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 Research in Multiple Input Multiple Output (MIMO) communication system 

has been developed rapidly in order to improve the effectiveness of 

communication among users. However, trade-off phenomenon between 

performance and computational complexity always become the hugest 

dilemma suffered by researchers. As an alternative solution, this paper 

proposes an optimization in 3x3 spatial multiplexing MIMO communication 

system using end-to-end based learning, specifically, it adapts autoencoder 

based model with the knowledge of Channel State Information (CSI) in the 

receiver side, make it fairly compared with the baseline method. The 

proposed models were evaluated in one of the most common channel 

impairment which is fast Rayleigh fading with additional Additive White 

Gaussian Noise (AWGN). By appropriately determining hyperparameters 

and the help of PReLU (Parametric Rectified Linear Unit), the results show 

that this autoencoder based MIMO communication system results in very 

promising results by exceeding the baseline methods (methods widely used 

in conventional MIMO communication) by reaching BER lower than      at 

SNR 22.5 dB. 
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1. INTRODUCTION 

The utilization of several antennas either at transmitter or receiver or at both of them has become 

more popular nowadays due to its ability to maintain a reliable communication in a wireless channel with 

some impairment predominantly by fading. This reliable communication can be maintained because multiple 

antennas technology provides benefits in a communication system which are array gain, spatial diversity or 

spatial multiplexing gain and interference reduction and avoidance [1].  

For years, researchers have been developing algorithms in multiple antennas technology in order to 

improve its performance either in detection task or channel estimation task or other tasks. However, the issue 

of a trade-off between performance improvement and computational complexity always become a main 

restriction and consideration. As a solution, machine learning, an approach shining nowadays especially in 

domains such as computer vision, is introduced in multiple antennas communication system. As a result, it 

performs very well and even better compared to the baseline methods. 

Some of the most interesting results of machine learning implementation in a communication 

system are paper titled An Introduction to Deep Learning for the Physical Layer [2] and Deep_Learning-

Based Communication over the Air [3] which introduce deep learning as an end-to-end system in SISO 

communication. This end-to-end model means that transmitter, channel impairments, and receiver are 

represented by one or several neural network layer (dense) then interpret the whole system as an autoencoder, 
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a powerful method for performing unsupervised learning [4]. Since they show good results, researches 

related to autoencoder implementation in MIMO communication has been developing rapidly, for instance its 

application in channel decoding [5] and Orthogonal Frequency Division Multiplexing (OFDM) [6]. However, 

the need of improvement in this topic is still required especially in end-to-end learning based model in order 

to make it feasible to be implemented in the real world condition. 

In this work, investigation of end-to-end learning in 3x3 MIMO communication system in spatial 

multiplexing is discussed with fair comparisons to the baseline methods where knowledge of Channel State 

Information (CSI) is perfectly known in the receiver side. The high originality, which proposed a new 

method or algorithm, the additional chapter after the Results show that end-to-end learning based deep 

learning MIMO communication results in better performance compared to the baseline methods. 

 

 

2. RESEARCH METHOD 

Basically, the model proposed in this work is inspired by the model in a paper titled Deep Learning-

Based MIMO Communications [7]. However, there are some differences that will be explained in the 

following section. Furthermore, this section also briefly describes baseline methods used for comparison with 

deep learning based methods 

 

2.1. Model Architecture 

Architecture model for the first and the second of spatial multiplexing case are depicted by Figure 1 

and Figure 2 respectively. These proposed models consist of several dense and lambda layer which represent 

end-to-end learning system. 6 bit sequences are represented by integers from 0 until 63, so that total of input 

sequences are 64 different inputs (S). Those inputs are first fed to embedding layer to create vector of 

message indices. Then, they are encoded by dense layer in transmitter block to form    parallel transmit 

streams of 1 time samples (X) with the tensor shape [batch_size,   ,2,1] where the third dimension 

represents real and imaginary part. This parallel streams shape is done by reshape layer. Next, these parallel 

transmitted symbols will be fed into several lambda layers representing channel and noise effects in wireless 

propagation resulting in tensor shape [batch_size,   ,2,1].    and    denotes number of receiver antenna 

and transmitter antenna respectively. Eventually, the receiver block which has several dense layers with 

softmax activation function at the end will decode the received signal to produce  ̂. Concatenate layers both 

in transmitter and receiver mean that the information of channel reponse H is concatenated to the output of 

neural network layer in order to help the weight and bias update process. The difference between the first and 

the second model which only use perfect CSI in the receiver side is just the position of reshape layer. This 

reshape layer actually has a significant impact to the performance and the shape of constellation points of the 

system. By changing position of reshape layer, then we must set the hyperparameters differently to obtain the 

best result. Table 1 and Table 2 show layout of Neural Network used in this work. 

 

 

 
 

Figure 1. Autoencoder based spatial multiplexing perfect CSIT and CSIR 

 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Implementation of Deep Learning in Spatial Multiplexing MIMO Communication (Mahdin Rohmatillah) 

701 

 
 

Figure 2. Autoencoder based spatial multiplexing CSIR 

 

 

Table 1. Layout of perfect CSIT and CSIR case 
Transmitter (TX) : Parameters Output Dimension 

Input 0 1 
Embedding 768 1,12 

Dense (PReLU) 312 24 

Linear 1 24 
Normalization 0 4 

   

Receiver (RX) : Parameters Output Dimension 

Input 0 24 

Dense (PReLU) 6400 256 

Dense (PReLU) 32896 128 
Dense (Softmax) 8256 64 

 

 

Table 2. Layout of perfect CSIR case 
Transmitter (TX) :  Parameters Output Dimension 

Input 0 1 
Embedding 768 1,12 

Concatenate 0 3,2,5 

Dense (PReLU) 744 24 
Linear 1 24 

Normalization 0 4 

Receiver (RX) : Parameters Output Dimension 

Input 0 24 

Dense (PReLU) 6400 256 

Dense (PReLU) 32896 128 
Dense (Softmax) 8256 64 

 

 

Compared to the previous model, models shown by Figure 1 and Figure 2 already shows several 

differences beside the depth of the nerwork. First, both model use Channel State Information in the receiver 

side so that we can make a fair comparison with the baseline method which implements prefect CSIR in 

order to decode the received signal. Moreover, the channel and noise are represented as inputs of the model 

using “randn” function from Numpy library rather than generated by several lambda layers that emerge a 

doubt whether the generated channel response suitable to the predetermined standard. The second, nonlinear 

activation function used is PReLU [8] instead of ReLU. One of the advantages of using PReLU is the 

negative value input will still have output rather than zero. As the data flowing in the model has a range of -

  to  , the PReLU properties is very beneficial for improve the model accuracy. The output of PReLU 

activation function follows the equation 

 

 (  )  {
          

            
         (1) 
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   is the input of nonlinear activation function f on the     channel, while    is a coefficient adaptively 

controlling the slope of the negative parts. This coefficient is updated using momentum method which is 

given by 

 

          
  

   
         (2) 

 

where   and   denotes the momentum and learning rate respectively. ReLU, activation proposed in the 

previous work, has been tried to be implemented in this model. Unfortunately, the training and validation loss 

become very high due to zero gradient issue. 

The third or the last, in this work we simulated 3x3 MIMO communication system, not 2x2 MIMO 

communication system. The channel is fast Rayleigh fading which means that the fading varies at every 

transmitted symbol while noise is Adaptive White Gaussian Noise (AWGN). 

 

2.2. Training Phase 

Input data used for training and testing (bits, channel and noise) were randomly generated by 

function in the Numpy library. Total amount of input data (bits) for training was 8000000 bits. This model 

was then trained in 100 epochs with batch size equal to 500. Several hyperparameters tuning were 

implemented in certain layers, for instance we set gamma constraint in batchnormalization layer in order to 

give power constraint in the transmitter side. Moreover, this model was trained in a fixed value of     ⁄  
  dB. 

As we interpret this model as an autoencoder based classification task, a categorical cross-entropy 

loss function (   ) may be an appropriate loss function to be used for optimization using gradient descent to 

select network parameters. Categorical cross-entropy loss function (   ) is given by 

 

   (   ̂)  
  

| |
∑  (  

| |  
      ( ̂ )  (    )    (   ̂ )      (3) 

 

Using a form of stochastic gradient descent, Adam [9], weights were iteratively updated based on 

loss gradient using back-propagation [10]. Although Adam can work adaptively as it takes benefits of 

Adaptive Gradient Algorithm [11] and Root Mean Square Propagation (RMSProp) [12], we still set the 

learning rate to be decreasing if the validation loss is not reducing significantly. 

 

2.3. Testing Phase 

Similar with the training phase, input data for testing were randomly generated using function in 

Numpy, so that they were different with data fed in training section. The total number of bits in this section is 

1000000 bits and Bit Error Rate (BER) was iteratively calculated in range of SNR -4dB until 22.5 dB. 

 

2.3. Baseline Method 

In this work, we consider MIMO spatial multiplexing system in two different cases, first is system 

using both CSIT and CSIR and the second is system using only CSIR. The configuration of each system is 

discussed in the following paragraphs. Similar with the deep learning based method, these baseline methods 

were also simulated in 3x3 MIMO communication system.  

For the first system, we consider a linear pre-equalization which employs pre-equalization on the 

transmitter side as depicted by Figure 3 [13].  

 

 

 
 

Figure 3. Linear pre-equalization 

 

 

The precoded symbol vector         can be represented as  

 

    ̃           (4) 
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Where  ̃ is the original symbol vector for transmission and          is a pre-equalizer weight matrix. As 

the MMSE pre-equalization was used in the simulation, the weight matrix is given by 

 

                *‖    (   ̃   )   ̃‖      (    
  

 

 
  )    (5) 

 

while   is a constant to meet the total transmitted power constraint after pre-equalization and it is given as 

 

  √
  

  ( 
  (   ) )

         (6) 

 

where H and    denote a channel response and number of transmitter antenna respectively. 

For the second system, Maximum Likelihood (ML) algorithm was used to detect  . ML detection 

calculates the Euclidean distance between the received signal vector and the product of all possible 

transmitted signal vectors with the given channel H. ML detection determines the transmitted symbol x as 

 

 ̂         ‖    ‖         (7) 

 

 

3. RESULTS AND ANALYSIS 

In this section, we trained the end-to-end learning based MIMO communication model described on 

the previous section with the help of Keras with tensorflow-gpu backend and evaluated the BER over the 

range of SNRs. The results are fairly compared with baseline methods simulated in MATLAB with QPSK 

modulation was used to modulate input bits. Both systems were simulated in 3x3 MIMO communication 

system. 

 

3.1. Spatial Multiplexing Perfect CSIR and CSIT 

For the first model, we simulated 3x3 MIMO system with perfect CSIT and CSIR so that there is no 

feedback from receiver to transmitter. In baseline methods, the power of each antenna was set to be equal, 

while in autoencoder based model transmit power of each antenna is different due to different weights and 

biases of each antenna as a result of training section. However, the average energy is equal to 1 (reaching its 

averaged power by uneven power distribution between each antenna). Constellation point of each 

autoencoder based MIMO and its received points is shown by Figure 4. Meanwhile, the performance of the 

proposed system is depicted by Figure 5. Performance is evaluated in terms of BER which is an average of 

all BER computed by each antenna. It seems that the autoencoder based model outperforms the baseline 

method since the value of SNR is 5dB. As the SNR get higher, the huge gap performance between each 

method become higher. This performance was achieved with some hyperparameters tuning, for instance in 

the normalization layer, we set the max norm of gamma constraint to an appropriate value (1.1) in order to 

effectively put a power constraint in the encoder block mode 

 

 

 
 

Figure 4. Learned constellation autoencoder based MIMO perfect CSIT and CSIR 
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Figure 5. BER comparison between proposed MIMO perfect CSIT and CSIR model and baseline method 

 

 

3.2. Spatial Multiplexing Perfect CSIR 

 Similar to the previously discussed model, in the perfect CSIR case, the power of each antenna is 

unevenly distributed, but still achieves its average power transmission. Learned constellation point is shown 

by Figure 6, while system performance evaluation in terms of BER comparison between autoencoder based 

method and baseline method is shown by Figure 7. In this case, the end-to-end based model outperforms the 

baseline method since nearly 2 dB. This performance also achieved with several hyperparameters tuning, for 

instance the constraint in the batchnormalization layer. We must set the max norm of gamma constraint to be 

0.8. We also found that the increase of dataset number will not improve the performance directly. Batch size 

and constraint in several layers must be differently set to get the best performance. 

 

 

 
 

Figure 6. Learned constellation autoencoder based MIMO perfect CSIR 
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Figure 7. BER comparison between proposed MIMO perfect CSIR model and baseline method 

 

 

4. CONCLUSION 

As a solution of trade-off phenomenon in MIMO communication optimization, this paper proposes a 

method implementing one of the model in deep learning area, end-to-end learning autoencoder. This method 

shows promising results compare to the baseline methods in terms of BER over fast Rayleigh fading channel 

by reaching more than      in term of BER. Moreover, by using deep learning based method, the 

computational complexity can be reduced because in deep learning field, computational complexity just takes 

place in the training section. 

However, there are still some considerations in order to make the proposed models to be fitted with 

the real world impairments. One of them is by doing online learning instead of doing offline learning using 

synthetically generated data. Moreover, the channel estimation model can be implemented using deep 

learning based method because sometimes it will be hard to obtain perfect CSI in the real world 

communication. 
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