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 Genetic algorithm (GA) approach is one of an evolutionary optimization 

technique relies on natural selection. The employment of GA still popular 

and it was applied to many real-world problems, especially in many 

combinatorial optimization solutions. Lecturer Timetabling Problem (LTP) 

has been researched for a few decades and produced good solutions. 

Although, some of LTP offers good results, the criteria and constraints of 

each LTP however are different from other universities. The LTP appears to 

be a tiresome job to the scheduler that involves scheduling of students, 

classes, lecturers and rooms at specific time-slots while satisfying all the 

necessary requirements to build a feasible timetable. This paper addresses the 

employment and evaluation of GA to overcome the biggest challenge in LTP 

to find clashes-free slots for lecturer based on a case study in the Faculty of 

Computer and Mathematical Sciences, University Technologi MARA, 

Malaysia. Hence, the performance of the GA is evaluated based on selection, 

mutation and crossover using different number of population size. A 

comparison of performance between simple GA with Tournament Selection 

scheme combined with Elitism (TE) and a GA with Tournament (T) selection 

scheme. The findings demonstrate that the embedded penalty measures and 

elitism composition provide good performance that satisfies all the 

constraints in producing timetables to lecturers. 
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1. INTRODUCTION  

The timetabling problem appears to be a tiresome job that involves scheduling of students, classes, 

lecturers and rooms at specific time-slots while satisfying all the necessary requirements to build a practical 

timetable. The normal problem of creating a practical timetable is a scheduling lectures, classes and rooms 

into fixed timeslots while ensuring that there are no clashes between lecturers and rooms in the same period. 

Therefore, the resources become difficult to schedule, thus the choice of this project topic to optimize 

timetable scheduling under given constraints.  

The problem considers the allocation of the resources such as lecturers, students and classrooms in 

timeslots while satisfying the constraints of existing facilities. Traditionally, timetable scheduling was done 

manually by the education center staffs which require a lot of times and efforts. Numerous aspects should be 

taken into considerations and it is often difficult to meet all the requirements and satisfy the constraints.  

One of the biggest problems with the manual timetabling is to deal with finding clashes-free slot [1].  

Any changes require the team to undo previous allocation and find a new allocation resulting in a series of 
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backtracks. In short, timetable scheduling is one of the hardest areas that proven to be NP-Complete  

problem [2]. Educational institutions usually grow in number and its complexity. A general timetable 

scheduling is considered as a multi-dimensional problem in which it needs to assign a set of students, 

classrooms, subjects, and staff to timeslots according to required constraints [3].  

To overcome these problems, automated and practical timetable generator is needed in which it can 

help provide the path to find an optimal or near-optimal solution to the problem within a short period of time 

using different techniques of optimization. A feasible timetable is a schedule which essentially must satisfy 

several constraints. Constraints are almost universally employed by people dealing with timetable scheduling 

problem [4]. Although many researchers involved in solving the timetabling problem, it is impossible to 

perfectly solve it because of the variety of constraints in each problem [5]. There are two categories of 

constraints which are soft and hard constraints. Hard constraints are constraints that cannot be violated and 

any violation is unacceptable. For example, a lecturer cannot be in two places at the same time, two subjects 

cannot have common students scheduled in the same time slot and courses cannot be assigned to the same 

room at the same time. If the hard constraint is violated, then such a schedule will be considered as a failure. 

While soft constraints are constraints that can be broken, but must be minimized. Although it fails to satisfy 

these constraints, it is said to be legal if it satisfies all hard constraints [6]. For example, the travel distance of 

lecturers and students between classrooms should be minimized. It is very difficult to get a solution to solve 

timetabling problem with all the constraints.  

Therefore, many researchers have come up with several techniques to solve hard constraints while 

minimize the soft constraints even it is difficult to find the best feasible timetable. It has been research few 

decades ago in various domains related to timetable including assignment and scheduling [7]-[16]. Varies 

optimization algorithms had been applied and enhanced to support the timetabling problems as such the 

combination of standard genetic algorithm and hill climbing algorithm that utilize a meme encoded score as a 

performance indicator to create new candidate solutions during the process of choosing operators [17], 

 In addition, local optimization with hill climbing algorithm [2], ant colony optimization  

strategy [18], Harmony search and a modified harmony search algorithm [19], Tabu Search [20], Hyper-

heuristics search the space of heuristics and use the limited problem specific information to control the search 

process can be seen as an adaptive version of iterated local search strategy combining some move operators. 

In short, this approach consists of number of move operators of different strengths and characteristics 

combined into an adaptive hyper-heuristic approach to produce better results [15]. However, clashes-free slot 

is still not address well when considering the numbers of lecturers and the number of classes, although, one 

of the solution for clashes-free slots have been addressed focusing on an examination timetable based on 

small data set and still need improvement in its solution [2], [21]. 

This paper addresses the Lecturers’ timetabling solution in Faculty of Computer and Mathematical 

Sciences, Universiti Teknologi MARA, Malaysia as a case study. The interest is on the LTP students and 

lecturers to fixed timeslots within numbers of constraints. Assigning times and places to lecturers are 

considered hard problems faced in every university. There are two types of constraints, which are the hard 

constraint and soft constraint. Hard constraint cannot be violated such as all lecturers must be scheduled and 

assigned to a distinct room at specified periods. A practical timetable must satisfy hard constraints as it is 

strictly imposed. While soft constraints are desirable, but they are not essential. They can be violated,  

but they must be minimized.  The remainder of this article is organized as follows. Section 2 explains the 

LTP and its fitness. The GA is discussed in Section 3. Section 4 presents computational results for the 

tournament (T) and tournament elitism (TE) selection.  Section 5 discussion of the findings and Section 6 

concludes this paper. 

 

 

2. LECTURER TIMETABLING PROBLEM 

Lecturer Timetabling Problem (LTP) emphasizes on the assignment of each of lecturers to each of 

the classes. Lectures of different capacity load for lecturing must accommodate the class requirement for 

every week.  The slot for each lecturer must be determined and satisfied the allocation of time-slot. The 

following mathematical formulation considers this requirement as an objective function. The LTP can be 

linearly defined as follows. The LTP consists of a set of lectures, l, a set of subjects, a set of t time slot, a set 

of r classrooms, and a set of g student groups. The mathematical model formulation is presented in following 

section. It was adapted from [22]. The notations and parameters used in the model are as follows: 

Let: 

  l  = {l1, l2, l3, l4,….li} is a set of  lecturers, 

  s = {s1, s2, s3, s4, …sj} is a set of subjects,  

  t  = {t1, t2 , t3, t4, …tk} is a set of time slots 

  c  = {c1,c2 ,c3, c4, …cn} is a set of classrooms, 
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  g  = {g1  ,g2 , g3, g4, …gp}   is a set of student groups. 

  Cr = {cr1, cr2, cr3,crs4, …crj}  the credit hour for each lecturer 

  P  = {P1, P2, P3, …Pq} is a set of generated timetables 

The objective is to minimize the overall summation of all penalties from the generated timetable. 

Higher penalties will be given for hard constraints violation while lower penalties will be given for soft 

constraints violation. The penalties will be summed up. The calculation of fitness is shown in Equation. (1) 

The model is as follows: 

 

Minimize Z =  
 

∑      
 
 

        (1) 

 

Subject to: 

 

                                      (2) 

 

                               (3) 

 

     <                    (4) 

 

                                      (5) 

 

 

A constraint in Equation. (2) ensures that lecturer cannot teach more than one course at the same 

time. Equation (3) ensures that no room can occupy more than one lecture at the same time. Constraint in 

Equation (4) considers no student can attend more than one lecture at the same time. Constraints in Equation 

(5) and Equation (6) ensure the capacity of classrooms should match with student size and lecturer cannot 

teach less than given credit hour, respectively. Table 1 shows the violation and its penalties. 

 

 

Table 1. Violation and its Penalty Value 
No Violation Penalty Value  

1. Lecturer cannot teach more than one course at the same time  50 

2. No room can occupy more than one lecture at the same time   50 

3. No student can attend more than one lecture at the same time  50 

4. The capacity of classrooms should match with student size.  20 

5. Lecturer cannot teach less than given credit hour  20                                

 

 

3. CONSTRUCTION OF GENETIC ALGORITHM  

3.1.  Solution Mapping 

The development GA requires a representation of the problem. We represent using a discrete value 

and it addresses the time slot, room and subject. Figure 1 is the chromosome representation for GA. The 

range is based on the datasets obtained for FSKM. The range of range of 1-18 for time slots, 1-43 for the 

number rooms and 1-34 for the number subjects are considered. 

 

 

 
t1 c2 c3 t2 c2 s2 ...... tn cn sn 

                            
                        class 1                  class 2                                  class n 

 

 

 

Figure 1. Solution Mapping for the LTP 

 

 

Where,  

tn = represent the number of timeslots 

cn = represent the number of rooms 

sn = representation the number subjects 

[1-18]   [1-43]   [1-34]      [1-18]   [1-43]   [1-34]      [1-18]   [1-43]   [1-34]      
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Each of the subjects can have more than one class. Hence, the chromosome length would depend on 

the number of the classes. Sometimes class can accommodate for one group only and can be more depending 

on the number students. The length of chromosomes in the population will be as follows: 

Chromosome length = number of classes * 3 (genes) 

 

3.2.  GA Steps for the LTP Solution 

Basically, the genetic algorithm process for solving the LTP is as follows: 

Step 1: Represent the problem as strings of chromosomes of a fixed length, with a population size of N, as 

depicted in Figure 1. 

Population size is the number of individuals that represent the solution. If there are too many chromosomes, 

GA tends to slow down. However, GA has very few possibilities to perform crossover and can explore only a 

small part of the search space if there are too few chromosomes. 

Step 2: Define a fitness function to measure the fitness of each chromosome for selecting chromosomes as 

parents to mate during the reproduction process to produce new off springs. The fitness function stated in Eq. 

(1) and all constraints are considered. 

Step 3: Determine GA parameters (crossover probability, mutation probability and maximum number of 

generations) and set the initial best fitness equal to 1. 

Step 4: Randomly generate an initial population of size N: 

X1, X2, …, XN 

The implementation of the customized random function is as follows: 

1. The program will generate classes for every group and the subjects taken to get number of classes that 

need to be scheduled. 

2. The program will randomly generate timeslot, room, and lecturer for each of the classes 

3. The chromosome length depends on the number of the classes. The length of chromosomes in the 

population will be as follows: 

Chromosome length = number of classes * 3 (genes) 

Step 5: Calculate the fitness for each chromosome in the population using the formula in (2). 

Step 6: Start the first generation. 

Step 7: Compute fitness and do selection. 

Select parent from the current population for crossover using Tournament selection method 

The Tournament selection algorithm is as follows: 

 1. Randomly choose individuals from the whole population. 

 2. Compare fitness and choose the fittest individual to be the parent 

Step 8: Do crossover and mutation 

Create offspring chromosomes by applying crossover and mutation operators according to their 

probabilities and put the newly created offspring in the new population.  As for the crossover, uniform 

crossover scheme is used where individual bits in the chromosomes are compared between two parents. 

One of the parents is the parent chosen during the selection stage. The bits are swapped with a fixed 

probability, 0.5. Mutation is used to maintain genetic diversity and avoid local minima. The program will 

create random individual to swap genes with the individuals in the current population. 

Step 9: Evaluate current population (based on selected population from step 7). 

Step 10: Update generation. 

Step 11: If the number of generation has reached its termination criterions, go to Step 12.  

Step 12: The algorithm is finished. The best solution found when the fitness is recorded as the best fitness. 

 

 

4. COMPUTATIONAL RESULTS AND DISUSSION 

An in-depth analysis of the outputs produced by the GA is reported regarding its performance,  

on how different parameter tuning affect the efficiency of the GA in finding solutions for the LTP, and to test 

the robustness of each GA while satisfying all the constraints. A comparison of performance between simple 

GA with Tournament selection scheme combined with Elitism (TE) and a GA with Tournament (T) selection 

scheme is also performed 

 

4.1.  Parameter Setting 

The selection of parameter was handling using trial and error due to GA is a problem dependent 

based [24]. The analysis of overall GA performance was done using the parameter ranges set as in Table 2. 
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Table 2. Parameter Setting 
Parameter Value 

Number of Population 10, 20, 50, 100, 120, 180 
Crossover Rate 0.7, 0.8, 0.9, 0.95 

Mutation Rate 0.001, 0.002,0.005, 0.01 

Generation 20, 100 

 

 

4.2.  Computational Experiments According to Population Size 

The different number of population size of 20, 50, 120 and 180 are evaluated using the LTP datasets 

consist of a range of 1-18 for time slots, 1-43 for the number rooms and 1-34 for the number subjects.  

The constant value of crossover rate = 0.9, mutation rate= 0.001, maximum number of generation of 20, 

tournament size of 5 are used. Both TE and T are evaluated. The result was demonstrated in Table 3.  

The performance of GA based on population size with respect to the Tournament (T) and Tournament 

selection scheme combined with Elitism (TE). The optimal generation and optimal solution for each 

population size was finally obtained after executing many experiments using different parameters.  

The population size of 180 achieved fitness value of 1.0 at generation 17 while population size of 50 

achieved the highest fitness at generation 18 when employed TE selection. The population size of 50 

achieved fitness value of 1.0 at generation 17 when applying T selection.  

 

 

Table 3. Performance of TE and T using Different Population Size 
Population size TE T 

Generation No Fitness Value Generation No Fitness Value 

20 20 0.0477 20 0.0123 

50 18 1.0 17 1.0 

100 20 0.047 20 0.0476 
120 20 0.0244 20 0.0071 

180 17 1.0 20 0.0010 

 

 

4.3.  Computational Experiments according to Probability of Crossover 

This section reports the results for different value of crossover rates of 0.7, 0.8, 0.9 and 0.95 are 

tested. Other parameters are fixed; population size: 10, mutation rate: 0.00, maximum number of generations: 

30, tournament size: 5. The optimal generation and optimal solution for each crossover rates were done by 

running a few tests to get the best results. To summarize the above figures, a summarization of the optimal 

generation and optimal solution by each selection scheme is exhibited in Table 4. Crossover rate of 0.9 

achieved the highest fitness value, 1.0 at generation 6 when using TE. Meanwhile the crossover rate of 0.9 

achieved fitness value of 1.0 at generation 9 for T. 

 

 

Table 4. Best Results for TE and T using Different Crossover Rates 
Crossover 

rates 

TE T 

Generation No Fitness Value Generation No Fitness Value 

0.7 30 0.0010 30 0.0041 

0.8 30 0.0245 30 0.0099 

0.9 6 1.0 9 1.0 

0.95 30 0.00826 30 0.0164 

 

 

4.4.  Computational Experiments According to Probability of Mutation 

Table 5 demonstrates the results of mutation rates of 0.005, 0.002, 0.001 and 0. Table 4.11 shows 

the result of the experiment for TE based on different mutation rates. A mutation rate of 0.005 achieved 

fitness value of 1.0 at generation 10 while a mutation rate of 0.01 able to achieve the highest fitness at 

generation 30. Table 5 shows the result of the experiment for T based on different mutation rates. A mutation 

rate of 0.01 achieved fitness value of 1.0 at generation 33 while a mutation rate of 0.005 achieved the highest 

fitness at generation 49. Both T and TE indicate an optimal solution for mutation rates 0.005 and 0.01 at 

generation number of 10 and 30, respectively. 
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Table 5. Best Results for T and TE Selection using Different Mutation Rates 
Mutation 

rates 

TE T 

Generation No Fitness Value Generation No Fitness Value 

0.005 10 1.0 49 1.0 

 0.002 50 0.0062 50 0.0123 

0.001 50 0.0050 50 0.0071 
0.01 30 1.0 33 1.0 

 

 

4.5.  Computational Experiments based on Average using T and TE 

The use of GA with T and TE is further experimented for 50 experiments and average of fitness and 

penalty values were calculated and evaluated. The experiments were resulted from the application of 

mutation rate of 0.05, crossover rate 0.9 and elitist value of 1 and 2. Overall, table 6 shows that with more 

generation number in this case 100 generations, the average of both fitness and penalty value gives better 

results compared to only 20 generations.  

The population size of 40 obtained the lowest average for penalty value and the highest average for 

fitness value. However, from 50 experiments, there are fitness value = 1.0 obtained from several experiments 

for all the three population sizes. The maximum generation of 100, revealed more frequent in achieving 

fitness value =1.0. 

 

 

Table 6. Average of Computational Results based on 50 experiments 

 

 

The effect of different parameter tuning towards the performance of the GA in solving the 

Timetabling problem. In terms of minimization of sum of penalties to get the best fit for every solution, 

higher penalties will be given for hard constraint violation while lower penalties will be given for soft 

constraint violation for satisfying all the constraints. In terms of the best results produced by the GA,  

with respect to the parameter tuning and the selection schemes, findings showed that a GA with TE selection 

method achieved optimal generations faster than T selection method for the experiments based on population 

size, the probability of crossover and probability of mutation. However, for the experiment based on the 

number of generations, it achieved the best fitness at much later generation compared to the T selection 

method.  

The findings also showed that a higher probability of crossover is better at achieving the optimal 

solutions while lower probability of mutation is highly encouraged to get the best solutions. It is also shown 

that the number of the population should not be very small or very high to achieve the optimal solutions.  

The results indicate that the selection schemes did not seem to affect the number of generations it converges 

since both selections are the Tournament selection except that one of them is combined with elitist. However, 

the results produced are not always constant as it is random and the GA tends not to converge. In addition, 

the termination criteria for the TE and T implementation are fixed to stop once the GA process reached 

maximum generation or the best fitness value, 1.0. GA is demonstrated at high potential optimization 

algorithm to solve LTP in a small and large scale. 

 

 

5. CONCLUSIONS 
The analysis of both selection schemes, T and TE and parameters tuning in terms of minimizing the 

sum of penalties were performed to see the effects of each selection scheme and different parameter tuning 

towards minimizing the overall sum of penalties to get the best fit for every solution in solving the 

timetabling problem. The finding has demonstrated that both T and TE implementation can offer a best 

fitness value, but the parameter must be carefully selected. The trial and error of using parameters as such 

mutation rate, crossover rates, population size and maximum number of generations. In future, a big dataset 

should be considered to see the capability of the GA of handling more complex optimization solutions. 

 

Maximum 

Generation 

Elitism 

Value 

Population size 

30 40 50 

Average 
Fitness 

Value 

Average 
Penalty 

Value 

Average 
Fitness 

Value 

Average 
Penalty 

Value 

Average 
Fitness 

Value 

Average 
Penalty 

Value 

100 1.0 0.48 8.40 0.64 7.20 0.58 8.40 

20 1.0 0.42 20.40 0.27 17.04 0.40 16.86 

20 2.0 0.29 18.40 0.27 19.62 0.25 29.20 
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