
TELKOMNIKA Indonesian Journal of Electrical Engineering
Vol. 14, No. 1, April 2015, pp. 173 ~ 184
DOI: 10.11591/telkomnika.v14i1.7467 173

Received January 7, 2015; Revised March 13, 2015; Accepted March 28, 2015

An Efficient Converging Snake Algorithm for Locating
Object Boundaries

Atiqur Rahman*1, Rashed Mustafa2
Department of Computer Science & Engineering, University of Chittagong, Chittagong, Bangladesh

*Corresponding author, email: atiqcse09@cu.ac.bd1, bulbul.cse.cu@gmail.com2

Abstract
Active contour are now established as a technique for extracting salient contours from an image.

A snake is an active contour for representing object contour. Traditional snake algorithms are often used to
represent the contour of a single object. A different contour search algorithm is presented in this paper that
provides an efficient convergence to the object contours than both the kass et al and greedy snake
algorithm (GSA).Our proposed algorithm provides a straightforward approach for snake contour rapid
splitting and connection, which usually cannot be gracefully handle by traditional snakes. This algorithm
compares with other two conventional approaches is faster according to needed execution time. This
paper tells us which one is better by comparing each other. The experimental results of various test
sequence images with a single object shown good performance, which proved that the proposed algorithm
is faster among those.

Keywords: active contour, snake, parametric curve, finite differences, greedy algorithm

Copyright © 2015 Institute of Advanced Engineering and Science. All rights reserved.

1. Introduction

Snakes are mainly used to dynamically locate the contour of an object. In order to
answer the question what is an active contour and how does it work and what separates the
different active contour methods from each other, a brief review of the main research papers
dealing with active contours will be given, followed by a detailed analysis of the theory behind
the Kass et al [20], snake and the greedy snake algorithm [14]. The reason for choosing these
two algorithms for a closer comparison is that the Kass et al paper was the first paper to
suggest energy minimizing snakes for image segmentation. The greedy snake algorithm on the
other hand is interesting to examine since it deals with discrete values when minimizing the
snake’s energy. Most of the remaining snake algorithms are also more or less variations of
these two algorithms. To answer the question how would an active contour algorithm be
implemented in MATLAB, both the Kass et al. snake and the greedy snake will be implemented
in MATLAB. By running a number of experiments, with the two implemented snakes, both on
synthetic and real images the questions under which conditions does an active contour perform
satisfactory, under which conditions does an active contour perform unsatisfactory will be
sought answered. Finally the strengths and weaknesses of each of the three snake algorithms
will be discussed. In the process of writing this report and implementing the algorithms I also
hope to acquire a deeper understanding of active contours, since this is an area of much
interest to our. It should also be noted that to limit the scope of this thesis we shall only deal with
parametric active contours and not Geodesic active contours.

The rest of this paper will be organized according to the following structure: section 2
literature review; implementation framework will be illustrated in section 3; section 4 elucidates
results; section 5 discussion and section 6 concludes this paper.

2. Literature Review

This section will start with a general introduction of what an active contour is used for
and how it works. Hereafter a brief literature review is presented which highlights the main
differences for some of the most widely known active contour methods.

 ISSN: 2302-4046

 TELKOMNIKA Vol. 14, No. 1, April 2015 : 173 – 184

174

Active contours are used in the domain of image processing to locate the contour of an
object [20]. Trying to locate an object contour purely by running a low level image processing
task such as Canny edge detection is not particularly successful [17]. Often the edge is not
continuous, i.e. there might be holes along the edge, and spurious edges can be present
because of noise. Active contours try to improve on this by imposing desirable properties such
as continuity and smoothness to the contour of the object. This means that the active contour
approach adds a certain degree of prior knowledge for dealing with the problem of finding the
object contour.

An active contour is modeled as parametric curve; this curve aims to minimize its
internal energy by moving into a local minimum. The position of the snake is given by the
parametric curve, in practice the curve is often closed which means that v(0) = v(1).
Furthermore the curve is assumed to be parameterized by arc length [15].

A closed parametric snake curve is illustrated in Figure 1. Each point along the curve is
under the influence of both internal and external forces, and the snake continuously tries to
position itself so that the combined energy of these forces is minimized.

Figure 1. Illustration of a parametric snake curve v(s). The blue dot marks the starting point and
end point of the snake curve. Ideally the snake will have minimized its energy when it has

positioned itself on the contour of the object

2.1. Analysis of the Kass et al. & Greedy snake [20]

In the previous section a short introduction to what an active contour is and how it works
was presented, followed up by a review of some of the best know parametric active contour
models. In this chapter we will continue with a more thorough analysis of the Kass et al. and the
greedy snake algorithm. Thereafter possible extensions and improvements to the two snake
algorithms will be examined. However, let us first take a look at the parametric curve and
examine why it is used as the basis for the snake model.

The most basic way of representing a curve in two dimensions is the explicit form:

y=f(x) (1)

Nearly all simple curves can be represented using the explicit form, but for more

complex curves with two or more y-values for a single corresponding x-value the explicit form
fails [20]. Moreover the explicit form has problems with modeling curves parallel to the y-axis,
since the slope for such a curve tends towards infinity [20]. These shortcomings excludes the
use of the explicit form for curves such as circles, ellipses and other conics. The two
dimensional implicit curve equation can be used to represent any curve, thus avoiding the
limitations of the explicit curve. Unfortunately the inherent form of the implicit curve equation
does not allow us to compute points on the curve directly, often requiring the solution of a non-
linear equation for each point. Furthermore both the explicit and implicit form requires that the
underlying function is known, and in practice when dealing with complex deforming curves such
as snakes this is not the case. This leads us to consider the parametric form of a curve which, in
vector form, is specified as:

 f(x,y)=0 (2)

TELKOMNIKA ISSN: 2302-4046

An Efficient Converging Snake Algorithm for Locating Object Boundaries (Atiqur Rahman)

175

The parametric curve only has one independent parameter s which is varied over a
certain interval, usually [0; 1]. By using the parametric representation we avoid the problems
that both the explicit and implicit forms have. For instance we can have multiple y-values for a
single x-value, this is easy to see in the parametric form of a unit circle with center at origin.

Finally using the parametric representation also enables the curve to be independent of the
particular coordinate system used [18].

3. Implementation Framework

This section will contain a brief introduction to how the implemented snakes are run,
together with an explanation of some of the implementation details.

The two snake algorithms have been developed and tested using MATLAB R2010a
running on windows 7 version Home premium. The program is run from the MATLAB command
line and takes 3 command line arguments. All 3 input arguments are strings. The first argument
can either be Kass or greedy specifying whether to run the Kass et al. or greedy snake
algorithm. The next argument can be either user or circle, this decides whether the snake
should be manually input by the user or input as a circle. The last argument specifies whether
scale space continuation should be on or off. So for instance if the user wishes to run the
greedy snake, input the snake control points manually and have scale space continuation
turned on he should input the command line of the MATLAB console below:

main('greedy', 'user', 'off')

The file main.m runs the snake program, it also contains nearly all of the parameters
and thresholds used. So if the input image should be changed or the parameter β adjusted it
can be done by editing this file. If the user has chosen to input the snake manually the image
will be shown and the user then clicks in the position of the image where a snake control point
should be inserted. Once finished the user should click somewhere outside the image to start
the snake algorithm.

The snake program is dependent on the Image Processing Toolbox for MATLAB being
installed, as functions from the toolbox are used for doing convolution. For approximating the
directional gradients Gxand Gyof the image function I(x; y), we use convolution with Sobel filters.

The gradient magnitude used in the image energy terms is then computed as:

∥ I (x,y)∥=√Gx

2+Gy
2 (3)

In the Kass et al. snake implementation the value h used in the finite differences is set

to h = 1. This speeds up the computation and in practice the snake still evolves satisfactory.
Below in Figure 2 a data-flow diagram is show. This diagram gives an overview of all

the MATLAB files and how the functions invoke each other.
The main function in main.m contains most of the parameters and thresholds used,

furthermore it also handles drawing the snake evolution in the image. The Kass Snake function
calculates how the snake moves, given the initial position and the image energy, based on the
Kass et al. snake model. In the Greedy Snake function the evolution os the snake is calculated
on the basis of the greedy snake algorithm. The getAvgDist function returns the average
distance between all the snake control points in the snake. The getModulo function is used
extensively by the Greedy Snake function. This is because we want to make sure that when a
loop is applied to iterate through all the snake control points the first and last point will be the

 ISSN: 2302-4046

 TELKOMNIKA Vol. 14, No. 1, April 2015 : 173 – 184

176

same. Finally the snake Resample function tries to resample the snake control points so that
they are equally spaced along the snake curve.

Figure 2. Illustration of the data-flow between the various functions in the implementation

Determination of intersection segments equation is:

value=(b1· b2 ≤0 && b3 ·b4<0)ǁ(b1·b2<0 && b1·b2≤0) (4)

Splitting and connecting contours equation is:

value=(Āi · Āk) ˂ (Āi · Āk-1) (5)

3.1. Our Proposed Algorithm of the Boundary Detection of a Objects

The algorithm of the boundary detection of a object is shown as follows:

Step 1: Convergence process: calculate the energy functions and minimize the energy
terms of snake points. If the iteration reaches the final step, stop. Otherwise, go to step
2.
Step 2: The process of determining intersection: if the snake point intersects segment si

estimated by the equation (3.2), then go to step 3. Otherwise, go to step 1.
Step 3: The splitting and connecting process: split the contour by removing the
unnecessary Point vk. Snake points, which belong to the same side, are connected by
equation(3.3) and then, go to step 4.
Step 4: Reorganizing the sequence of the snake point process: a new sequence is
formed for each contour. Go to step 1.

4. Results

Both the greedy snake, the Kass et al. snake & our approach, that were analyzed and
described in chapter 3, have been implemented in MATLAB. In this chapter we will test these
three snakes on different types of images. Some of the images will be synthetic while others will
be real images captured by a digital camera. All the synthetic images have been made using
Photoshop 10.0.

4.1. Test number 1; Boundary concavity

Figure 3. Illustrating an object with a boundary concavity

TELKOMNIKA ISSN: 2302-4046

An Efficient Converging Snake Algorithm for Locating Object Boundaries (Atiqur Rahman)

177

The initial snake forms a circle around the object and consists of 50 snake points.
The image we will use in the first test is a synthetic image designed to show one of the

weaknesses that the Kasset al. snake, greedy snake and many other snakes have. The
problem appears when trying to locate the contour of an object which has a boundary concavity.
In Figure 3 we see the initial snake and the object of which we wish to find the contour. The
object has a large concavity and as we will see the either the Kasset al.snake or the greedy
snake is able to move completely into this concavity. The initial snake in Figure 3 has 50 control
points and both the two snakes will start evolving from this position.

Figure 4. Finals state of the Kasset al.Esnake. Iterations 8000, α= 0:035, β= 0:0005,δ = 3, scale

space continuation off and resampling on

In Figure 4 we see the result for the Kasset al. snake. The snake parameters were α=
0:035, β= 0:0005, α= 3 and scale space continuation was off while resampling was on. The
snake ran 8000 iterations which is the maximum number of iterations. The reason that the
snake did not stop sooner is that new points keep being inserted in the horizontal stretch above
the cavity. These new points slowly move out to the sides as they are inserted and the snake
never converges according to our stopping criterion, see section 3.3.2. From Figure 3 we clearly
see that the snake is not able to move into the cavity. This behavior is caused by a combination
of the snakes internal energies and the image energy. The elasticity energy tries to keep the
snake from stretching and if the snake is to move down into the cavity the elasticity energy
would have to be increased. However if the image energy was somehow pulling the snake
downwards into the cavity the elasticity energy could be overcome, but that is not the case. The
image energy of 4.1 is only pulling the snake out to the sides of the cavity and not downwards in
any way. In Figure 5.3 the final state of the greedy snake is shown. For the greedy snake the
final state was reached after 55 iterations. The parameters were α = 1, β= 1, ɤ= 1:2, δ= 3,
neighborhood size was 3 ˣ3and scale space continuation was off. The red snake control points
indicate points for which the βvalue has been relaxed by the algorithm, so a corner could
develop. Figure 5 clearly shows that also the greedy snake also has problems with moving into
the cavity. Actually it does slightly worse than the Kass et. al. snake, since the Kasset al. snake
protrudes somewhat deeper into the cavity.

If we wish to correctly segment an object with boundary concavities using a snake we
must make sure that the initial snake is placed inside the concavity. This way the snake will be
caught by the image energy and stick to the contour.

The gradient vector flow snake which was briefly described in the literature review
section should, by itself, be able to move into boundary concavities, but this snake has not been
implemented and will therefore not be tested.

Figure 5. Final state of the greedy snake. Iterations 55,α= 1, β = 1, ɤ= 1:2, δ = 3, neighborhood

size 3 ˣ 3 and scale space continuation off

 ISSN: 2302-4046

 TELKOMNIKA Vol. 14, No. 1, April 2015 : 173 – 184

178

4.2. Test number 2; Noisy Image
This test is designed to examine the performance of the two snakes on noisy images,

both with and without using scale space continuation. The image seen in Figure 6 shows a
black square on a white background. A high degree of Gaussian noise has been added to the
image. The noise was added in MATLAB with the command noisyImg =
imnoise(img,'gaussian',0.5,2); where 0.5 is the mean and 2 is the variance of the Gaussian. As
in the last test the initial snake curve consists of 50 control points placed in a circle around the
object we with to find the contour of.

Figure 6. Image of a black square on a white background with a high degree of noise. Initial
snake consists of 50 snake control points

In the first two test runs we will run the snakes with scale space continuation turned off.
When scale space continuation is turned off we only blur the image once with a Gaussian of ᵟ=
3 and then let the snake run its course on the blurred image. Figure 7 shows the final state of
the Kass et. al. snake. We used the parameters α= 0:05, β= 0:0005, α= 3 and had resampling
on. Unfortunately the snake was not able to converge according to our stopping criterion and
ran all 8000 iterations. Even though the snake runs 8000 iterations it actually moves very little,
since it quickly gets stuck on the artifacts that the noise creates in the image energy.

Figure 7. Final state of the Kasset al. snake.
Iterations 8000, α = 0:05, β = 0:0005,ɤ= 3,

scale space continuation off and resampling
on

Figure 8. Final state of the greedy snake.
Iterations 5, α = 1, β = 1, ɤ= 1:2, δ = 3,
neighborhood size 5ˣ5 and scale space

continuation off

Figure 8 shows the final state of the greedy snake on the same image. For the greedy

snake the parameters were set at α = 1, β= 1, ɤ= 1:2, δ= 3 and a neighborhood of size 5ˣ5.
Again we observe that the snake quickly gets stuck because of the noise. Actually the greedy
snake stops after only 5 iterations in this example. From these results it is clear that the amount
of noise added presents a significant challenge to both of the snake algorithms.

For the next two test runs we will turn scale space continuation on. This should help in
making the snakes more robust in the presence of noise. The implemented scale space
continuation uses 4 different scales. Starting at a rough scale with δ = 15 and then reducing δ
by 4 until we reach a scale of δ = 3. At each individual scale the snake is allowed to run until it
converges or until 1/4 of the total iterations have run.

TELKOMNIKA ISSN: 2302-4046

An Efficient Converging Snake Algorithm for Locating Object Boundaries (Atiqur Rahman)

179

In Figure 9 the final results of the Kasset al. snake, with scale space continuation on, is
shown. It took 4300 iterations for the snake to converge to this result, and the parameters were
α= 0:05, β= 0:0005, scale space continuation on and resampling on. It is quite evident from
looking at Figure 9 that scale space continuation helps make the Kasset al. snake more robust.
We can now actually see that the snake has found the contour of the square.

The corresponding result for the greedy snake is shown in Figure 10. The parameters
were α = 1, β = 1, ɤ= 1:2, δ = 3, neighborhood size 5ˣ5 andthe number of iterations was 76.
Again we see that scale space continuation helps significantly, which was to be expected also
for the greedy snake.

The two snakes both find the contour quite well considering the amount of noise in the
image. However it seems the Kasset al. snake performs slightly better than the greedy snake.
The greedy snake does not find the lower left corner of the square in Figure 10.

Figure 9. Final state of the Kasset al. snake
with scale space continuation on. Iterations

4300, α= 0:05, β= 0:0005 and resampling on

Figure 10. Final state of the greedy snake with
scale space continuation on. Iterations 76, α =
1, β = 1, ɤ= 1:2 and neighborhood size 5 ˣ5

4.3. Test number 3; Image of a Leaf

Now that we have tested the snakes on two synthetic images we will try to apply them
to a real image. The image is cut out of a larger image showing a number of leafs lying on a
table.

The initial snake has been initialized manually for this test. This was done to illustrate
how a manually initialized snake should be placed, but also because placing the snake in a
circle around the leaf gave bad results. In Figure 11 the manually placed initial snake can be
seen. There is 78 snake control points in the initial snake.

In Figure 12 we see the final result for the Kasset al. snake. The parameters were α =
0:035, β = 0:0005, resampling on and scale spacecontinuation on. The snake converged after
6161 iterations. We see that the snake has found the general shape of the leaf contour quite
well. There is however some problems with the upper right corner and lower left corner of the
leaf. This can be attributed to the fact the the image is quite blurry in this part so the exact
transition between the table and the leaf is hard to make out.

Figure 11. Image showing a leaf laying on a
table. Initial snake consists of 78 snake control

points

Figure 12. Final state of the Kasset al. snake.
Iterations 6161, α = 0:035, β = 0:0005,

resampling on and scale space continuation
on

 ISSN: 2302-4046

 TELKOMNIKA Vol. 14, No. 1, April 2015 : 173 – 184

180

The final position of the greedy snake is shown in Figure 13. The parameters were α =
1, β = 1, ɤ= 1:2, neighborhood size 5 ˣ5 and scale space continuation on. While the number of
iterations runs were 128.

Figure 13. Final state of the greedy snake.
Iterations 128, α = 1, β= 1, ɤ= 1:2,

neighborhood size 5 ˣ5 and scale space
continuation on

Figure 14. Final state of our approach

The greedy snake also seems to capture the general contour of the leaf. However there
is a few more errors made, compared to the Kass et. al. snake. As with the Kass et. al. snake
the greedy snake also has problems with the upper right corner and the lower left corner of the
leaf. Furthermore the greedy snake also has some problems with the upper left corner and the
tip of the leaf [13].

5. Discussion
5.1. Comparing Computational Speed

We have observed how well both of the three snakes find different object contours. Now
we will briefly examine the computational speed. In the table the time it takes each snake to run
100 iterations is shown.

Table 1. Comparing the running time of the Kass et al. & greedy snake to the running time of
Our approach

Snake Running time for 100 iterations
Kass

Greedy

Our approach

0.893994 seconds

4.111357 seconds

0.5123 seconds

The test was run on a HP G62 Notebook PC 2.00 GHz. with 4 GB ram. The shark tooth
image was used with the following parameters. Kass et al.: α =0:05, β= 0:0005, re sampling on
and scale space continuation on. Greedy: α = 1:2, β = 1, ɤ= 1:2, neighborhood size 5ˣ5 and
scale space continuation on. The Kass et al. snake is seen to be significantly faster than the
greedy snake when it comes to running a hundred iterations. In practice however the Kass et al.
snake also has to complete a far greater number of iterations to converge. Thus in reality the
greedy snake actually converges faster than the Kass et al. snake. My approach snake is seen
to be significantly faster than the Kass et al. snake& the greedy snake when it comes to running
a hundred iterations.

Our experimental results show that snakes can be used to segment a variety of different
shapes. It was also established that scale space continuation greatly reduced the influence of
noise in the images.

Comparing the results from both the Kass et al. snake and the greedy snake with my
approach leads us to the conclusion that my approach snake gives slightly better results overall.

TELKOMNIKA ISSN: 2302-4046

An Efficient Converging Snake Algorithm for Locating Object Boundaries (Atiqur Rahman)

181

One of the reasons for the better results is of course that our re sampling method increases the
number of control points which enables the snake to find the contour of finer details. However if
we try to increase the number of points in the greedy snake, the snake point neighborhoods can
start to overlap. This leads to undesired effects such as the snake curve overlapping in some
places, or even that the distance between snake points begins to increase. Therefore we
recommend to use around 50 snake control points in the greedy snake, this number can of
course be increased if high resolution images are used.

We also recommend that if the object to be segmented contains boundary concavities
and noise that the initial snake is manually initialized. The closer the initial snake is to the
desired contour the greater the probability is of the snake also converging to the desired
contour. Having to initialize the snake close to the desired contour can of course present some
problems if a completely automatic system for contour detection is sought after. The problem of
needing to find a good initial position to increase the chance of finding the desired contour is
actually one of the inherent problems with snakes. This problem has lead to much research into
how to best initialize the snake curve.

Another problem with snakes is the fact that the parameter of the snake often has to be
adjusted for each new kind of image in order to give the best results. Finding suitable values for
the parameters relies on manual tuning based on trial and error. This process can often be time
consuming. In the above test runs the parameters were adjusts for each snake in each image to
give the best possible result.

5.2. Extensions and Improvements

In this section extensions to the original algorithms will be presented along with the
improvements we have made in order to better the algorithms.

5.2.1. Stopping Criterion for the Kass et al. Snake

In the original paper by Kass et al. no indication was given as to when the snake
evolution should be stopped. In the greedy algorithm we would stop the iterations when either
the maximum number of iterations had been exceeded or when the number of snake points
moved in the last iteration was below a threshold. Setting an upper limit on the number of
iterations run, can of course also be used for the Kass et. al. snake. However we cannot use the
number of point moved as a stopping criterion for the Kass et. al. snake. This is because most
of the points in the snake keep moving even when the snake has reached its minimum, the
movement at the minimum is however very small. Knowing that the movement of the snake
points at the minimum will be quite small, we suggest to stop the snake algorithm when the
following term drops below a given threshold

Where the vector v(s)t contains the indices to the snake points at time step t and v(s)t ̶1
contains the snake points at time step t ̶1. We divide by n which is the total number of control
points in the snake. Usually a greater number of control points will lead to the term ǁ v(s)t ̶v(s)t ̶1ǁ
taking on larger values, which is why we divide by n.

This improvement of the Kasset al. snake has been incorporated into our
implementation.

5.2.2. Active Resampling of the Kass et al. Snake Curve

In this section we therefore present an improvement to the original Kass et al. snake
algorithm which makes sure that the distances between all the snake control points remain
more or less equal.

Once the snake has started evolving there is no guarantee that the snake control points
are equally spaced, however the snake curve can be dynamically resampled while it evolves.
The resampling step that we have added to the original Kass et al. snake first computes the
average distance between all the snake control points. Then we iterates through all the snake
control points while removing points in parts of the snake where the points are close together
compared to the average distance. At the same time the resampling step also inserts new

 ISSN: 2302-4046

 TELKOMNIKA Vol. 14, No. 1, April 2015 : 173 – 184

182

points in parts of the snake where points are far apart compared to the average distance. When
a new point is inserted, it is inserted in the middle of the line connecting the two points that are
far apart. The resampling is not performed after each iteration of the snake, in the actual
implementation we have, in order to reduce computation, set the resampling to be performed
every time the snake has iterated 15 times.

Let us take a look at an example and see how adding the resampling changes the
result. In Figure 15 the initial snake is show, it consist of 100 snake control points laid out in a
circle around the object we wish to segment. Running the Kass et al. snake, with snake
resampling turned on, results in the snake converging after 2163 iterations to the state that is
seen in Figure 16. We notice that when the snake has converged it hasincreased the number of
control points to 195. This is to be expected, since the resampling function is more inclined to
add points to the snake rather than remove them. This inclination can however be changed by
adjustinga threshold value in the resample function. Adding additional point to the snake
actually gives a better fit to the contour, since more points mean that finer details along the
contour can be modeled by the curve. Another thing to notice is that the snake in the right half
of Figure 16 is not able to move into the concave part of the object. This is a trait that both the
greedy snake and the Kasset al. snake exhibits, and we will discuss it in more detail in the
experimental results chapter.

Figure 15. The initial state of
the snake

Figure 16. The final state of
the snake when using
resampling, after 2163

iterations

Figure 17. The final state of
the snake without resampling.
The final state occurred after

2346 iterations

To compare the result we got when having resampling turned on, we ran the Kasset al.
snake algorithm in its original form i.e. with resampling turned on the same test image. We set
the initial snake to consist of 195 control points to make sure that the end result is directly
comparable with the result obtained from having resampling turned on. The converged snake is
shown in Figure 17, this time convergence took 2346 iterations.

When comparing the two results we quickly see that not using our resampling method
gives worse results for the final segmentation. This is most noticeable in the lower left part of the
object in Figure 17 where the snake curve does not follow the contour very well. It is also
noticeable that the snake control points are mostly concentrated on the right side of the object in
Figure 17 while being much further apart on the left side. We can therefore conclude that using
our suggested snake resampling technique not only helps keep the points more evenly spaced,
which in turn makes the curvature term more precise. But also directly improves the
segmentation of the object in question.

5.2.3. Randomizing Snake Points for the Greedy Algorithm

The last improvement that has been implemented is concerned with the greedy snake
algorithm. It was noted during initial test runs, when implementing the greedy snake algorithm,
that the snake sometimes would have a tendency to rotate. The rotation is particularly
noticeable when the image energy is more or less constant throughout the snake. This rotation
is due to the fact that the for-loop, which runs through all the snake points computing their new
position, does so consecutively. So if one of the control points in the snake is moved closer to
another control point, and the image energy and curvature energy is more or less constant
thought the snake, it will tend to push the next control point. This is because the elasticity
energy for the greedy snake always tries to keep the points evenly spaced. Once one of the

TELKOMNIKA ISSN: 2302-4046

An Efficient Converging Snake Algorithm for Locating Object Boundaries (Atiqur Rahman)

183

control points has pushed another it can set in motion a chain reaction resulting in the whole
snake rotating [1].

To avoid this behavior we have made a small change to the greedy snake algorithm.
Instead of using a for-loop to consecutively go through each snake control point, we choose the
snake control points by random. This approach significantly reduces the tendency for the curve
to rotate, as it will be harder for the force of one point pushing the next point to propagate along
the curve. It should be noted that the results obtained, when running the same initial snake on
the same image, can vary slightly because of the randomization factor [2].

6. Conclusion

The main goal of this paper was to compare three different methods within the active
contour framework. The active contour methods that were chosen for comparison was the Kass
et al. snake, the greedy snake & our approach. The goal of comparing these three methods has
been reached. The results of experiments prove a robust, effective, efficient and accurate
performance of the proposed method. In the development of the boundary detection of a object,
this proposed algorithm can work in a wide range of applications where the classical active
contour have failed. We have throughout this paper only been considering snakes that form
closed curves. One possible extension could be to extend the implemented program to also
deal with open curve snakes. With an open curve snake it would be possible to find contours in
the image that does not form closed curves. For instance finding the contour of a line running
across the image. Extending the Kass et al. snake into handling open curve contours is done by
removing the cyclic boundary conditions. This results in a slightly different form of the coefficient
matrix A. More details for developing an open curve snake is found in. The greedy snake could
also be extended to work with open curves by removing the use of modulo arithmetic when
looping through all the snake control points.

References
[1] Delgado-Gonzalo, Ricard, et al. Snakes on a Plane: A perfect snap for bioimage analysis. Signal

Processing Magazine, IEEE. 2015; 32(1): 41-48.
[2] Bindu VR, KN Ramachandran Nair. Boolean Operations on Free Form Shapes in a Level Set

Framework. Computational Intelligence in Data Mining-Volume 3. Springer India. 2015: 453-467.
[3] Sakalli, Mustafa, Kin-Man Lam, Hong Yan. A faster converging snake algorithm to locate object

boundaries. Image Processing, IEEE Transactions. 2006; 15(5): 1182-1191.
[4] Bresson, Xavier, et al. Fast global minimization of the active contour/snake model. Journal of

Mathematical Imaging and vision. 2007; 28(2): 151-167.
[5] Awadallah, Mahmoud, Lynn Abbott, Sherin Ghannam. Segmentation of sparse noisy point clouds

using active contour models. Image Processing (ICIP), 2014 IEEE International Conference. 2014.
[6] Fraz, Muhammad Moazam, Sarah A Barman. Computer Vision Algorithms Applied to Retinal Vessel

Segmentation and Quantification of Vessel Caliber. Image Analysis and Modeling in Ophthalmology
2014: 49.

[7] Amine, Khaldi, Merouani Hayet Farida. Deformable models approach for range image segmentation.
International Journal of Imaging and Robotics. 2014; 12(1): 39-48.

[8] Delgado-Gonzalo, Ricard, et al. Snakes on a Plane: A perfect snap for bioimage analysis. Signal
Processing Magazine, IEEE. 2015; 32(1): 41-48.

[9] Duggan, Nóirín, et al. A simple boundary reinforcement technique for segmentation without prior.
Pattern Recognition Letters. 2014; 46: 27-35.

[10] Farouj Y, et al. A variational Shearlet-based model for aortic stent detection. Signal Processing
(ICSP), 2014 12th International Conference, IEEE. 2014.

[11] Mishra, Akshaya K, Paul W Fieguth, David A Clausi. Decoupled active contour (DAC) for boundary
detection. Pattern Analysis and Machine Intelligence, IEEE Transactions. 2011; 33(2): 310-324.

[12] Awadallah, Mahmoud, Lynn Abbott, Sherin Ghannam. Segmentation of sparse noisy point clouds
using active contour models. Image Processing (ICIP), 2014 IEEE International Conference. 2014.

[13] Fraz, Muhammad Moazam, et al. Blood vessel segmentation methodologies in retinal images–a
survey. Computer methods and programs in biomedicine. 2012; 108(1): 407-433.

[14] CM Bishop. Pattern Recognition and Machine Learning. First Edition. Springer. 2006.
[15] A Blake, M Isard. Active Contours. First Edition. Springer. 2000.
[16] V Caselles, R Kimmel, G Sapiro. Geodesic active contours. International Journal of Computer Vision.

1997; 22(1): 61-79.

 ISSN: 2302-4046

 TELKOMNIKA Vol. 14, No. 1, April 2015 : 173 – 184

184

[17] LD Cohen. On active contour models and balloons. Computer Vision, Graphics, and Image
Processing. Image Under-standing. 1991; 53(2): 211-218.

[18] LD Cohen, I Cohen. Finite-element methods for active contour models and balloons for 2-d and 3-d
images. PAMI. 1993; 15(11): 1131-1147.

[19] MT Heat. Scienti_c Computing, An Introductory Survey. Second edition. McGraw-Hill. 2002.
[20] M Kass, A Witkin, D Terzopoulos. Snakes: Active contour models. International Journal of Computer

Vision. 1988; 1(4): 321-331.
[21] MS Nixon, AS Aguado. Feature Extraction and Image Processing. First Edition. Newnes. 2002.
[22] H Sagan. Introduction to the Calculus of Variations. First Edition. McGraw-Hill. 1969.
[23] D Salomon. Curves and Surfaces for Computer Graphics. First Edition. Springer. 2006.
[24] JB Waite, WJ Welsh. Head boundary location using snakes. Br. Telecom Journal. 1990; 8(3): 127-

136.
[25] DJ Williams, M Shah. A fast algorithm for active contours and curvature estimation. CVGIP: Image

Underst. 1992; 55(1): 14-26.
[26] C Xu, JL Prince. Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing.

1998; 7(3): 359-369.

