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Abstract 
The numerical approximation of the generalized Lienard equation is considered using delay as 

parameter. First, the delay difference equation obtained by using Euler method is written as a 
map.According to the theories of bifurcation for discrete dynamical systems,the conditions to guarantee the 
existence of Hopf bifurcation for numerical approximation are given. The relations of Hopf bifurcation 
between the continuous and the discrete are discussed. Then when the generalized Lienard equation has 

Hopf bifurcations at 0r r , the numerical approximation also has Hopf bifurcations at 0 ( )hr r o h   is 

proved. At last, the text listed an example of numerical simulation, the result shows that system (8) 
discretized by Euler keeps the dynamic characteristic of former system (1), and the theory is proved. 
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1. Introduction 

In recent years, the generalized Lienard equation: 
 

( ) ( ( )) ( ) ( ( )) 0x t f x t x t g x t r                                     (1) 

 
The behavior of its solution attracted attention of many scholars. Delays are the key to 

cause differences between delay differential equation and ordinary differential equation, so use 
delays as parameter to study Hopf bifurcation is meaningful. Many scholars have done in-depth 

research about the Hopf bifurcation of system (1)  1 3�
. For example, in 1998, reference [1] uses 

delay r as parameter studied Hopf bifurcation of system (1), proved the existence of Hopf 
bifurcation and formula to count Hopf bifurcation was given. Reference [2] uses  - D
partitioning method of index polynomial to discuss the Hop bifurcation of system (1) using k  as 

a parameter. Reference [3] discusses Hopf bifurcation of system (1) using b  as a parameter, 

and gives the Hopf bifurcation diagram in the r b  parameter plane. 
This text discussed the Hopf bifurcation in numerical approximation of the system (1) by 

choosing r as the bifurcation parameter, using the Euler method. The reference 4 to 7 took the 
lead in studying the Hopf bifurcation in numerical approximation of the finite delay Logistic 
equation and got satisfied results. What is called the numerical approximation is to examining 
whether its numerical solution can maintain the dynamic characteristic of the system while using 
the numerical method to achieve the discretization of system. 
 
 
2. The Existence of Hopf Bifurcation for the Generalized Lienard Equation  

As to system (1), set delay 0r   as constant, 2, ,f g C  and ( )g x  satisfying 

(0) 0, ( ) 0.g xg x   Set (0) , (0) ,f a g b   and 0, 0.a b   

System (1) is equivalent to the following second-order-finite-delay system. 
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( ) ( )

( ) ( ( )) ( ) ( ( ))

x t y t

y t f x t y t g x t r


    





，

，
                                    (2) 

 
Let x y ， then do the time conversion t rs ，and still note ( ), ( )x rs y rs  as 

( ), ( )x t y t , therefore Equation (2) can be transformed into its equivalent system. 

 

 ( ) ,

( ) ( ( )) ( ) ( ) ( ( 1)),

x t ry t

y t rf x t y t y t rg x t




   




                               (3) 

 
Its linear part is: 
 

 ( ) ,

( ) ( 1) ( ),

x t ry t

y t arx t bry t




   




                                           (4) 

 
The characteristic equation of (4) Is: 
 

2 2 0ar br e                                                     (5) 
 

Lemma 1:  Set r  as a parameter, so when 0r r , Equation (3) exists Hopf 

bifurcation，and 0r  satisfies following conditions: 

 

1 0
0

0

1

22 2 2
0

1
sin ( ),

1
4 ,

2

a
r

b

a b a






 


       

                                     (6) 

 

a) Equation (5) has a pair of conjugate complex roots 1,2 ( ) ( )r i r    ，  and the 

,  here are real numbers, while 0 0 0( ) 0, ( ) 0r r     . 

b) The roots of equation (5) in 0r r  all have strictly negative real parts, except 

0 0( ), ( )r r  . 

c) 

0

Re ( )
0






r r

d r

dr
. 

 
 
3. Hopf Bifurcation in Numerical Approximation for the Generalized Lienard Equation 

Using the [4]EulerMethod 1
, )h m Z

m  （ , we get the numerical solution of Equation (3). 

 

1

1

n n n

n n n m n

x x rhy

y y brhx arhy


 

 
   

                                           (7) 

 

Introducing new vector 1 1( , , , , , )T
n n n n n n m n mX x y x y x y     ，we can express (7) as: 

 

1 ( , )n nX F X r                                                        (8) 
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The 0 1( ) ( , , , )T
mF x F F F   is a vector-valued function with 2( 1)m   dimensions, i.e. 

 

0

1

n n

n n m n

k

n

n

x rhy
k

y brhx arhy
F

x
k m

y



 
   

   

 

Expand the Equation (8) at 0 0（ ，），  
 

1 ( , ) ( , , )n n n n n n nX AX B X X C X X X    
 

                          (9) 

 
Its linear part is : 

 

1n nX AX 


                                           (10) 

 
In which, 
 

0 0

0 0 0

0 0 0

0 0 0

A B

I

A I

I

 
 
 
 
 
 
  








    



 

 

I  is a second order unit matrix, 1 0 0
,

0 1 0

rh
A B

arh brh

   
        

 

The characteristic equation of A


 is: 
 

2 2 2 2 2( , , ) ( 1) ( 1) 0m m m
md z r h z z arhz z br h z                           (11) 

 
In order to facilitate the discussion about the bifurcation problem of the numerical 

solution in Equation (3), we introduce equation: 
 

2 2 2 2 2( , , ) ( ) ( ) 0D r h e g h ar e g h br e                              (12) 

 

In which 
x

e
xg

x 1
)(


 , providing 1)0( g  

Just like the lemma 4.1 in literature [8], we can get lemma 2. 
Lemma 2:  if characteristic (5) satisfies condition (6), then ( , , ) 0D r h   satisfies: 

a) ( , , ) 0D r h   has a pair of conjugate complex roots 1,2 ( ) ( )r i r    ；  

b) There exists 0 ( )hr r o h  ， ( ) 0, ( ) 0h hr r   ；  

c) ( )
0

hr r

d r

dr





 ；  

d) There exist 0 (nothing to do with r, h) to make for Nm
m

h  ,
1 . There exists

0( , ) ( , 0)r h N r and ( , ) ( , )
( , , ) 0

Re

r h i r h
D r h

  


 
 

    
. 
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Proof： (a-c)Because ( , ,0) ( , )D r d r  , so 0 0( , ,0) ( , )D i r d i r  .In 0 0( , ,0)i r , 

0 0
0

0 0

( ( ), )
( )

( ( ), )
rd r r

r
d r r




   , therefore 0 0( , ) 0d i r   . By the implicit function theorem, in the 

neighborhood of 0( ,0)r , there exists only one function ( , ), ( , )r h r h   making 

1,2 ( ) ( )r i r    . Because 0 0( ,0) 0, ( ,0) 0r r    , there exists hr r  making 

0( ) 0, ( ), ( ) 0h h hr r r o h r     . By the implicit function theorem again, in the 

neighborhood of 0( ,0)r ,
( )

0
hr r

d r

dr





 . If ( , , ) 0D r h  ,then ( , , ) 0D r h  , so there exists 

a neighborhood of 0r , making ( , ) 0d r   has only one root 1( )r , satisfying to 0r  ,there 

is 1 1Re( ( )) , Im( ( )) 0,r r     and ( , , ) 0D r h   also has similar character. 

Set  , ,m m mr h  to make 0( , , ) 0, ( , ) ( ,0), lim 0m m m m m mm
D r h r h N r h


   , so m  

is uniformly bounded. So there exists jm , to make 0 0, , 0
j j jm m mr r h    . By the 

continuity of 0 0( , , 0) 0D r  , there exists 0 0 0, hi r r   . So: 

  
( , ) ( , )

( , , ) 0
Re

r h i r h
D r h

  


 
 

    
 

 

Lemma 3:  When
1

h
m

 , the necessary and sufficient condition of ( , , ) 0D r h   has 

the root   is (11) has the root mZ e


 . 

Proof： Substitute me


 for Z in (11). 
 

2 2 2 2 2( ) ( ) 0e g h ar e g h br e         

 
So the lemma 3 is proved. 

Lemma 4:  0
hr r

d z

dr


  

Proof： mZ e


 ，
1

h
m

 ，
2

z zz ，so there exists: 

 
2

( ) ( , )
2h h h h hd z dz dz d d d r h

z z he e he e he
dr dr dr dr dr dr

            ,  

 

Because 
( , )

0
hr r

d r h

dr





 ，   so 0
hr r

d z

dr


 . 

Theorem 1:  If differential Equation (3) has Hopf bifurcation in 0r r , so when step 

size h  is sufficiently small, differential Equation (8)will produce Hopf bifurcation in 

0 ( )hr r o h  . 
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Proof： We can learn by lemma 3 and 4 that to the step size 
1

h
m

 0( )m m , in the 

neighborhood of 0r , if characteristic equation (5) has root, mZ e


  is the root of (11). If (5) have 

a pair of simple conjugate complex roots 0i   , while other roots have  strictly real parts. 

So the differential Equation (8) have a pair of conjugate complex roots 
hi

me



 in 0 ( )hr r o h 

1
( )h

m
 , and 1

hi

me



 , while other roots’ modules less than 1, and 0

hr r

d z

dr


 . 

 
 
4. Numerical Simulation 

This section gives an example of numerical simulation of system (1). The result shows 
that system (8) discretized by Euler keeps the dynamic characteristic of former system (1), 
and the theory is proved. 

Set 1(0) 0.8, (0) 1.f a g b     and the system turned into: 

 

( ) ( )

( ) 0.8 ( ) ( )

x t y t

y t y t x t r


    





，

，

                             

     (13) 

 

System (13) exists only equilibrium point * (0,0).E 
 

According to the theorem 4.1 of reference [3], it’s easy to get:  
 

0 0. 378 316 029 857 13,r    

 

So system (13) generates Hopf bifurcation at 0r r .
 

Diagram 1 to 3 express waveforms and trajectory diagram of solution system (13) 
before discretized. Diagram 4 to 6 express waveforms and trajectory diagram of system (8) 

discretized by Euler. The diagram 1 shows that when 0r r , zero solution of system is 

asymptotically stabled. The diagram 2 shows that when 0r r , system experiences Hopf 

bifurcation at origin, and stable bifurcating periodic solution was produced around equilibrium 

point. The diagram 3 shows that when 0r r , zero solution of system is unstable. The diagram 

4 to 6 shows that when 0r r , zero solution of system (8) is asymptotically stabled, and stable 

periodic solution was produced around 0r r . When 0r r , zero solution of system (8) is 

unstable, which means system (8) discretized by Euler keeps the dynamic characteristic of 
former system (1). 

 

 
Figure 1. Waveform and phase orbit of system（ ）13  when 00.2r r   



TELKOMNIKA  ISSN: 2302-4046  

Hopf Bifurcation in Numerical Approximation for the Generalized Lienard… (Guangyu Zhao) 

145

 
Figure 2. Waveform and phase orbit of system（ ）13  when 0r r  

 
 

 
Figure 3. Waveform and phase orbit of system (13) when 00.55r r   

 
 

 
Figure 4. Waveform and phase orbit of discrete system (8) when 00.2 , 0.02r r h    

 

 
Figure 5. Waveform and phase orbit of discrete system (8) when 0 , 0.02r r h   

 

 
Figure 6. Waveform and phase orbit of discrete system (8) when 00.55 , 0.02r r h    
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