
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 14, No. 1, April 2019, pp. 143~154 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v14.i1.pp143-154      143 

  

Journal homepage: http://iaescore.com/journals/index.php/ijeecs 

Improved hunting search algorithm for the quadratic 

assignment problem 
 

 

Amine Agharghor, Mohammed Essaid Riffi, Fayçal Chebihi 
Laroseri Laboratory, Department of Computer Sciences, Faculty of Sciences, University of Chouaib 

Doukkali, El Jadida, Morocco 

 

 

Article Info  ABSTRACT  

Article history: 

Received May 1, 2018 

Revised Aug 10, 2018 

Accepted Dec 25, 2018 

 Nowadays, the metaheuristics are the most studied methods used to solve the 
hard optimization problems. Hunting Search algorithm is a metaheuristic 

inspired by the method of group hunting of predatory animals like wolves. 
Created for solving continuous optimization problems, recently, it is adapted 
and evaluated to solve hard combinatorial optimization problems. This paper 
proposes an improved hunting search algorithm to solve the quadratic 
assignment problem. No local search method is used. To evaluate the 
performances of this work, the improved Hunting Search is checked on a set 
of 36 instances of QAPLib and it outperforms the results obtained by the 
well-known metaheuristics. 

 

 

Keywords: 

Combinatorial optimization 

problem 

Hunting search algorithm 

Metaheuristic 

QAPLib 

Quadratic assignment problem 
Copyright © 2019 Institute of Advanced Engineering and Science.  

All rights reserved. 

Corresponding Author: 

Amine Agharghor, 

Laroseri Laboratory, Department of Computer Sciences,  

Faculty of Sciences, University of Chouaib, 

Doukkali, El Jadida, Morocco. 
Email: amine.agharghor@gmail.com 

 

 

1. INTRODUCTION  

Metaheuristics are the best algorithms used to solve the NP-Hard optimization problems for  

which there is no exact effective known method. Sometimes, they can be the only possible methods to find a 

good solution to these hard problems. The most important advantage of using a metaheuristic is that it uses a 

high abstraction level. Therefore, it can be applied to wide different problems. New metaheuristics are 

proposed recently such as the hunting search [1], the chicken swarm optimization [2], [3] and the golden ball 

algorithm [4].  

Hunting Search (HuS) is a developed metaheuristic for solving continuous optimization problems. It 

starts to be adapted to solve combinatorial optimization problems such as The Traveling Salesman Problem 

[5], [6] and the no-wait flow shop scheduling [7]. It is also proposed as a first adaptation for the Quadratic 

Assignment Problem [8]. HuS is a method inspired by group hunting of some animals such as wolves that 

organize their position to surround the prey. Each of them is relative to the position of others and especially 
in relation to the position of their leader. 

Quadratic Assignment Problem (QAP) [9] is the well-known discrete optimization problem of the 

category of the facilities location problems NP-hard. The problem is to assign a set of facilities to a set of 

locations in order to minimize the total cost of assignments. The QAP has several applications in 

combinatorial optimization problems such as Backboard Wiring [10] and scheduling [11]. In order to solve 

the QAP, several metaheuristics have been proposed [12]. The present paper proposes an Improved Hunting 

Search algorithm (IHuS) adapted as a combinatorial optimization method to solve the QAP in a minimum 

CPU run time. 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 14, No. 1, April 2019 :  143 – 154 

144 

This paper is divided into six main sections. The first one is an introduction of the given method and 

the benchmark problem. The second section presents the metaheuristic HuS. The third section provides a 

detailed description of the QAP. The fourth section presents the proposed adaptation and improvement of 

HuS for the QAP. Numerical results obtained by the use of IHuS on the QAPLib instances [13] are 

demonstrated in the five section, and the last section concludes the whole work. 

 

 

2. HUNTING SEARCH ALGORITHM 
Hunting Search algorithm is an evolutionary method inspired by cooperative hunting of some 

carnivores that hunt bigger and faster preys than themselves with fewer energy. It is a population-based 

stochastic metaheuristic. The population is the hunting group that contains a set of solutions of the studied 

problem; each hunter represents a solution. The leader represents the best solution defined by an objective 

function. A hunter is characterized by its position that defines the distance between it and the other hunters. 

The hunting process in nature represents the search of optimum in the algorithm. The movements of 

the hunters to encircle the prey represents the operations of improvement of the initial solutions. Hunters do 

three main movements. Two movements of intensification operations. These are the movement toward the 

leader and the movement toward the other hunters. The third one is a diversification operation the 

reorganization of the hunters when they become very close to each other. HuS algorithm is presented in 

Figure 1: 

- HG (Hunting Group) is the population of hunters used for the search of the optimum. 
- NE (Number of Epochs) is the number of loops to make for the search. 

- IE (Iteration per Epoch) is the number of times per epoch where hunters make a move. 

 

 

 
 

Figure 1. Flowchart of hunting search algorithm 

 

 

The main operations of HuS are: 

a) Initialize the Hunting Group: generate a set of random solutions for a problem; each hunter represents a 

solution. 

b) Moving Toward the Leader: hunters move toward the leader, which makes them stay closer to the leader 

until finding a better solution and becoming the new leader. 

c) Cooperation among Hunters: each hunter moves toward the other hunters or just makes a random move. 

No 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Improved hunting search algorithm for the quadratic assignment problem (Amine Agharghor) 

145 

d) Reorganization of hunters: at some point, hunters become very close to each other, which means that they 

represent almost the same solution. In this case, they have to be regenerated, except the leader. 

 

 

3. QUADRATIC ASSIGNMENT PROBLEM  

3.1.   Definition 

QAP is a combinatorial optimization problem of the class NP-Hard whose computational 

complexity increases exponentially by increasing the number of facilities. No exact method can solve the 

problem when the number of facilities is upper then twenty. 

Given a set of facilities to assign to a set of locations, there is a required flow between every two 
facilities and a required distance between every two locations. The problem is to find the best assignment of 

the facilities to the locations to have the minimum total cost of flows and distances. 

Figure 2 is an example of assignment of three facilities to three locations. D1 and D2 are the 

distances between the locations, and F1 and F2 are the flows between the facilities. 

 

 

 
 

Figure 2. Assignment of three facilities 

 

 

The optimal solution is defined by an objective function from a discrete subset of the feasible 

solutions. 

Let E be the set of the feasible solutions; S is a subset of E; and 𝑔: 𝑆 →  ℝ is the objective function. 

The problem is to find: 

 

min{𝑔(𝑠) ∶ 𝑠 ∈ 𝑆}  (1) 

  

Where s is a solution from S. It is a vector of ℕ, which contains indexes of facilities assigned respectively to 

locations 1, 2,…,n. n is the number of the locations.  

The objective function gives the cost of the assignment, defined as follows: 

 

𝑔(𝑠) =  ∑ ∑ 𝑓𝑠(𝑖)𝑠(𝑗) ×  𝑑𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 (2) 

  
Where (𝒇𝒊𝒋) ∈  ℝ and (𝒅𝒊𝒋) ∈  ℝ are two matrices. (𝒇𝒊𝒋) is the square matrix that represents the required flow 

between facility i and j. (𝒅𝒊𝒋) is the square matrix that represents the distance between location i and j. 

 

s ∈ S, s(i) is the location to which facility i is assigned and n is the dimension of the two matrices. 

 

 

4. IMPROVED HUNTING SEARCH ALGORITHM  

HuS as a metaheuristics uses intensification and diversification operations. The move towards the 

leader and the cooperation among hunters are the intensification operations; and the reorganization of hunters 

is the diversification operation. HuS uses also a population of individuals (the hunters) in the search space 
that undergoes mutation operations. It is an evolutionary algorithm. 

 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 14, No. 1, April 2019 :  143 – 154 

146 

4.1.   Adaptation 

4.1.1 Initialize the hunting group 

To represent a solution of QAP in a program, an array of integer is used, where the array indexes 

refer to the locations respectively 1, 2, …, n (n is the number of locations) and the array contents refer to 

facilities assigned to each location. Figure 3 is an example of a QAP solution that represents an assignment of 

five facilities to five locations; the solution is represented by a hunter. 

In this first step, a set of random solutions called the Hunting Group (HG) is created. Each solution 

is represented by a hunter and the size of the set of solutions is called the Hunting Group Size (HGS).  
Figure 4 is an example of a HG of HGS=3. 

 

 

 
 

Figure 3. An example of an assignment facilities 

solution 
 

Figure 4. An example of a HG initialization 
 

 

4.1.2 The movements of a hunter 

The only possible representation of the movement of a given hunter in the program is the 

permutation of two of its array contents. The algorithm is used to define the strategy and the sizes of 

permutations to do. Therefore, a movement of a hunter is equal to a permutation as it is shown in (3).  

 

1 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =  1 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 (3) 

  
The movement of a hunter Hi toward another hunter Hj is also a permutation in a given array index 

k. One search for the location of the content array in Hi that is similar to the content of array Hj in the array 

index k and permute them in Hi as it shown in (4). Hi is the updated hunter and Hj is from which the update is 

inspired. 

 

1 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡(𝐻𝑖 , 𝐻𝑗 , 𝑘) = 1 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝐻𝑖 , 𝐻𝑗 , 𝑘) (4) 

  
Figure 5 is an example of movement of the hunter H1 toward the hunter H3 in the array index k=2. 

 

 

 
 

Figure 5. An example of a movement toward a hunter 

 

 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Improved hunting search algorithm for the quadratic assignment problem (Amine Agharghor) 

147 

4.1.3 Moving towards the leader 

After the initialization of the HG starts the loop of the NE iterations. In this loop starts the second 

loop of IE iterations, where comes the move towards the leader (MTL). In this step, each hunter moves 

toward the leader by copying a part from the best solution; the size of the movement towards the leader 

(SML) which is the size of the copied part is calculated as follows: 

 

𝑆𝑀𝐿 =  𝑟𝑎𝑛𝑑 × 𝑀𝑀𝐿 × 𝐷(𝐻𝐿 , 𝐻𝑖) (5) 

 

 

Where: 

- Rand is a uniform random number that varies between 0 and 1. 
- MML (Maximum Movement toward the Leader) is a number between 0 and 1 representing the 

maximum closer rate of a hunter to the leader. 

- Function D refers to the distance between two hunters. It is the number of the different 

assignments in the two represented solutions. HL is the leader and Hi is the hunter number i.  

Each movement toward a leader (MTL) is characterized by a start array index that is chosen 

randomly and a size of movements toward the leader that is SML. 

 

1 𝑀𝑇𝐿 =  𝑆𝑀𝐿 × 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 (6) 

  
Figure 6 is an example of a movement of the hunter number one towards the leader, the SML=2. 

 
 

 
 

Figure 6. An example of a movement towards the leader 
 

 

4.1.4 Cooperation among hunters 

Always in the loop of IE iterations, after the move towards the leader comes the cooperation among 

hunters, where each hunter moves towards the other hunters by copying a part from their solution with the 

probability HGCR, or by changing their position relatively to themselves with the probability (1-HGCR). 

HGCR (Hunting Group Consideration Rate) is a number between 0 and 1. Figure 7 is an example of the 

movement of the hunter number 1 towards three different hunters (the case of the probability HGCR). And 

Figure 8 is an example of changing the position of a hunter relatively to itself (the case of the probability 1-

HGCR).  

 
 

 
 

Figure 7. An example of a movement towards others hunters (the case of HGCR) 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 14, No. 1, April 2019 :  143 – 154 

148 

 
 

Figure 8. An example of changing the position (the case of 1-HGCR) 

 

 

4.1.5 Reorganization 

The intensification operations reduce the distances among the hunters. So, the solutions presented 

by these hunters become almost similar, which can lead to a blockage in a local optimum. Then, a 

diversification operation is needed: the reorganization hunters. Figure 9 is an example of reorganization of a 

population of hunters of HGS=3. 

 
 

 
 

Figure 9. An example of reorganization hunters 

 

 

4.1.6 Strategies 

a) Backup system 

At the end of every intensification operation, a backup system is applied and only the good new 
solutions are taken. If the movement towards the leader or towards other hunters gives worse solution, one 

returns to the previous position. This strategy helps a rapid convergence towards local optimum. 

 

b) End criteria 

The end of the search process is determined by the number of epochs NE or by its half in the case of 

a stationary optimum. 

 

4.2.   Improvements 

4.2.1 One by one backup system 

The first improvement is applied at the strategy of the backup system. Therefore, a backup is made 

for every change during the operation of intensification and not until the end. Figure 10 is an example of the 
improved backup system during the movement towards leader. 

 

4.2.2 Leader moving towards hunters 

In the initial HuS algorithm, the leader does not move along the search. The new proposed 

improvement is to move the leader towards the other hunters (LMTH) while using the backup system for 

preserving its quality of the best-found position. Figure 11 is an example of a leader moving towards three 

hunters using the improved backup system. 

 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Improved hunting search algorithm for the quadratic assignment problem (Amine Agharghor) 

149 

 
 

Figure 10. An example of an improved backup system 

 

 

 
 

Figure 11. An example of a movement of the leader towards the other hunters 

 

 

4.2.3 Dynamic parameters 

The final proposed improvement is at the level of changing parameters dynamically during the 

search of optimum. This improvement helps better control the intensification and the diversification 

operations. Parameters are classify in three categories: parameters of static value, parameters of dynamic 

value and parameters of hybrid value. The parameters of static value are HGS, HGCR and NE; they have the 

same value from the beginning of the search until the end. The parameter of dynamic value is MML; it 
changes its value during the search. And the parameter of hybrid value is EPS; it changes its value under 

certain conditions. 

The proposed definitions for the static parameters are as follows:  

 

𝐻𝐺𝑆 =  𝑁 (7) 

 

𝑁𝐸 = 100 (8) 

 

Where N is the size of the evaluated QAPLib instance. 

The proposed definitions for the dynamic parameters are as follows:  

 

𝑅𝐿𝑊 =
(𝐸𝑁 − 𝑇𝑁)

𝐸𝑁
 

 

(9) 

  

𝑀𝑀𝐿 = 0.2 + 0.3 × 𝑅𝐿𝑊 
(10) 

 

𝐸𝑃𝑆 = min{𝑔(𝑠𝑊) − 𝑔(𝑠𝐿) ∶ 𝑠 ∈ 𝑆} 

 

(11) 

 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 14, No. 1, April 2019 :  143 – 154 

150 

𝐸𝑃𝑆 = {
𝐸𝑃𝑆 + 0.01 × 𝐸𝑃𝑆, 𝑅𝐿𝑊 > 0.5
𝐸𝑃𝑆 − 0.01 × 𝐸𝑃𝑆, 𝑅𝐿𝑊 < 0.3

 

 

(12) 

 

𝐼𝐸 = {
𝐼𝐸 + 5 × (𝐸𝑁 − 𝑇𝑁), 𝑅𝐿𝑊 > 0.5
𝐼𝐸 − 5 × (𝐸𝑁 − 𝑇𝑁), 𝑅𝐿𝑊 < 0.3

 
(13) 

 

 

Where: 

1. RLW (Rate of the distance between the Leader and the Worst hunter). 

2. TN (Trapped Number) is the number of epoch that the distance between the leader and the worst hunter is 

lower than EPS. 

3. EN (Epoch Number) is the number of epochs reached during the search. 

4. EPS (Epsilon) is the minimum distance between the leader and the worst hunter. 

5. s is a solution from the subset of solutions S. 

6. 𝒈(𝒔𝑳) is the value of the objective function of the best solution represented by the leader during the 
search of the optimum.  

7. 𝒈(𝒔𝑾) is the value of the objective function of the worst solution during the search of the optimum. 

According to (10) the value of MML is decreasing while the value of TN is increasing and vice 

versa. The minimum value of MML is 0.2 and the maximum value is 0.5. 

The value of EPS in (11) is determined as the minimum distance during the search, then, in (12) is 

an improvement of EPS. 

According to (13) if the RLW is superior to 0.5, which means that the distance between the leader 

and the worst hunter is 50% superior to EPS, the value of IE is increasing to intnsify the search. And if the 

RLW is inferior to 0.3, which means that the distance between the leader and the worst hunter is 30% infirior 

to EPS, the value of IE is decreasing to reduce the intensification during the search. The minimum value of 

IE is 30 and the maximum value is 100. 
 

 

5. EXPERIMENTAL RESULTS 

5.1.   Experimental results of the proposed improvements 

This section presents the performance of IHuS algorithm on instances of QAPLib. The tests are 

performed on a computer processor Intel(R) Core(TM) i5-4300 CPU @ 1.9GHz @ 2.50 GHz and 4 GB of 

RAM. 20 times tested for each instance. The most important collected data from the obtained results over the 

20 runs are: 

1. δbest: The Best-Found Solutions (BFS). 

2. δavg: The average of the BFS.  

3. PSD: Percentage of the Standard Deviation. 
4. Suc.: The percentage of Success in getting the Best-Known Solution (BKS). 

5. θavg: The average percentage of error in getting the BFS. 

6. Γavg: The average run time of the program in getting the BFS. 

7. Γbest: The best run time of the program in getting the BFS.  

PSD is calculated as follow: 

 

PSD =
𝑆𝐷

𝛿𝑎𝑣𝑔

× 100 
(14) 

 

 

SD = √
∑ (𝐵𝐹𝑆𝑖 − 𝛿𝑎𝑣𝑔)

220
𝑖=1

20
 (15) 

 

Where  

 SD is the Standard Deviation. 

 BSFi is the best-found solution in the test number i. 

θavg is calculated as follow: 

 

θavg = (
𝛿𝑎𝑣𝑔 − 𝐵𝐾𝑆

𝐵𝐾𝑆
) × 100 (16) 

 

 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Improved hunting search algorithm for the quadratic assignment problem (Amine Agharghor) 

151 

5.1.1 One by one backup system 

Table 1 shows the used parameter values for the tests of the new proposed backup system on the 

QAPLib instance Bur26a. Table 2 shows the obtained results compared to the old backup system (backup 

system for all the modified part in the solution). 

 

 

Table 1. Parameter Values 
HGS MML IE NE 

26 0.3 30 100 
 

 

 
Table 2. One By One Backup System Compared To Full Part Backup System 

Backup system Suc. (%) θavg (%) Γbest (sec) Γavg (sec) 

Full part 1 0.2049 2.145 2.911 

One by one 87 0.0107 0.901 24.634 

 

 
According to the table, the success of finding the optimum by the new proposed backup system has 

increased considerably compared to the one obtained by the old backup system, exactly 86 times better. The 

percentage of error is reduced more than 20 times, and the best time is reduced more than 2 times. Finally, 

the average time is increased more than 10 times because of the additional tests. 

 

5.1.2 Leader moving toward hunters 

Table 3 shows the obtained results for the tests of the new proposed operation: the move of the 

leader toward hunters (LMTH) on the QAPLib instance Bur26a. 

‘  

 

Table 3. Results For The Lmth Operation 
Proposed operation Suc. (%) θavg (%) Γbest (sec) Γavg (sec) 

LMTH 100 0 0.954 16.669 

 

 

According to the table, the success to find the optimum by the new proposed LMTH operation has 

reached 100%, and the average time is improved by 33%. 

 

5.1.3 Dynamic parameters 

5.1.3.1 Hunting Group Size 

Figure 12 shows the obtained results from the tests of the proposed values of HGS applied to the 

QAPLib instance Bur26a. The proposed values of HGS are: 

 

𝐻𝐺𝑆 =  𝑁 (17) 
 

𝐻𝐺𝑆 =  𝑁 × 2 (18) 

 

𝐻𝐺𝑆 =  𝑁 ÷ 2 (19) 

 

Where N is the size of the evaluated QAPLib instance. 𝑵(Bur26a)  =  𝟐𝟔 

According to Figure 12, (18) is better than (19) in all the obtained results. (17) is better than (18) in 

all the obtained results except for Γavg by less than 10%. The most important result is θavg. So, (17) is the 

better value for HGS. 

 

5.1.3.2 Maximum Movement toward the Leader 

Figure 13 shows the obtained results from the tests of the fixed maximum and minimum values of 

MML applied to the QAPLib instance Bur26a. According to Figure 13, the average error is equal to 0 and 

the average time is the least when the MML value is between 0.2 and 0.5. 

 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 14, No. 1, April 2019 :  143 – 154 

152 

 
 

Figure 12. The results obtained by changing the value of HGS 

 

 

 
 

Figure 13. The results obtained by changing the maximum and minimum values of MML 

 
 

5.1.3.3 Epsilon and the iteration per epoch 

Figure 14 shows the obtained results from the tests of the RLW values that increase or decrease the 

values of Eps and IE applied to the QAPLib instance Bur26a. 

 

 

 
 

Figure 14. The results obtained by changing the Eps and the IE values 

 

 

According to Figure 14, the average error is equal to 0 and the average time is the least when the 

Eps and the IE values are improved when the value of RLW is inferior to 0.3 or superior to 0.5. Table 4 

shows the obtained results for the tests of the dynamic parameters compared to the static parameters on the 

QAPLib instance Bur26a. According to the table, the dynamic parameters have improved the best time and 
the average time to find the optimum. 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Improved hunting search algorithm for the quadratic assignment problem (Amine Agharghor) 

153 

Table 4. Results For The Dynamic Parameters 
Parameters Suc. (%) θavg (%) Γbest (sec) Γavg (sec) 

Static 100 0 0.455 17.720 

Dynamic 100 0 0.317 14.639 

 

 

5.1.4.  IHuS applied to QAPLib instances  

Table 5 shows the obtained results by applying IHuS to 36 instances of QAPLib. Among 36 

instances of QAPLib evaluated in the Table 5, the proposed IHuS has solved 20 instances with no error, 13 

instances with error and has not solved 3 instances.  

 

 

Table 5. Numerical Results Obtained By Ihus Applied To Some Qap Instances Of Qaplib 
N° Instance BKS δavg θavg (%) Γavg (sec) PSD Suc. (%) Γbest (sec) 

1 bur26a 5426670 5426670 0 14.640 0 100 0.317 

2 bur26b 3817852 3817852 0 13.547 0 100 2.824 

3 bur26c 5426795 5426795 0 3.218 0 100 0.688 

4 bur26d 3821225 3821225 0 7.951 0 100 1.579 

5 bur26e 5386879 5386879 0 4.221 0 100 0.653 

6 bur26f 3782044 3782044 0 3.159 0 100 0.297 

7 bur26g 10117172 10117172 0 15.829 0 100 2.031 

8 bur26h 7098658 7098658 0 3.842 0 100 0.923 

9 tai10a 135028 135028 0 0.542 0 100 0.049 

10 tai10b 1183760 1183760 0 0.197 0 100 0.037 

11 tai12a 224416 224416 0 0.640 0 100 0.073 

12 tai12b 39464925 39464925 0 0.717 0 100 0.058 

13 tai15a 388214 388291 0.0198 4.855 0.08433 95 0.531 

14 tai15b 51765268 51765268 0 0.415 0 100 0.089 

15 tai17a 491812 493948.7 0.4340 26.937 0.41487 40 2.037 

16 tai20a 703482 709926.3 0.9160 23.782 0.38367 10 6.083 

17 tai20b 122455319 122510738.4 0.0453 9.483 0.13570 90 0.305 

18 tai25a 1167256 1187017.9 1.6930 56.834 0.38947 0 49.033 

19 tai25b 344355646 344367602.6 0.0035 18.168 0.01513 95 0.883 

20 tai30a 1818146 1851329.6 1.8251 112.737 0.37674 0 96.424 

21 tai30b 637117113 637271686 0.0243 91.640 0.03810 20 11.169 

22 tai35a 2422002 2477518.6 2.2922 204.162 0.49207 0 173.891 

23 tai35b 283315445 283487663.15 0.0608 118.488 0.08008 60 27.158 

24 tai40b 637250948 637286051.4 0.0055 176.889 0.01111 70 29.569 

25 tai64c 1855928 1855928 0 107.5595 0 100 33.971 

26 lipa30a 13178 13178 0 17.403 0 100 1.091 

27 lipa40a 31538 31777.75 0.7602 280.597 0.46111 20 181.749 

28 lipa70b 4603200 4603200 0 529.561 0 100 279.521 

29 esc16a 68 68 0 0.0615 0 100 0.011 

30 esc32a 130 132.1 1.6154 123.5548 1.12026 25 41.088 

31 esc64a 116 116 0 1.6071 0 100 0.306 

32 esc128 64 64 0 507.5493 0 100 23.036 

33 had20 6922 6922 0 0.9235 0 100 0.141 

34 kra30a 88900 89279.5 0.426 57.006 0.58714 65 4.080 

35 kra30b 91420 91590 0.186 120.770 0.10775 5 17.204 

36 chr25a 3796 4201 10.669 57.264 4.24970 5 44.783 

 

 

5.2.   Comparison with other metaheuristic 

Figure 15 compares average percentage of error in getting the BKS of ten QAPLib instances 

obtained by the proposed IHuS and the existing Genetic Algorithm (GA) [14]. The adaptation of GA for the 

QAP is the only contribution found in literature of an evolutionary algorithm that does not use the local 

search to improve the results. Therefore, it is the only available work in literature to compare results with the 

proposed work. 
According to Figure 15, it is clear that the average percentage of error in getting the BKS obtained 

by IHuS is much better compared to that obtained by the GA. Knowing that the GA has been run on a better 

computer with Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz and 8.00 GB RAM. 

 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 14, No. 1, April 2019 :  143 – 154 

154 

 
 

Figure 15. The average percentage of error in getting the BKS obtained by IHuS and GA for some instances 

of QAPLib 

 

 

6.  CONCLUSION 

In this work, a new Improved Hunting Search algorithm is presented. It is the best evolutionary 

algorithm proposed to solve the quadratic assignment problem. QAPLib is the used library of the QAP 

instances to assess the performance of IHuS. To show the quality of IHuS, no local search is used. Three 

effective improvements are proposed: the one by one backup system, the leader moving toward hunters and 

the dynamic parameters. Very good results are obtained by applying IHuS to 36 instances of QAPLib 
instances. Finally, it is shown that the results obtained by IHuS are much better to that obtained by the 

existing evolutionary algorithm in literature.  

 

 

REFERENCES 
[1] R. Oftadeh, M. J. Mahjoob, and M. Shariatpanahi, “A novel meta-heuristic optimization algorithm inspired by group 

hunting of animals: Hunting search,” Computers & Mathematics with Applications, vol. 60, no. 7, pp. 2087–2098, 
2010. 

[2] F. Chebihi, M. E. Riffi, A. Agharghor, S. C. B. Semlali, “Improved Chicken Swarm Optimization algorithm to solve 

the Travelling Salesman Problem,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 12, no. 
3, 2018. 

[3] S. C. B. Semlali, M. E. Riffi, F. Chebihi, “Discrete Chicken Swarm Optimization for the Quadratic Assignment 
Problem,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 11, n. 3, 2018. 

[4] F. Sayoti, M. E. Riffi, H. Labani, “Optimization of Makespan in Job Shop Scheduling Problem by Golden Ball 
Algorithm,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 4, n. 3, 2016. 

[5] A. Agharghor and M. E. Riffi, “Hunting search algorithm to solve the traveling salesman problem,” Journal of 
Theoretical & Applied Information Technology, vol. 74, no. 1, 2015. 

[6] A. Agharghor, M. E. Riffi, and F. Chebihi, “A memetic hunting search algorithm for the traveling salesman 
problem,” 2016, pp. 206–209. 

[7] B. Naderi, M. Khalili, and A. A. Khamseh, “Mathematical models and a hunting search algorithm for the no-wait 
flowshop scheduling with parallel machines,” International Journal of Production Research, vol. 52, no. 9, pp. 2667–
2681, May 2014. 

[8] A. Agharghor and M. E. Riffi, “First Adaptation of Hunting Search Algorithm for the Quadratic Assignment 
Problem,” in Europe and MENA Cooperation Advances in Information and Communication Technologies, vol. 520, 
Á. Rocha, M. Serrhini, and C. Felgueiras, Eds. Cham: Springer International Publishing, 2017, pp. 263–267. 

[9] T. C. Koopmans and M. Beckmann, “Assignment Problems and the Location of Economic Activities,” 

Econometrica, vol. 25, no. 1, p. 53, Jan. 1957. 
[10] L. Steinberg, “The Backboard Wiring Problem: A Placement Algorithm,” SIAM Review, vol. 3, no. 1, pp. 37–50, 

Jan. 1961. 
[11] A. M. Geoffrion and G. W. Graves, “Scheduling Parallel Production Lines with Changeover Costs: Practical 

Application of a Quadratic Assignment/ LP Approach,” Operations Research, vol. 24, no. 4, pp. 595–610, Aug. 
1976. 

[12] M. Bashiri and H. Karimi, “Effective heuristics and meta-heuristics for the quadratic assignment problem with tuned 
parameters and analytical comparisons,” Journal of Industrial Engineering International, vol. 8, no. 1, p. 6, 2012. 

[13] R. E. Burkard, S. E. Karisch, and F. Rendl, “QAPLIB–a quadratic assignment problem library,” Journal of Global 
optimization, vol. 10, no. 4, pp. 391–403, 1997. 

[14] H. A. Zakir, “A Simple Genetic Algorithm using Sequential Constructive Crossover for the Quadratic Assignment 
Problem,” Journal of Scientific and Industrial Research, vol. 73, no. 12, pp. 763–766, 2014. 

 


