency band, whereas the NSS uses this factor 

estimated in each frequency bin. The concept of the MBSS is that the characteristics of the noise spectrum 

may not affect the speech spectrum equally across the entire frequency band. The noise spectrum may affect 

some frequency bands more or less than others. Therefore, spectral subtraction is performed separately in 

each frequency band. In the ith band, the spectrum of the clean speech is estimated as: 
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where 
2

ˆ ( )N k  is the estimated spectrum of the noise signal, bi and ei are the start and stop bins of the ith band, 

and αi and δi are the over-subtraction and weight factors of the ith band, respectively. The weight factor can be 

individually set for each band. 

For the WF algorithm, the gain function g(k) is expressed with a priori SNR 
k . The 
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where α denotes a smoothing constant (α=0.98), and ˆ ( 1)kX m , ( )kY m  and ( )kN m are the spectrum of 

the enhanced speech signal at the past frame m-1, the spectrum of the noisy speech and the noise signal at the 

present frame m, respectively. 

 

 

 

 
 

Figure 1. Block diagram of a CI simulation based on speech enhancement 
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2.2.   Sound Coding Strategies 

Commercial manufacturers of CI devices propose many sound coding strategies such as the 

Continuous Interleaved Sampling (CIS) strategy and the Advanced Combination Encoder (ACE) strategy. 

Generally, the CIS strategy is proposed in CI devices made by all manufacturers, and it has different 

implementations depending on the manufacturer. The Cochlear Company, producing Nucleus CI devices, 

offers both the CIS and ACE strategies. The difference between these strategies lies in the channel maxima 

selection stage. Channel maxima selection is performed in the ACE but not in the CIS. A few studies have 

revealed that most Nucleus CI listeners preferred the ACE over the CIS, and the mean scores using the ACE 

show significantly higher speech intelligibility than those using the CIS [21], [22]. Moreover, the preferred 

strategy corresponded with the speech intelligibility outcome. 

The ACE strategy can be described as an n-of-m strategy [23]. The speech signal is decomposed 

into m channels related to the number of electrodes, but only the n channels with maximum amplitudes are 

selected for simultaneous stimulation. The concept of the ACE strategy is to increase temporal resolution and 

reduce redundant information in speech. The most important channels containing important speech 

information can be updated more frequently by removing the less significant channels [24]. This strategy 

may reduce the overall SNR level and presumably reduces channel interaction [25]. Additionally, the power 

consumption of electrical stimulation can be decreased, and this may lengthen battery life for CI devices [26]. 

As shown in Figure 1, in part of the CI system the enhanced speech was filtered by a pre-emhasis 

filter to amplify the high-frequency components of speech information. Then, the frame-by-frame processing 

of 128 samples with an overlap of 75% was applied to the pre-emphasized speech. The greater the overlap of 

the frame, the higher the channel stimulation rates. Each frame of the pre-emphasized speech was 

decomposed using the fast-Fourier transform (FFT) into uniform frequency bands (128 bins), with the 

frequency band of each bin at 125 Hz. Only the first 64 bins were used, to generate a frequency resolution of 

22 channels. The powers of consecutive bins were summed within frequency ranges specified in the CI 

system. The cutoff frequencies of the 22 channels were 187.5, 312.5, 437.5, 562.5, 687.5, 812.5, 937.5, 

1062.5, 1187.5, 1312.5, 1562.5, 1812.5, 2062.5, 2312.5, 2687.5, 3062.5, 3562.5, 4062.5, 4687.5, 5312.5, 

6062.5, 6937.5, and 7937.5 Hz. After that, the 12 envelope channels with the largest amplitudes were 

modulated by white noise with the same cutoff frequencies as the FFT filter bank. Finally, vocoded speech 

was synthesized by summing all the selected channels of the modulated signal. The vocoded speech was then 

presented to NH listeners for testing. 

 

 

3. PERFORMANCE EVALUATION 

All the Thai words in this study were from a corpus which is commonly used in clinical practice 

with HI listeners. In this study the Thai word test was divided into 8 lists of monosyllabic words and 8 lists of 

bisyllabic words [27], [28]. Each list had 25 words and the total words are 400 words. After the words were 

selected from the corpus, all the recorded words were corrupted by speech-shaped noise (SSN) at SNR levels 

of 0 and 5 dB, and babble noise (BBN) at SNR levels of 5 and 10 dB. The levels of SNR were carefully 

chosen to avoid floor and ceiling effects [7], [29], as well as particularly noisy and enhanced monosyllabic 

words. Then, the noisy words were processed using the MBSS and WF algorithms. The enhanced and noisy 

words were processed using the ACE strategy to produce the vocoded speech signals. The vocoded speech 

signals were presented to NH subjects in a total of 24 conditions ([2 SE algorithms + 1 unprocessed SE 

algorithm]  2 word types  2 noise types  2 SNR levels).  

Twenty NH subjects (14 males, 6 females, age range from 20 to 40 and mean age 26) participated in 

this experiment. All subjects were native speakers of Thai, and were undergraduate students and staff at a 

Thai public university. Otoscopy was undertaken for all subjects to check for any abnormalities in their 

middle ears. Then, all subjects undertook a pure tone audiogram test to confirm that they had NH thresholds 

(< 25 dB HL, between 0.25 and 8 kHz). All subjects were paid for their participation and they all signed a 

consent form. This experiment was approved by the Ethics Committee of the university. 

The vocoded speech signals were presented using a laptop, unilaterally through a headphone. The 

subjects used only one preferred ear, the one that was most comfortable for them, to listen to the vocoded 

speech signals in all tested conditions. The volumes of the vocoded speech signals were calibrated to be at a 

comfortable conversional level. Each subject was assessed in a total of 24 conditions over two sessions on 

separate days (12 conditions per session, one session per day), with a break of at least one week between the 

two sessions to avoid learning effects. Testing lasted approximately one hour in each session. 

Before the actual tests were carried out, the researchers offered training tests to ensure that the 

subjects clearly understood how to do the tests. In the training tests the subjects were asked to listen to both 

noisy and enhanced words in all conditions during a 5-minute test, to familiarise themselves with the 

vocoded speech signals. They were trained in both sessions before they undertook the actual tests. In the 
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actual tests, the subjects listened to the words and wrote them down on their papers. They could guess the 

words if they were uncertain. Subjects were scored based on how many words they identified correctly in 

each list. One word list was administered per condition, and each list contained one hundred words. No word 

list was repeated across the conditions in each session for each subject. The list-to-condition mapping and the 

order of tested conditions in each session were randomized for each subject. The subjects did not know which 

condition would be tested and what the tested conditions would be. In order to avoid listening fatigue which 

may affect performance, the subjects were given a break every 20 minutes during the actual test, or whenever 

they required a rest. 

The scores of correct words were averaged based on the percentage of words identified correctly. 

Then the scores were statistically analyzed using SPSS software. An analysis of variance (ANOVA) with 

repeated measures was carried out to investigate the differences between mean scores in terms of SE 

algorithms, SNR levels, noise types, and word types. A post hoc Bonferroni-corrected test with a multiple 

paired comparison was employed to examine the individual relationships between the mean scores in each 

condition. 

 

 

4. RESULTS AND DISCUSSION 

The mean percentage correct scores of 20 NH subjects in 24 conditions are shown in Figure 2. All 

the conditions consisted of noisy words and enhanced words due to different SE algorithms, SNR levels, 

noise types, and word types. The results of noisy and enhanced words showed considerably increased mean 

scores as SNR levels increased at the same noise type and word type. For the noisy words, the mean scores of 

the bisyllabic words with BBN increased slightly as SNR levels increased. The mean scores showed 

extremely high intelligibility at 5 and 10 dB SNR. At 5 dB SNR the mean scores for noisy words with SSN 

were slightly higher than those for noisy words with BBN for monosyllabic words, and almost the same for 

bisyllabic words. The enhanced words revealed higher mean scores than the noisy words in most conditions. 

The WF reflected considerably better performance improvement than the MBSS in almost all conditions, 

except for monosyllabic words at 5 dB SNR of BBN.  

For the monosyllabic words, the WF reflected a greater intelligibility improvement than the MBSS, 

especially for the condition of SSN at 0 and 5 dB SNR. Both algorithms yielded almost the same mean scores 

for BBN at 5 and 10 dB SNR. However, the enhanced words with both algorithms showed lower mean scores 

than the noisy words for BBN at 10 dB SNR. For the bisyllabic words, the WF algorithm showed a 

noticeably higher improvement than the MBSS, especially in the condition of SSN at 0 and 5 dB SNR. Both 

algorithms illustrated a slight improvement for BBN. The overall mean scores for the bisyllabic words were 

higher than those for the monosyllabic words. 

A two-way ANOVA with repeated measures was used to explore the two factors of SE algorithm 

and SNR level. For the monosyllabic words with SSN, the statistical analysis revealed a significant effect of 

SE algorithm [F(2,38)=17.60, p<0.0005] and SNR level [F(1,19)=68.73, p<0.0005]. Post hoc tests for SE 

algorithms indicated that the WF produced significantly higher intelligibility scores than the noisy words, and 

showed significantly better performance than the MBSS at 0 dB SNR. Post hoc tests of SNR levels revealed 

that an increased SNR level provided significantly improved intelligibility scores for noisy words and the 

MBSS (p<0.0005), but this difference was not statistically significant for the WF. For the monosyllabic 

words with BBN, there were significant effects of SNR level [F(1,19)=105.73, p<0.0005] and a significant 

interaction effect between SE algorithm and SNR level [F(2,38)=7.95, p<0.05]. Post hoc tests of SNR levels 

indicated that the noisy words at 10 dB SNR showed significantly higher intelligibility scores than those at 5 

dB SNR. For the bisyllabic words with SSN, the statistical analysis indicated a significant effect of SE 

algorithm [F(2,38)=50.28, p<0.0005], a significant effect of SNR level [F(1,19)=268.57, p<0.0005] and a 

significant interaction effect between SE algorithm and SNR level [F(2,38)=12.27, p<0.0005]. Post hoc tests 

of SE algorithms and SNR levels indicated that the multiple paired comparison yielded the same results as 

the monosyllabic words with SSN. 

The relative difference of mean scores between noisy words and enhanced words is 

shown in Figure 3. There was a considerable increase in intelligibility improvement for enhanced words with 

SE algorithms for both word types which were evaluated in the same tested conditions. Except for 

monosyllabic words in BBN at 10 dB SNR, intelligibility performance decreased. The WF exhibited a high 

improvement but the MBSS showed a low improvement in both word types. In terms of the overall result of 

intelligibility improvement in the whole condition, SE algorithms improved by approximately 3% for the 

MBSS and by 12% for the WF. A trend of decreased intelligibility performance with increased SNR levels 

was found in both SE algorithms. The WF yielded better intelligibility than the MBSS at the same SNR 

levels. 
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 (a) Monosyllabic words 

        

   (b) Bisyllabic words 

 

Figure 2. The mean percentage correct scores of 20 normal-hearing listeners for the noisy words (NW) and 

the enhanced words with the MBSS and WF algorithms are shown for speech-shaped noise (SSN) at 0, 5 dB 

SNR and babble noise (BBN) at 5 and 10 dB SNR. The plus (+) denotes that the mean percentage correct 

scores are significantly higher than those at the lower SNR level (p<0.0005). An asterisk (*) denotes that the 

mean percentage correct scores are significantly higher than those at the same SNR level; **p<0.05, ***p< 

0.0005. The error bars indicate the standard deviation of the scores 

 

 

 
        

 (a) Monosyllabic words 

  

      (b) Bisyllabic words 

 

 

Figure 3. Relative differences in intelligibility scores between noisy and enhanced words with the MBSS and 

WF algorithms are shown for speech-shaped noise (SSN) at 0, 5 dB SNR, and for babble noise (BBN) at 5, 

10 dB SNR. Positive numbers indicate an increased intelligibility performance whereas negative numbers 

represent a decreased intelligibility performance. The error bars refer to the standard deviation of the scores 

 

 

Examples of the electrodograms for of the monosyllabic word “/yāam/” and the bisyllabic word 

“/nâe-nōn/” are presented in Figure 4. As can be clearly seen from the electrodograms, the MBSS and WF 

algorithms can reduce noise. However, the content of speech information was noticeably reduced for the 

enhanced words with the MBSS, and residual noise still remained in some segments of the enhanced words 

with the WF. The WF preserved more speech information at low frequencies ranging from 187 to 563 Hz or 

in the electrode channels between 20 and 22. Such preservation of information by the WF in noisy conditions 

echoed a significant intelligibility improvement. 
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Figure 4. Electrodograms of the monosyllabic word “/yāam/” (guard) in the left column and the bisyllabic 

word “/nâe-nōn/” (certain) in the right column. The first row shows the clean words. The second row 

represents the noisy words at 5 dB SNR speech-shaped noise for the monosyllabic word and 5 dB SNR 

babble noise for the bisyllabic word. The third and fourth rows show the enhanced words with the MBSS and 

WF algorithms, respectively 

 

 

The outcomes of the present study have demonstrated that there is potential for single-channel SE 

algorithms (i.e. MBSS and WF) under various noisy conditions to be able to improve intelligibility 

performance for Thai CI listeners. Some of the results of the present study were consistent with those of 

Chen et al. [29]. This study found that the best intelligibility performance was achieved by the WF for both 

stationary noise (e.g. SSN) and non-stationary noise (e.g. BBN). Because of the fact that the WF performs a 

trade-off between effective noise reduction and speech distortion [30], the WF enhanced speech may contain 

more residual noise but also more preserved lexical information. The majority of the preserved lexical 
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information has low-frequency components, which are important information for speech understanding [4]. 

Not surprisingly, the WF enhanced speech exhibits higher word recognition scores. For the MBSS, the noise 

spectrum naturally affects the speech spectrum across various frequency bands. The noise spectrum may be 

over-estimated and over-subtracted from the spectrum of noisy speech in each frequency band. Some 

segments of lexical information may be aggressively removed or distorted by processing from the MBSS. 

The residual information in enhanced speech is insufficient to understand the lexical meaning. Thus, word 

recognition for the MBSS enhanced speech is almost equal to or worse than that of noisy speech in some 

conditions. 

Bisyllabic words reveal significantly higher intelligibility scores than monosyllabic words in all 

tested conditions. Generally, the bisyllabic words had longer speech durations and contained more lexical 

information than the monosyllabic words. When they were masked by noise or some segments of lexical 

information were removed or degraded by the SE algorithms and CI coding strategy, the listeners were able 

to understand the content of the words and guess the bisyllabic words better than the monosyllabic words.  

Disguised words which result from noise, SE algorithms and CI coding strategies change sounds 

and affect intelligibility. The sound changes of monosyllabic words can be classified into six major types. 

These are consonant insertion, consonant replacement, consonant deletion, vowel changes, tone changes, and 

others. Consonant insertion was found only in the final position, as in sǐe (spoil)  sǐeng (sound). However, 

consonant replacement and consonant deletion were found in both the initial and final positions, as in tam 

(follow)  ta (eye); pla (fish)  la (donkey); hǒm (fragrance, onion)  phǒm (thin); fan (tooth)  fang 

(listen). Vowel changes were rarely found, as in dang (famous)  dam (black). Tone changes were found as 

well, as in klông (camera)  klong (drum). Interestingly, some changes cannot be catagorized. For example, 

ìm (have enough food)  kin (eat) shows that an initial consonant was inserted and a consonant 

replancement was made (/n/  /m/). Another example is mâk (many)  ma (come), which also reveals two 

changes. One was a tone change from a falling tone to a mid tone. Another was a consonant deletion; /k/ was 

deleted. 

For bisyllabic words, the replacement of preceding syllables and following syllables results in sound 

changes. Either preceding syllables or following syllables were replaced by new syllables which reflect 

consonant replacement and tone changes, such as ro-rót (wait for the bus)  ló-rót (wheel); fai-fá 

(electricity)  fai-pà (forest fire); lék-nǒi (little)  dék-nǒi (baby). Another change in the following syllables 

was a consonant deletion and a tone change, as in nâ-tàng (window)  nâ-ta (face). Notice that no matter 

what types of sound changes were found, the sound changes led to new meanings. 

In principle, Thai syllable signals are composed of the initial consonant, vowel and final consonant 

signals [31]. The initial consonant and vowel signals contain either low or high frequency components. The 

final consonant signals contain only low frequency components. The tone is the change of F0 contours across 

the syllable. The signals for the three phonemes are combined by temporal conditions, and the vowel signal 

acts as the main syllable signal [31]. Therefore, the vowel signal is the largest component and always 

dominates the others. In other words, when compared to the vowels the initial and final consonants play 

minimal roles. 

The findings rarely found confusable vowels. This is not surprising since vowels, in general, are the 

most salient components and they are the key factors for identifying the number of syllables in each word. 

On the contrary, the study frequently found confusable consonants, especially consonant replacement. A 

consonant in the initial position is more confusable than a conconant in the final position. This is not 

surprising; initial consonants are always the first phoneme, and listeners need to perceive them earlier than 

other phonemes. Thus, it is not easy to recognize these sounds, either in processed speech or noisy speech. 

Moreover, the components of phonemes may be overlapping. For instance, the components of an initial 

consonant and a vowel may be combined. Consequently, if these components are distorted by noise or any 

processing stage, this affects the sound and causes the meaning to change. 

In the present study, the sets of tested words had some limitations when dealing with related factor 

variations according to SE algorithms or noisy environments, as in the studies by Li et al. [19] and Chen et al. 

[29]. The present corpus has been employed in audiology clinics for over forty years, particularly with HI 

listeners. As a result, for the Thai language corpus, existing speech materials are inadequate and not very 

practical for either clinics or research studies. This diversity in speech materials is an important issue. The 

test materials of consonants, vowels, tones or words are more suitable for analyzing speech information to 

represent a HI listener’s perception ability and reveal informative results about the effects of factors or 

parametric variation. The sentence test materials involved many factors (e.g. meaning, context, rhythm, etc.) 

and may be more appropriate for real-life communication. Thus, the development of Thai speech materials 

should be undertaken to support more effective evaluations and treatments. In other words, a large corpus of 

diverse speech materials is needed, which will benefit audiological evaluations to investigate speech 
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intelligibility not only among HI listeners but also for CI listeners. Nonetheless, even with these limitations in 

relation to the corpus, the present study is a stepping stone to future studies with CI listeners. 

There remains an enormous gap in knowledge and understanding of Thai speech intelligibility 

among Thai-speaking CI listeners. As a result, the intelligibility of Thai speech sounds should be intensively 

investigated in terms of Thai language features (e.g. consonants, vowels, and tones), speech coding strategies, 

SE algorithms, objective and subjective measurements, adverse environments (e.g. noise types and SNR 

levels), and listeners (both NH and CI listeners). New SE algorithms should be developed using other 

techniques such as deep machine learning [32], compressive sensing [33], [34] and so on. These algorithms 

should be specifically adapted to the auditory perception of CI listeners to optimally improve performance of 

either speech intelligibility or quality. Iin turn, similarities or differences in perception patterns and cross-

linguistic observations may then be properly applied in many systems and related areas for future research. 

 

 

5. CONCLUSION 

In the present study about Thai intelligibility performance, two single-channel SE algorithms, 

namely MBSS and WF algorithms, were evaluated by twenty NH listeners using CI simulation with a noise-

band vocoder. The results revealed that speech intelligibility performance was improved for both SE 

algorithms in most tested conditions, and was statistically significantly improved by the WF algorithm in 

some conditions. The WF algorithm performed better than the MBSS algorithm in nearly all conditions. This 

trend in outcomes will be useful information for Thai-speaking CI listeners in future investigations of the 

speech intelligibility performance of existing SE algorithms, and in developing either new SE algorithms or 

new sound coding strategies for auditory prostheses in future studies.  
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