
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 13, No. 1, January 2019, pp. 392~404

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v13.i1.pp392-404 392

Journal homepage: http://iaescore.com/journals/index.php/ijeecs

Performance evaluation of cloud service with hadoop for

twitter data

P Ganesh1, K Sailaja Kumar2, D Evangelin Geetha3, T V Suresh Kumar4
1Dept. of MCA, BMSIT&M, India

2,3,4Dept. of Computer Applications, MSRIT, India

Article Info ABSTRACT

Article history:

Received Jul 18, 2018

Revised Aug 21, 2018

Accepted Nov 18, 2018

 In the era of rapid growth of cloud computing, performance calculation of

cloud service is an essential criterion to assure quality of service. Nevertheless,

it is a perplexing task to effectively analyze the performance of cloud service

due to the complexity of cloud resources and the diversity of Big Data

applications. Hence, we propose to examine the performance of Big Data

applications with Hadoop and thus to figure out the performance in cloud

cluster. Hadoop is built based on MapReduce, one of the widely used

programming models in Big Data. In this paper, the performance analysis of

Hadoop MapReduce WordCount application for Twitter data is presented.

A 4-node in-house Hadoop cluster was setup and experiment was carried out

for analyzing the performance. Through this work, it was concluded that

Hadoop is efficient for BigData applications with 3 or more nodes with

replication factor 3. Also, it was observed that system time was relatively more

compared to user time for BigData applications beyond 80GB. This

experiment had also thrown certain pattern on actual data blocks used to

process the WordCount application.

Keywords:

Big Data

Cloud computing

Hadoop

MapReduce

Performance analysis

Copyright © 2019 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

P Ganesh,

Dept. of MCA,

BMSIT&M, India.

Email: pganesh@bmsit.in

1. INTRODUCTION

Today, all of us experience every one talking about cloud computing [1] and its associated services.

Due to its flexibility in hosting services and high availability, cloud computing is in demand everywhere.

The data intensive society is extensively relying on cloud for plethora of services that are supported by it [2].

In addition, extensive availability of internet services is a booster for cloud service demand. In every walk of

life, today, enormous amounts of data are being generated (Weather forecasting, Transport, Super markets,

Communication, Engineering Applications, Scientific Experiments, Online sales, Social networking etc.).

Cloud network is used to store, process and retrieve this large data through high performance parallel storage

systems. Cloud computing has had advanced as an effective model to process Big Data applications [3].

Hadoop [4] has been developed to process Big Data in cloud landscape. Hadoop is open source structure

containing MapReduce [5], HDFS and HBase. MapReduce is the core component of Hadoop which process

large amounts of datasets in parallel by distributing the work into a set of autonomous tasks. Hadoop

Distributed File System (HDFS), is a highly reliable storage. Hadoop can be used to process large data, which

uses parallel computing method to accelerate the speed of data processing and protect the data storage through

maintaining multiple copies of the data [6]. At the same time, with the increase of user network, HDFS,

Hadoop’s flagship filesystem, can be horizontally scalable. Also, it is designed to be deployed on low-cost

hardware. HDFS is capable of supporting high throughput, fault-tolerant, streaming data of very large files [7].

Name node and Data node combination in Hadoop, is designed to deal effectively with the large volumes of

http://data-flair.training/blogs/hadoop-tutorial-for-beginners/

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Performance evaluation of cloud service with hadoop for twitter data (P Ganesh)

393

data processing. Files in HDFS are divided into various number of blocks of data, with minimum size being

64 MB [8]. In our experiment, each block size was 128 MB. It is imperative to say that better the size of each

block better will be the performance. The experiment with 4-node Hadoop cluster was setup to process Twitter

data. R is widely used open environment for handling large-size data like Twitter. To extract required and

sufficient large dataset from Twitter, R streaming API was used. Using Python, the extracted Twitter data was

made into various chunks. The experiment was conducted and analyzed for Twitter data ranging from 10 GB

to 100 GB, in multiples of 10 GB. Time command under Linux platform, provides three details of process

execution namely real time, user time and system time. User time specifies the amount of time spent within the

process or application in user mode. System time denotes the time spent in kernel within the process or

application. Real time is the actual time spent by the process to complete its execution. In general, real time

includes user time, system time, waiting time, if any and time spent for other associated activities. As real time

depends on various activities of a process execution, user and system times only were considered in the

analysis, as is obvious. The rest of the paper is organized as follows. In section II related research contributions

are highlighted. In section III, the notion of Big Data is discussed while in section IV, the evolution of data at

its current form with regard to its size is discussed. Section V discusses the need for Hadoop system in solving

Big Data instances. Hadoop experimental environment is elaborated in section VI with its results and associated

discussions are being explained in section VII.

2. RELATED WORK

MapReduce has been considered as a better and simplified approach for parallel and distributed

processing of large data sets. Hadoop is one of the extensively used open source MapReduce implementation.

Several authors have published material on Hadoop and its performance. In [9], author describes running

Hadoop on Amazon. E.Vianna et al in [10] assesses Hadoop execution time through virtual machines. In [11],

Gohil et al presents Hadoop performance through WordCount, TeraSort and other applications of MapReduce

using Amazon EC2 instances and their analysis was carried out through an in-house Hadoop cluster setup. The

authors concentration was mainly to reduce the network I/O latency and have a dedicated cluster. Mukhtaj

Khan et al though [12] estimates the job completion time and resource provisioning. The work of Vladyslav

Taran et al in [13] estimates the performance of distributed computing on the basis of Hadoop and Spark

frameworks. In [14], Wenhui Lin et al, proposes a node performance measurement for Hadoop. Ankita Jain et

al [15] presents an approach to improve Hadoop performance by proper tuning of MapReduce configuration

parameters. The need for more analysis of high performance of big data applications was reiterated by Satish

Londhe et al in [16]. Sachin Arun Thanekar et al [17] highlights the advantages of Hadoop in processing the

high volimes of data through comparison of Hadoop and RDBMS. In [18], Archana R. A. et al proposes a data

security system for big data applications through masking technique. All their publications were focused

around different aspects of analyzing Hadoop performance. Current work of ours supplements performance

analysis for Hadoop.

3. BIG DATA

Data are everywhere and we live in the Data age [19]. The journey of data explosion has just begun

in the recent past. As per the survey the size of the digital universe will be 44 zettabytes by 2020. This flood

of data is coming from many sources like stock markets, air travel, social media, sales, healthcare, governance

among others. Also, data can be structured, unstructured, roughly correlated, discrete or disjoint. It is not ending

here. The data tends to expand rapidly in future. But how this data is being put into use, is the challenge, as

Big Data has become a household term today. The analysis of Big Data leads to interesting benefits,

conclusions, inventions, relationships, business opportunities among others [20]. As the data gets piled,

managing and analyzing it in the optimal manner become more critical to leverage its benefits. Due to the

various hidden advantages of Big Data, analytics is being referred everywhere and obviously embedded into

our daily lives. The significance, prominence and effect of analytics are now higher than ever before and as

more and more data are being collected and that there is considerable value in knowing what is hidden in data,

analytics will continue to develop. Cloud plays a key role in the Big Data world, by providing horizontally

expandable and optimized infrastructure that supports practical implementation of Big Data. Figure 1 shows

the Big Data analytics process model. Initially, a detailed description of the problem-in-hand to be solved with

analytics is desired. Next, all source data need to be identified that could be of potential interest. All the relevant

data is later gathered. This is followed by a data cleaning step to get rid of all inconsistencies, such as missing

values, duplicate data etc. During analytics phase, an analytical model is estimated on the pre-processed and

transformed data. Finally, once the model is built, it can be interpreted and evaluated for usage.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 13, No. 1, January 2019 : 392 – 404

394

Figure 1. Big Data Analytics Process Model

4. DATA SIZE

Data in order to qualify to become Big Data needs to satisfy three characteristics as per Gartner [21].

They include Volume, Velocity and Variety. Volume specifies the amount of data being generated. In general,

Big Data is associated with this aspect majorly. Velocity refers to the frequency with which the data is

generated or used. Variety identifies the diverse collection of data, not specified to a specific format or type.

Also Big Data size ranges from several GB to several billions of GB. Hadoop, as designed, effectively deals

with huge volumes of Hadoop, one need to specify the given task as MapReduce job. As such, in the data

ranging from hundreds of GB to millions of GB. To take advantage of parallel processing which is facilitated

by experiment, about 158.8 GB of Twitter dataset comprising variety of tweets, over a given time period, was

extracted. The same dataset was processed using WordCount, a MapReduce application. Figure 2 highlights

on how the data size growth is influenced by various activities.

Figure 2. Big Data growth prediction

Data Source –
Operational Data

Dumps

Data Mining –
Relevant Data

Selection

Data
Preprocessing –
Data Cleaning

Data
Transformation

Interpretation
Evaluation
Application

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Performance evaluation of cloud service with hadoop for twitter data (P Ganesh)

395

5. HADOOP (HDFS)

When non-uniform data develops to large dimensions, a distributed approach to analyze such data

needs to be considered [22]. MapReduce has emerged as the optimal model of choice for handling “Big Data”

problems. MapReduce frameworks such as Hadoop offer both storage and processing capabilities for all sorts

of data. MapReduce begins with the notion of splitting an input dataset over a set of dedicated machines, called

workers, and processes these data splits in parallel with user-defined map and reduce functions. MapReduce

abstracts away from the users the details of data distribution, parallelization, scheduling and fault tolerance.

Various phases of MapReduce job execution are Input splits, Mapper, Combiner, Partitioner, Shuffling,

Sorting, Reducer. Figure 3 shows the Hadoop (MapReduce) job execution flow of map and reduce tasks.

Figure 3. Hadoop (MapReduce) Job execution flow

Apache Hadoop is the leading open source MapReduce implementation to solve Big Data problems.

Hadoop is built around two central components, namely, HDFS and the Hadoop MapReduce Framework. They

perform data management and job execution responsibilities respectively. HDFS is designed with a goal to

provide a quick and automatic fault-recovery. The strategy of HDFS architecture is to store and retrieve a huge

amount of data. HDFS always wants to work with huge data sets. A MapReduce-based application seamlessly

suits in this model. An HDFS cluster has two types of nodes operating in a master-worker pattern, namely,

namenode (master) and a number of datanodes (workers). Tasks of namenode include managing file system

namespace, regulating client’s access to files, ensuring data nodes are alive and maintaining replicas as per

replication factor. Tasks of datanode involve creation and deletion of blocks as per replication factor, managing

data storage, communicating to namenode on the health of HDFS through heartbeats.

HDFS architecture is portrayed in figure.4. A Hadoop JobTracker, available on the master node is

accountable for resolving job details such as mappers/reducers, monitoring the job progress and worker

status [23]. When a dataset is placed into the HDFS, it is split into a number of data chunks and distributed

throughout the cluster. Each worker, hosting a data split, runs a process called datanode. A TaskTracker is

responsible for processing the data splits of the local datanode. A client accesses the filesystem by

communicating with the namenode and datanodes. HDFS stores files as blocks and distributes them across the

entire cluster. Files in HDFS are divided into various number of blocks of data, with minimum size being 64

MB. The block size can be any other (better) value than 64MB. Better the size of each block better will be the

performance. To ensure high availability and fault-tolerance, blocks are replicated sufficiently numerous times.

As a default, replication factor for a block is set to 3. It is witnessed that changing the block size and replication

factor, affects the Hadoop performance [24]. However, as a rule of thumb, the replication factor should not be

more than the number of nodes in the cluster. HDFS is designed with the property to be portable from one

platform to other. This facilitates widespread acceptance of HDFS. Hadoop offers performance enrichments

consenting for high throughput. Hadoop processes larger data sets at affordable costs, provides hardware fault-

tolerance, ensures high availability of services among others.

http://data-flair.training/blogs/hadoop-mapreduce-introduction-tutorial-comprehensive-guide/

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 13, No. 1, January 2019 : 392 – 404

396

Figure 4. HDFS Architecture

6. EXPERIMENTAL ENVIRONMENT

The Hadoop cluster environment was set up and used for analysis as detailed:

6.1. Cluster setup

An in-house Hadoop cluster with four nodes (1 master and 3 slaves) using Intel Core i5 machines was

setup as depicted in figure.5. The specifications and configurations of the cluster are listed in Table1. All the

four nodes were with similar specifications and configurations. The stages involved during cluster installation

and configuration are presented below. The master node was also considered as namenode and the remaining

3 nodes as datanodes. The namenode was also used as a datanode. The data block size of the HDFS, was 128

MB. Replication factor for data blocks was set accordingly during the course of experiment. It was set as 1 for

1node, 2 for 2nodes, 3 for 3 nodes and 3 for 4nodes. The WordCount application was analysed with Twitter

datasets for the datasets ranging from 10GB to 100GB.

Table 1. Experimental setup of Hadoop Cluster
Intel Core i5 Nodes CPU 4 Cores

Processor 3.30 GHz

Hard Disk 500 GB

Connectivity Gigabit Ethernet LAN

Memory 8 GB

Software Operating System Ubuntu 16.04 LTS

JDK 1.8.0_171

Hadoop 2.7.6

Step1: Each node was installed with Ubuntu 16.04

Step2: JDK 1.8.0_171 was installed on each node

Step3: Hadoop-2.7.6 was installed on all nodes

Step4: Nodes were classified as Master and Slaves and configured accordingly

Step5: Configure ssh and establish the connection among all 4 nodes

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Performance evaluation of cloud service with hadoop for twitter data (P Ganesh)

397

Figure 5. Hadoop cluster with 4 nodes (1Master and 3 Slaves)

6.2. Data gathering

Members of Twitter keep generating millions of tweets every second on average. These tweets are

from different geography, pertain to various contexts, refer variety of categories. Big Data actually refers to

data that are larger in size, have variety of details and generated frequently. Twitter data fulfils all these

characteristics. Hence, Twitter dataset up to 158.8 GB, was extracted in one stretch during the period from 17th

January 2017 to 11th February 2017 as shown in the figure.6. The tweets extracted in this manner was used in

the experiment for analysis of Hadoop’s performance. The process used to extract Twitter data was as below:

Step1: Twitter account created with valid credentials

Step2: R packages from Rstudio were installed

Step3: An R application to extract tweets was created

Step4: Post successful authentication, tweets were extracted over the continuous period of 26 days

Step5: The extracted tweets were stored into .csv file

Figure 6. Twitter tweets extraction

6.3. Data pre-processing

Dataset compiled from the Twitter was a combination of text, images, audio files, video files. Using

Python script, individual data chunks containing text data ranging from10 GB till 100 GB were created.

Figure.7 contains the Python script for chunks creation. The main reason behind creating chunks from 10 GB

to 100 GB was to compare the performance of Hadoop with less data size and Big Data size. In addition, these

range of chunks help us to analyze the performance with a certain scale of uniform data size.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 13, No. 1, January 2019 : 392 – 404

398

Figure 7. Python script for Twitter data chunks creation

6.4. Performance analysis using MapReduce

The experiment was conducted using 1node, 2nodes, 3nodes and 4nodes. MapReduce framework of

Hadoop was used with a simple, single and standalone WordCount application. While running this application

no other application was running to ensure proper execution of the WordCount program with less latency.

WordCount application is meant for counting the number of similar words and their occurrence in the given

input file. The output of the WordCount is a file with relevant data for analysis. The current experiment was

conducted to gather the performance statistics of the WordCount application execution for various data sizes.

By combining time command with WodCount program, various time stamps of the data processing were

gathered. The response time for loading and execution of each dataset was noted and tabulated. A sample

workflow [25] of WordCount application is shown in Figure 8.

Figure 8. WordCount application workflow using MapReduce

7. RESULTS AND DISCUSSION

As an initial step to start the Hadoop cluster, name nodes were formatted. HDFS and YARN services

were initiated and confirmed for their availability. The required datasets were loaded into HDFS. The

WordCount application was run considering 1node, 2nodes, 3nodes and 4nodes repeatedly, for all the proposed

datasets, as mentioned above. Throughout this experiment the replication factor (RF) was kept changing as per

the rule of thumb and HDFS default replication notion. It was set as 1 for 1node, set as 2 for 2 nodes and set

as 3 for both 3 nodes and 4 nodes. Table 2 and Table 3 provides the details of time stamps under varying

replication factors along with varying datasets considering different node specifications. For every dataset,

under each node trial, the user time, system time, real time and response time of the WordCount application

were obtained using time command. The user, system and response time of various input datasets under 1node

and 2nodes are detailed inTable 2. The user, system and response time of various input datasets under 3nodes

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Performance evaluation of cloud service with hadoop for twitter data (P Ganesh)

399

and 4nodes are detailed in Table 3. Table 2 contains the total user, system and response time spent for both

loading and executing the various datasets, with 1node and 2nodes. Table3 contains the total user, system and

response time spent for both loading and executing the various datasets, with 3nodes and 4nodes.

Table 2. Response times-1node and 2nodes
Time in Sec - With Loading and Execution – 1node and 2nodes

Size RF Nodes User Time-sec System Time-sec Total Response Time-sec

10 GB
1 1node 493.260 67.372 560.632

2 2nodes 496.488 70.824 567.312

20 GB
1 1node 1049.136 158.388 1207.524

2 2nodes 1018.488 157.300 1175.788

30 GB
1 1node 1565.604 241.816 1807.420

2 2nodes 1568.484 250.312 1818.796

40 GB
1 1node 2146.484 347.296 2493.780

2 2nodes 2132.420 352.872 2485.292

50 GB
1 1node 2688.968 438.920 3127.888

2 2nodes 2668.156 453.100 3121.256

60 GB
1 1node 3229.856 537.168 3767.024

2 2nodes 3280.384 578.888 3859.272

70 GB
1 1node 3766.040 648.496 4414.536

2 2nodes 3745.776 683.488 4429.264

80 GB
1 1node 4357.408 751.204 5108.612

2 2nodes 4358.792 765.552 5124.344

90 GB
1 1node 4890.358 851.204 5741.562

2 2nodes 4888.920 899.108 5788.028

100 GB
1 1node 5421.676 976.860 6398.536

2 2nodes 5443.860 981.788 6425.648

Table 3. Response times-3nodes and 4nodes
Time in Sec - With Loading and Execution – 3nodes and 4nodes

Size RF Nodes User Time-sec System Time-sec Total Response Time-sec

10 GB
3 3nodes 503.752 69.744 573.496

3 4nodes 489.880 68.216 558.096

20 GB
3 3nodes 1040.032 163.556 1203.588

3 4nodes 1017.012 155.700 1172.712

30 GB
3 3nodes 1574.636 249.504 1824.140

3 4nodes 1569.600 243.852 1813.452

40 GB
3 3nodes 2116.860 356.568 2473.428

3 4nodes 2111.840 349.744 2461.584

50 GB
3 3nodes 2689.428 455.608 3145.036

3 4nodes 2658.112 453.988 3112.100

60 GB
3 3nodes 3248.084 559.948 3808.032

3 4nodes 3236.100 562.072 3798.172

70 GB
3 3nodes 3776.560 675.068 4451.628

3 4nodes 3759.456 661.392 4420.848

80 GB
3 3nodes 4378.448 773.124 5151.572

3 4nodes 4327.928 774.920 5102.848

90 GB
3 3nodes 4941.120 902.652 5843.772

3 4nodes 4923.052 872.664 5795.716

100 GB
3 3nodes 5517.660 999.208 6516.868

3 4nodes 5477.084 1009.264 6486.348

7.1. Number of nodes

From the timestamp details gathered in Table 2, it is prudent that the total response time with 1node

are less compared to total response time with 2nodes for most of the data sizes. This is obvious due to the fact

that multiple read/write operations under 1node are quite less compared to the read/write operations under

2nodes. It can be recalled that Hadoop is designed to work efficiently for parallel and distributed processing.

At the same time, as seen in Table 3, the total response time obtained with 3nodes is more than the total

response time obtained with 4nodes. As per Hadoop architecture and design principle, Big Data problems are

solved better with 3nodes and above. Thus, it is witnessed that the total response time is better and consistent

with 3nodes and 4nodes, as is expected. This difference in response time between 3nodes and 4nodes is quite

evident, practical and reasonable. Hence more the number of nodes, better performance from Hadoop can be

expected. A snapshot of datanodes and their usage to process 50 GB data with 4nodes is shown in figure.9.

Henceforth, the discussion and analysis of performance in the remaining part of the paper will be based on

3nodes and 4nodes.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 13, No. 1, January 2019 : 392 – 404

400

Figure 9. Hadoop datanode usage with 4nodes to process 50GB data

7.2. Data Size

From Table 3, it is evident that the total response time for processing the data is less with 4nodes

compared to processing of the data with 3nodes. This result is expected in Hadoop as it is designed to distribute

the task and process the data in an efficient manner. Also, beyond 70 GB, it may be observed that the difference

in total response time between 3nodes and 4nodes is significant and obvious. This is where it can be concluded

that our Hadoop model is efficient in processing large data size applications. Thus a conclusion can be drawn

that larger the data size better will be the Hadoop’s performance and Hadoop is best suited for processing Big

Data. The total response time, depicted in Figure 10, corresponds to the above discussion. Here the total

response time with 4nodes, as shown with red line, is significantly less than the total response time with 3nodes,

as shown in green line, for the Big Data sets.

Figure 10. Graph for total response time – 1node, 2nodes, 3nodes and 4nodes

7.3. Replication Factor

Replication factor ensures fault-tolerance, in case of data damage while processing. This value enables

HDFS to keep corresponding number of replicas of input data in the available data nodes. In Hadoop literature

it is recommended to have replication factor of 3 for all Big Data applications in order to guarantee better

performance. However, the rule of thumb points to have replication factor not more than the number of nodes.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Performance evaluation of cloud service with hadoop for twitter data (P Ganesh)

401

From the Table 2, where the replication factor is less than 3, for 1node and 2nodes, it is evident that the

performance is not satisfactory and the result is as expected. At the same time, as seen in Table 3, the

replication factor 3 for 3nodes and 4nodes, provides expected performance for Big Data applications. The

screen shots for replication factor 2 with 90GB dataset and replication factor 3 with 50GB dataset are shown

in Figure 11 and Figure 12, respectively. It is concluded that maintaining the default replication factor 3, is

always recommended.

Figure 11. Replication factor 2 with 2nodes for 90GB dataset

Figure 12. Replication factor 3 with 4nodes for 50GB dataset

7.4. Data Blocks

Each HDFS data block was set at 128MB throughout the experiment. Replication factors were suitably

changed for 1node, 2nodes, 3nodes and 4nodes as already discussed. As per the value of replication, the input

dataset was loaded by HDFS into corresponding datanodes. For example, 50GB data requires 420 data blocks

to store. With replication factor 3, approximately we need 1260 number of total data blocks to store 50GB. In

reality, to store 50GB dataset, 1200 data blocks were used while 1905 number of blocks were used to process

WordCount of this dataset. Like manner, at the end of each dataset processing, the number of blocks utilized

to process the WordCount application with varying replication factors was gathered as shown in Table 4. Some

interesting details were found from this table. As a sample, the number of data blocks used for loading 50GB

dataset with 4 nodes is presented in Figure 13. Corresponding to it, the actual number of data blocks used for

processing are shown in Figure 14. Initially, from the Table 4, no pattern was observed in the distribution of

used data blocks in processing the datasets from 10GB to 30GB. Between 40GB to 60GB, certain pattern in

the distribution of used data blocks was witnessed across various nodes. Beyond 70GB, it can be clearly pointed

out that the distribution of data blocks was based on a constant factor across the nodes. This constant factor

was 1.58 with 1node, 3.16 with 2nodes, 4.74 with 3nodes and 4.74 again with 4nodes. It is observed that the

value of this constant factor distribution is 50% over and above the value of replication factor. This pattern of

data block distribution over and above the replication factor can be attributed to the Hadoop’s design principle

of ensuring high availability and fault-tolerance. Thus it strongly asserts the finding that beyond 70GB input,

our model is quite reliable and predictable for its performance in all respects (with replication factor 3 and

number of nodes are at least 3).

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 13, No. 1, January 2019 : 392 – 404

402

Figure 13. Data blocks to load 50GB dataset with 4nodes-1200 blocks

Figure 14. Data blocks to process 50GB dataset with 4nodes –1905 blocks

Table 4. Data blocks utilized for various datasets with varying replication factor

RF
No. of

Nodes
Size

Input

File Data

Blocks

No. of

Blocks

Used

Factor

Response

Time per

block in sec

Size

Input File

Data

Blocks

No. of

Blocks

Used

Factor

Response

Time per

block in sec

1 1

10

GB

80 130 1.63 4.31

60

GB

480 760 1.58 4.96

2 2 80 260 3.25 2.18 480 1520 3.17 2.54

3 3 80 390 4.88 1.47 480 2280 4.75 1.67

3 4 80 240 3.00 2.33 480 2280 4.75 1.67

1 1

20

GB

160 257 1.61 4.70

70

GB

560 884 1.58 4.99

2 2 160 514 3.21 2.29 560 1768 3.16 2.51

3 3 160 771 4.82 1.56 560 2652 4.74 1.68

3 4 160 480 3.00 2.44 560 2652 4.74 1.67

1 1

30

GB

240 383 1.60 4.72

80

GB

640 1011 1.58 5.05

2 2 240 766 3.19 2.37 640 2020 3.16 2.54

3 3 240 1149 4.79 1.59 640 3030 4.74 1.70

3 4 240 1149 4.79 1.58 640 3030 4.74 1.68

1 1

40

GB

320 495 1.55 5.04

90

GB

720 1141 1.58 5.03

2 2 320 990 3.09 2.51 720 2274 3.16 2.55

3 3 320 1485 4.64 1.67 720 3411 4.74 1.71

3 4 320 1485 4.64 1.66 720 3411 4.74 1.70

1 1

50

GB

400 635 1.59 4.93

100

GB

800 1264 1.58 5.06

2 2 400 1270 3.18 2.46 800 2528 3.16 2.54

3 3 400 1905 4.76 1.65 800 3792 4.74 1.72

3 4 400 1905 4.76 1.63 800 3792 4.74 1.71

7.5. System Time, User Time and Total Response Time

Through this experiment, it was tried to analyze the relation between user time, system time and total

response time across various nodes with varying datasets. It was observed that during the processing of datasets

from 10GB to 50GB, the user time was 6 times more than the system time, on an average. From 60GB onwards,

user time to system time ratio was 5.5, on an average. As such, a phenomenon can be observed between user

time and system time. As the data size grows, the ratio between user time and system time decreases. In other

words, when the data size grows, relatively more system time is consumed compared to user time. This

phenomenon is observed across all data sizes and across different nodes. Also it was observed that 76MB of

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Performance evaluation of cloud service with hadoop for twitter data (P Ganesh)

403

data was processed, on an average, in one second of total response time with 3nodes and 4nodes. In Figures 15

and 16, this phenomenon is portrayed for 60GB and 100GB respectively. Initially, up to 50 GB, the user time

increased proportionately while system time decreased. Beyond 60 GB, more precisely from 80 GB, it can be

observed that the user time decreased while system time increased proportionately. It is assumed that this

scenario might be due to the fact that Big Data application processing for greater input data sizes require more

system time than user time. From the Table 4, it can also be observed that the total response time per data block

of processing is substantially less with 3nodes and 4nodes in comparison to 1node and 2nodes. Also negligible

difference in total response time to process each data block is observed between 3nodes and 4nodes, though

the time per block is less with 4nodes. This again re-affirms that Hadoop is quite efficient for Big Data

applications beyond 3nodes.

Figure 15. User vs System Time – 1node, 2nodes, 3nodes, 4 nodes – 60GB

Figure 16. User vs System Time – 1node, 2nodes, 3nodes, 4 nodes – 100GB

8. CONCLUSION

Hadoop is one of the best open source MapReduce implementation to solve Big Data applications.

This got confirmed through the performance analysis of an in-house 4-node cluster. Through the experiment

total response time with 1node, 2nodes, 3nodes and 4nodes were observed independently for Twitter data sizes

from 10GB to 100GB. It is witnessed that Hadoop is quite efficient for data sizes above 70GB. Also the

replication factor plays an important role in the Hadoop performance. With replication factor 3, better

performance was observed compared to replication factor 1 or 2. Another phenomenon with regard to user time

and system time was observed where relatively more system time was consumed compared to user time while

processing Big Data size applications. Though the number of data blocks used to store the input was as per the

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 13, No. 1, January 2019 : 392 – 404

404

value of replication factor, actual number of data blocks utilized to complete the processing was found to be

50% more than the required blocks. It was observed that the response time to process each block was

significantly less with 3 or more nodes. Hence through this model it can be concluded that more the number of

nodes performance was better with larger data size applications. As an extension work, we wish to analyze the

performance with Spark environment and compare the results under common environment.

REFERENCES
[1] Armbrust M, Fox A, Griffith R, et al. “A view of cloud computing”. Communications of the ACM. 2010; 53(4) : 50-

58.

[2] Joseph A. Issa. “Performance Evaluation and Estimation Model Using Regression Method for Hadoop Word Count”.

IEEE Access. 2015; vol. 3: pp.2784-2793. DOI: 10.1109/ACCESS.2015.2509598

[3] Chao Shen et al. “Performance modeling of Big Data applications in the cloud centers”. Springer Journal of Super

Computing. 2017. DOI 10.1007/s11227-017-2005-y

[4] “Apache Hadoop.” [Online]. http://hadoop.apache.org/ (Accessed during June 2018)

[5] J. Dean and S. Ghemawat. “MapReduce: simplified data processing on large clusters”. Communication, ACM. 2008;

51(1) : 107–113.

[6] Tom White. Hadoop Definitive Guide. O’Reilly. 2012:pp74-97.

[7] Shvachko K, Hairong Kuang, Radia S, Chansler R. “The Hadoop Distributed File System”. In Proc. of the Mass

Storage Systems and Technologies (MSST). IEEE 26th Symposium. 2010; pp.1 – 10.

[8] T Lakshmi Siva Rama Krishna, Dr T Ragunathan, Sudheer Kumar Battula. “Performance Evaluation of Read and

Write Operations in Hadoop Distributed File System”. IEEE Sixth International Symposium on Parallel Architectures,

Algorithms and Programming. 2014. DOI 10.1109/PAAP.2014.49

[9] T. White. Running Hadoop MapReduce on Amazon EC2 and Amazon S3. 2007. [Online].

http://developer.amazonwebservices.com/connect/entry.jspa?externalID=873&categoryID=112 (Accessed during

June 2018)

[10] E. Vianna et al.”Modeling the performance of the Hadoop online prototype''. Proc. 23rd Int. Symp. Comput. Archit.

High Perform. Comput. (SBACPAD). 2011; pp.152-159. DOI: 10.1109/SBAC-PAD.2011.24

[11] P. Gohil, D. Garg, and B. Panchal. “A performance analysis of MapReduce applications on Big Data in cloud based

Hadoop''. Proc. Int. Conf. Inf. Commun. Embedded Syst. (ICICES). 2014; pp. 1-6.

[12] Mukhtaj Khan, Yong Jin, Maozhen Li, Yang Xiang and Changjun Jiang. “Hadoop Performance Modeling for Job

Estimation and Resource Provisioning”. IEEE Transactions on Parallel and Distributed Systems. 2015. DOI

10.1109/TPDS.2015.2405552

[13] Vladyslav Taran, Oleg Alienin, Sergii Stirenko, and Yuri Gordienko. “Performance Evaluation of Distributed

Computing Environments with Hadoop and Spark Frameworks”. IEEE International Young Scientists Forum on

Applied Physics and Engineering. 2017; pp 80-83.

[14] Wenhui Lin and Jun Liu. “Performance Analysis of MapReduce Program in Heterogeneous Cloud Computing”.

Journal of Networks. 2013; 8 (8):1734-1741. DOI:10.4304/jnw.8.8

[15] Ankita Jain, Monika Choudhary. “Analyzing and Optimizing Hadoop Performance”. IEEE International Conference

On Big Data Analytics and computational Intelligence (ICBDACI). 2017

[16] Satish Londhe, Smita Mahajan. “Effective and Efficient Way of Reduce Dependency on Dataset with the Help of

Mapreduce on Big Data”. TELKOMNIKA Indonesian Journal of Electrical Engineering. 2015; 15 (1):171–176. DOI:

10.11591/telkomnika.v15i1.8080

[17] Sachin Arun Thanekar, K. Subrahmanyam, A.B. Bagwan. “A Study on MapReduce: Challenges and Trends”.

Indonesian Journal of Electrical Engineering and Computer Science. 2016; 4(1):176-183. DOI:

10.11591/ijeecs.v4.i1.pp176-183

[18] Archana RA, Ravindra S Hegadi, Manjunath TN. “A Big Data Security using Data Masking Methods”. Indonesian

Journal of Electrical Engineering and Computer Science. 2017; 7(2):449-456. DOI: 10.11591/ijeecs.v7.i2.pp449-456

[19] Bart Baesens. “Analytics in a Big Data World: The Essential Guide to Data Science and Its Applications”. Wiley.

2004

[20] Ambiga Dhiraj, Michael Minelli and Michele Chambers. “Big Data, Big Analytics: Emerging Business Intelligence

and Analytic Trends for Today’s Businesses”. Wiley CIO Series. 2013

[21] http://www.gartner.com (Accessed on 18th June 2018)

[22] E. Dede, B. Sendir, P. Kuzlu, J. Weachock, M. Govindaraju, and L. Ramakrishnan. “Processing Cassandra Datasets

with Hadoop-Streaming Based Approaches”. IEEE Transactions on Services Computing. 2016; 9 (1).

[23] Dali Ismail, Steven Harris. “Performance Comparison of Big Data Analysis using Hadoop in Physical and Virtual

Servers”. 2013. (Online) www.cse.wustl.edu/~jain/cse570-13/ftp /bigdatap/ index.html

[24] www.coursera.org/learn/hadoop (Online)) (Accessed during 18th to 24th June 2018)

[25] https://dzone.com/articles/word-count-hello-word-program-in-mapreduce (Online) (Accessed during 21st to 27th June

2018)

http://developer.amazonwebservices.com/connect/entry.jspa?externalID=873&categoryID=112

