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 Leaders and Followers algorithm was a novel metaheuristics proposed by 

Yasser Gonzalez-Fernandez and Stephen Chen. In solving unconstrained 

optimization, it performed better exploration than other well-known 

metaheuristics, e.g. Genetic Algorithm, Particle Swarm Optimization and 

Differential Evolution. Therefore, it performed well in multi-modal 

problems. In this paper, Leaders and Followers was modified for constrained 

non-linear optimization. Several well-known benchmark problems for 

constrained optimization were used to evaluate the proposed algorithm.  

The result of the evaluation showed that the proposed algorithm consistently 

and successfully found the optimal solution of low dimensional constrained 

optimization problems and high dimensional optimization with high number 

of linear inequality constraint only. Moreover, the proposed algorithm had 

difficulty in solving high dimensional optimization problem with non-linear 

constraints and any problem which has more than one equality constraint.  

In the comparison with other metaheuristics, Leaders and Followers had 

better performance in overall benchmark problems. 
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1. INTRODUCTION  

Nowadays, optimization plays an important role in various fields of real-world, e.g. engineering, 

finance, transportation and operational research [1]. There are many kinds of optimization problems. One of 

them is constrained non-linear optimization. An optimization problem is classified as constrained 

optimization if the objective function is minimized or maximized under given constraints [2].  

Constrained non-linear optimization is defined as a constrained optimization problem where its objective 

function or at least one of the constraints is non-linear function [3]. In real life, constrained optimization 

problem may be found very often because many required resources are not always unlimited. 

Metaheuristics have been widely implemented for solving many kinds of optimization problems, 

including constrained non-linear optimization. In solving optimization problem, metaheuristics search 

solution randomly and by trial and error. They are not like deterministic methods which require initial  

guess [4] and mathematical requirements, e.g. gradient or continuous functions [5]. They only require 

objective function and the searching domain in solving problems [6]. Moreover, they relatively need cheaper 

computation cost than the deterministic ones. 

Since 1960s, metaheuristics have been rapidly developed [6]. Some of the famous metaheuristics are 

Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Differential Evolution (DE). They have 

been widely implemented in various optimization problems. However, they have a same disadvantage,  

i.e. easy to fall into local optima [7-9] or tend to prematurely converge [9, 10]. As the consequence,  
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they often fail to approach the optimal solution. Therefore, it is necessary to find a metaheuristics that can 

perform better in solving optimization problems. 

In [9], it is stated that the main cause of premature convergence in these well-known algorithms is 

the direct comparison of newly discovered solutions with the current best-known solution.  

Therefore, Gonzales-Fernandez and Chen [9] proposed a novel metaheuristics named Leaders and Followers 

(LaF) which avoids this kind of comparison. In [9], LaF is better in solving unconstrained non-linear 

optimization than PSO and DE. It is able to explore better so that it can perform better in muti-modal 

optimization problems. Moreover, LaF is simple and does not need any parameter, so it may save 

computation time because there is no need to estimate any parameter. However, in [9] there is no any 

discussion about boundary constraint handling, even though there is a possibility that some new solutions 

created by the operator in LaF is outside the searching space. 

There are some methods to deal with the boundary constraint violations. Some of them are re-

initialization and clamping (bring back the solution to the peak value). In [11], it is proven that clamping 

method is more effective than re-initialization method. It can improve the solution much better than the re-

initialization method. Therefore, it can be used in LaF to handle the boundary constraint violation. 

For solving constrained optimization problem, a metaheuristic should be modified using a 

constraint-handling technique. There are various constraint-handling techniques. The most widely used 

technique is penalty function [12]. It modifies the objective function by adding a penalty function.  

This technique has been being used with various metaheuristics, both the old and the new ones. In [13], 

Harmony Search (HS) algorithm was modified using death penalty, static penalty and a new penalty function 

technique, named two stage penalty function. In [14], static penalty and feasibility rules method were used 

with Firefly Algorithm (FA) for constrained optimization. In [15], static penalty technique was also 

combined with a novel metaheuristic, named Bacterial-inspired Algorithm, for constrained optimization. 

Static penalty and dynamic penalty function were also used with an emerging metaheuristic, named Cohort 

Intelligence (CI) for constrained optimization [16]. In [17], Differential Search (DS) algorithm is developed 

for constrained optimization with static and dynamic penalty function. 

In this study, LaF is implemented for solving constrained optimization problem using static penalty 

function for handling the constraints and clamping method [11] for handling the boundary constraint 

violation. After being modified, the proposed algorithm was evaluated using several well-known benchmark 

problems. Then, the evaluation results of the proposed algorithm are compared with other metaheuristics  

[13, 14], [16-18]. Section 2 introduces the proposed algorithm. Section 3 is the research method.  

Section 4 presents and discusses the results. Then, the conclusions are given in Section 5. 

 

 

2. THE PROPOSED ALGORITHM 

Leaders and Followers (LaF) algorithm uses two different populations, i.e. Leaders and Followers. 

Followers is assigned to explore some new sub-regions of the searching space that have local optima  

(which called attraction basin), whereas Leaders is assigned to store promising solutions which may be a 

global optimum. In this algorithm, there is no comparison of new discovered solutions and a best current 

solution. This kind of comparison is avoided to prevent premature convergence. Algorithm 1 is the 

pseudocode of Leaders and Followers algorithm. 

There is possibility that Trial is formed outside the searching space. To handle the boundary 

constraint violation, this study uses clamping method by bringing the solution to the boundary value [11]. 

The algorithm is modified by adding the conditionals on line 15-16. If the position of Trial is not in the 

searching space, the position is moved to the boundary. To handle the constraints, this algorithm uses penalty 

technique. This technique is the most widely constraint-handling technique. It transforms constrained 

problem into unconstrained problem. The objective function is modified by adding penalty function.  

The general form of penalty function is as follows. 
 

𝐹(�⃗�) = 𝑓(�⃗�) + ∑ 𝑀 × max[0, 𝑔(�⃗�)] × 𝑎 + ∑ 𝑀 × (|ℎ(�⃗�)| − 𝜀) × 𝑏 

 

𝐹(�⃗�) is modified objective function, 𝑓(�⃗�) is original objective function of constrained optimization problem, 

𝑀 is penalty factor which should be large enough for minimization problems, 𝑔(�⃗�) is original inequality 

constraints, ℎ(�⃗�) is original equality constraints, 𝑎 and 𝑏 are both constants and 𝜀 is error tolerance. 
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3. RESEARCH METHOD  

The proposed algorithm was evaluated using well-known benchmark problems for constrained 

optimization (𝑓1-𝑓13). Table 1 is the summary of the benchmark problem where ρ is the ratio of the feasible 

search space size and the entire search space, LI is the number of linear inequality constraint, NI is the 

number of non-linear inequality constraint, NE is the number of nonlinear equality constraint and a is the 

number of active constraint. Table 2 presents the details of problem. Each optimization problem was 

evaluated in twenty-five independent runs with various population size, 𝑛 = 10, 25, 50, 100. The algorithm 

was stopped if there was no better solution found in 5000 iterations in a row or the algorithm had been run in 

600 seconds. The proposed algorithm uses static penalty factor and parameters, i.e. 𝑀 = 50,000, 𝑎 = 1, 𝑏 =
1 and 𝜀 = 0.0001. If the proposed algorithm meets difficulty to reach the optimal solution of a test function, 

the algorithm will be evaluated with a bigger population size and longer computation time limit.  

 

Algorithm 1. Pseudocode of Leaders and Followers Algorithm 

 
 

 

Table 1. Summary of the Benchmark Problems 
Test Function Optimal Solution Dimension Type of 𝒇 𝝆 (%) LI NI NE a 

𝒇𝟏 -15 13 Quadratic 0.0003 9 0 0 6 

𝒇𝟐 -0.8036191 20 Nonlinear 99.9962 0 2 0 1 

𝒇𝟑 -1.0005001 10 Polynomial 0.0002 0 0 1 1 

𝒇𝟒 -30665.539 5 Quadratic 26.9089 0 6 0 2 

𝒇𝟓 5126.496714 4 Cubic 0.0000 2 0 3 3 

𝒇𝟔 -6961.813876 2 Cubic 0.0065 0 2 0 2 

𝒇𝟕 24.30620907 10 Quadratic 0.0001 3 5 0 6 

𝒇𝟖 -0.09582504 2 Nonlinear 0.8484 0 2 0 0 

𝒇𝟗 680.6300574 7 Polynomial 0.5319 0 4 0 2 

𝒇𝟏𝟎 7049.2480205 8 Linear 0.0005 3 3 0 6 

𝒇𝟏𝟏 0.7499 2 Quadratic 0.0099 0 0 1 1 

𝒇𝟏𝟐 -1 3 Quadratic 4.7452 0 1 0 0 

𝒇𝟏𝟑 0.053941514 5 Exponential 0.0000 0 0 3 3 

 

 

 

 

 

 

 1: 𝑠 = number of decision variables 

 2: 𝑛 = population size 

 3: 𝑙𝑏(𝑗) = lower bound of 𝑗-th decision variables 

 4: 𝑢𝑏(𝑗) = upper bound of 𝑗-th decision variables 

5:𝐿 = initialize Leaders with 𝑛 uniform random vectors 

 6: 𝐹 = initialize Followers with 𝑛 uniform random vectors 

  7: repeat 

 8:  for 𝑖 = 1:𝑛 do 

 9:   𝑖𝑛𝑑𝑙 = round(rand*𝑛) 

 10:   𝑖𝑛𝑑𝑓 = round(rand*𝑛) 

 11:   𝑙𝑒𝑎𝑑𝑒𝑟 = 𝐿(𝑖𝑛𝑑𝑙,:) 
 12:   𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 = 𝐹(𝑖𝑛𝑑𝑓,:) 

 13:   for 𝑗 = 1:𝑠 do 

 14:   𝑡𝑟𝑖𝑎𝑙(𝑗) = 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟(𝑗) + rand*2*(𝑙𝑒𝑎𝑑𝑒𝑟(𝑗) – 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟(𝑗)) 

 15:   if 𝑡𝑟𝑖𝑎𝑙(𝑗) < 𝑙𝑏(𝑗) then 𝑡𝑟𝑖𝑎𝑙(𝑗)  =  𝑙𝑏(𝑗) 

 16:    if 𝑡𝑟𝑖𝑎𝑙(𝑗)  >  𝑢𝑏(𝑗) then 𝑡𝑟𝑖𝑎𝑙(𝑗)  =  𝑢𝑏(𝑗) 

 13:   end for 

 14:   if 𝑓(𝑡𝑟𝑖𝑎𝑙) < 𝑓(𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟) then 𝐹(𝑖𝑛𝑑𝑓,:) = 𝑡𝑟𝑖𝑎𝑙(:) 
 15:  end for 

 16:      if median(𝑓(𝐹)) < median(𝑓(𝐿)) then 

 17:   𝐿𝑛𝑒𝑤(1) = an element of 𝐿 or 𝐹 which has the best fitness 

 18:   for 𝑖 = 2:𝑛 do 

 19:    𝑙𝑒𝑎𝑑𝑒𝑟 = pick an element of 𝐿 randomly 

 20:    𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 = pick an element of 𝐹 randomly 

 21:    if 𝑓(𝑙𝑒𝑎𝑑𝑒𝑟) < 𝑓(𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟) then 𝐿𝑛𝑒𝑤(𝑖) = 𝑙𝑒𝑎𝑑𝑒𝑟 

 22:     else 𝐿𝑛𝑒𝑤(𝑖) = 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 

 23:   end 

 24:   𝐹 = reinitialize Followers uniformly 

 25:  end if 

 26: until the termination criterion is satisfied 
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Table 2. Details of the Benchmark Problems 
 Objective Function Constraints Bounds 

𝒇𝟏 𝑓(�⃗�) = 5 ∑ 𝑥𝑖 −

4

𝑖=1

5 ∑ 𝑥𝑖
2 −

4

𝑖=1

∑ 𝑥𝑖

13

𝑖=5

 

𝑔1(�⃗�) = 2𝑥1 + 2𝑥2 + 𝑥10 + 𝑥11 − 10 ≤ 0 

𝑔2(�⃗�) = 2𝑥1 + 2𝑥3 + 𝑥10 + 𝑥12 − 10 ≤ 0 

𝑔3(�⃗�) = 2𝑥2 + 2𝑥2 + 𝑥11 + 𝑥12 − 10 ≤ 0 

𝑔4(�⃗�) = −8𝑥1 + 𝑥10 ≤ 0 

𝑔5(�⃗�) = −8𝑥2 + 𝑥11 ≤ 0 

𝑔6(�⃗�) = −8𝑥3 + 𝑥12 ≤ 0 

𝑔7(�⃗�) = −2𝑥4 − 𝑥5 + 𝑥10 ≤ 0 

𝑔8(�⃗�) = −2𝑥6 − 𝑥7 + 𝑥11 ≤ 0 

𝑔9(�⃗�) = −2𝑥8 − 𝑥9 + 𝑥12 ≤ 0 

𝐿 = (0, 0, …, 

0) 

𝑈 = (1, 1, 1, 

1, 1, 1, 1, 1, 

1, 100, 100, 

100, 1) 

𝒇𝟐 

𝑓(�⃗�)

= − |
∑ cos(𝑥𝑖)

4 − 2 ∏ cos (𝑥𝑖)
2𝑠

𝑖=1
𝑠
𝑖=1

√∑ 𝑖𝑥𝑖
2𝑠

𝑖=1

| 

𝑠 = 20 

𝑔1(�⃗�) = 0.75 − ∏ 𝑥𝑖 ≤ 0
𝑠

𝑖=1
 

𝑔2(�⃗�) = ∑ 𝑥𝑖

𝑠

𝑖=1
− 7.5𝑠 ≤ 0 

𝐿 = 0; 

𝑈 = 10; 

𝒇𝟑 
𝑓(�⃗�) = −(√𝑠)

𝑠
∏ 𝑥𝑖

𝑠

𝑖=1
 

𝑠 =  10 

ℎ1(�⃗�) = ∑ 𝑥𝑖
2 − 1 = 0

𝑠

𝑖=1
 

𝐿 = 0; 

𝑈 = 1; 

𝒇𝟒 

𝑓(�⃗�) = 5.3578547𝑥3
2 + 0.8356891𝑥1𝑥5

+ 37.293239𝑥1

− 40792.141 

𝑔1(�⃗�) = 85.334407 + 0.0056858𝑥2𝑥5

+ 0.0006262𝑥1𝑥4

− 0.0022053𝑥3𝑥5 − 92 ≤ 0 

𝑔2(�⃗�) = −85.334407 − 0.0056858𝑥2𝑥5

− 0.0006262𝑥1𝑥4

+ 0.0022053𝑥3𝑥5 ≤ 0 

𝑔3(�⃗�) = 80.51249 + 0.0071317𝑥2𝑥5 + 0.0029955𝑥1𝑥2

+ 0.0021813𝑥3
2 − 110 ≤ 0 

𝑔4(�⃗�) = −80.51249 − 0.0071317𝑥2𝑥5

− 0.0029955𝑥1𝑥2 − 0.0021813𝑥3
2

+ 90 ≤ 0 

𝑔5(�⃗�) = 9.300961 + 0.0047026𝑥3𝑥5 + 0.0012547𝑥1𝑥3

+ 0.0019085𝑥3𝑥4 − 25 ≤ 0 

𝑔6(�⃗�) = −9.300961 − 0.0047026𝑥3𝑥5

− 0.0012547𝑥1𝑥3

− 0.0019085𝑥3𝑥4 + 20 ≤ 0 

𝐿 = (78, 33, 

27, 27, 27) 

𝑈 = (102, 45, 

45, 45, 45) 

 

𝒇𝟓 

𝑓(�⃗�) = 3𝑥1 + 0.000001𝑥1
3 + 2𝑥2

+ (
0.000002

3
) 𝑥2

3 

𝑔1(�⃗�) = −𝑥4 + 𝑥3 − 0.55 ≤ 0 

𝑔2(�⃗�) = −𝑥3 + 𝑥4 − 0.55 ≤ 0 

ℎ3(�⃗�) = 1000 sin(−𝑥3 −  0.25)  
+ 1000 sin(−𝑥4 − 0.25) + 894.8 
− 𝑥1 = 0 

ℎ4(�⃗�) = 1000 sin(𝑥3 −  0.25)  
+ 1000 sin(𝑥3 − 𝑥4 − 0.25)
+ 894.8 − 𝑥2 = 0 

ℎ5(�⃗�) = 1000 sin(𝑥4 −  0.25)  
+ 1000 sin(𝑥4 − 𝑥3 − 0.25)
+ 1294.8 = 0 

𝐿 = (0, 0, -

0.55, -0.55) 

𝑈 = (1200, 

1200, 0.55, 

0.55) 

𝒇𝟔 𝑓(�⃗�) = (𝑥1 − 10)3 + (𝑥2 − 20)3 
𝑔1(�⃗�) = −(𝑥1 − 5)2 − (𝑥2 − 5)2 + 100 ≤ 0 

𝑔2(�⃗�) = (𝑥1 − 6)2 + (𝑥2 − 5)2 − 82.81 ≤ 0 

𝐿 = (13, 0) 

𝑈 = (100, 

100) 

𝒇𝟕 

𝑓(�⃗�) = 𝑥1
2 + 𝑥2

3 + 𝑥1𝑥2 − 14𝑥1 − 16𝑥2  
+ (𝑥3  −  10)2  
+  4(𝑥4  −  5)2  
+  (𝑥5  −  3)2

+ 2(𝑥6  − 1)2  
+  5𝑥7

2  
+  7(𝑥8  −  11)2  
+  2(𝑥9  −  10)2  
+  (𝑥10  −  7)2  
+  45 

𝑔1(�⃗�) = −105 + 4𝑥1 + 5𝑥2 − 3𝑥7  +  9𝑥8 ≤ 0 
𝑔2(�⃗�) =  10𝑥1  −  8𝑥2  −  17𝑥7  +  2𝑥8 ≤ 0 

𝑔3(�⃗�) = −8𝑥1 + 2𝑥2 + 5𝑥9 − 2𝑥10 − 12 ≤  0 
𝑔4(�⃗�) =  3(𝑥1 − 2)2 + 4(𝑥2 − 3)2 + 2𝑥3

2 −  7𝑥4  − 120
≤  0 

𝑔5(�⃗�) = 5𝑥1
2 + 8𝑥2 + (𝑥3 − 6)2 − 2𝑥4        − 40 ≤ 0 

𝑔6(�⃗�) =  𝑥1
2  +  2(𝑥2  − 2)2  −  2𝑥1𝑥2  +  14𝑥5  −  6𝑥6

≤  0 
𝑔7(�⃗�) 0.5(𝑥1 − 8)2 + 2(𝑥2 − 4)2 +  3𝑥5

2  −  𝑥6  −  30
≤  0 

𝑔8(�⃗�) = −3𝑥1 + 6𝑥2 + 12(𝑥9 − 8)2    − 7𝑥10 ≤ 0 

𝐿 = -10 

𝑈 = 10 

𝒇𝟖 𝑓(�⃗�) = −
(sin(2𝜋𝑥1))3sin (2𝜋𝑥2) 

𝑥1
3(𝑥1 + 𝑥2)

 
𝑔1(�⃗�) = −𝑥1

2 − 𝑥2 + 1 ≤ 0 

𝑔2(�⃗�) = 1 − 𝑥1 + (𝑥2 − 4)2 ≤ 0 

𝐿 = 0 

𝑈 = 10 

𝒇𝟗 

𝑓(�⃗�) = (𝑥1 − 10)2 + 5(𝑥2 − 12)2 + 𝑥3
4

+ 3(𝑥4 − 11)2

+ 105
6 + 7𝑥6

2 + 𝑥7
4

− 4𝑥6𝑥7 − 10𝑥6

− 8𝑥7 

𝑔1(�⃗�) = −127 + 2𝑥1
2 + 3𝑥2

4 + 𝑥3 + 4𝑥4
2 + 5𝑥5 ≤  0 

𝑔2(�⃗�) = −282 + 7𝑥1 + 3𝑥2 + 10𝑥3
2 + 𝑥4 − 𝑥5 ≤  0 

𝑔3(�⃗�) = −196 + 23𝑥1 + 𝑥2
2 + 6𝑥6

2 − 8𝑥7 ≤  0 
𝑔4(�⃗�) = 4𝑥1

2 + 𝑥2
2 − 3𝑥1𝑥2 + 2𝑥3

2 + 5𝑥6 − 11𝑥7 ≤  0 

𝐿 = -10 

𝑈 = 10 

𝒇𝟏𝟎 𝑓(�⃗�) = 𝑥1 + 𝑥2 + 𝑥3 𝑔1(�⃗�) = −1 + 0.0025(𝑥4 + 𝑥6) ≤  0 
𝑔2(�⃗�) = −1 + 0.0025(𝑥5 + 𝑥7 − 𝑥4) ≤  0 

𝑔3(�⃗�) = −1 + 0.01(𝑥8 − 𝑥5) ≤  0 
𝑔4(�⃗�) = −𝑥1𝑥6 + 833.33252𝑥4 + 100𝑥1 − 83333.333

≤  0 
𝑔5(�⃗�) = −𝑥2𝑥7 + 1250𝑥5 + 𝑥2𝑥4 − 1250𝑥4 ≤  0 

𝐿 = (100, 

1000, 1000, 

10, 10, 10, 

10, 10) 

𝑈 = (10000, 

10000, 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 13, No. 1, January 2019 :  162 – 169 

166 

 Objective Function Constraints Bounds 

𝑔6(�⃗�) = −𝑥3𝑥8 + 1250000 + 𝑥3𝑥5 − 2500𝑥5 ≤  0 10000, 1000, 

1000, 1000, 

1000, 1000) 

𝒇𝟏𝟏 𝑓(�⃗�) = 𝑥1
2 + (𝑥2 − 1)2 ℎ(�⃗�) = 𝑥2 − 𝑥1

2 = 0 𝐿 = -1 

𝑈 = 1 

𝒇𝟏𝟐 𝑓(�⃗�) = −(100 − (𝑥1 − 5)2 − (𝑥2 − 5)2

− (𝑥3 − 5)2)/100 

𝑔(�⃗�) = (𝑥1 − 𝑝)2 + (𝑥2 − 𝑞)2 + (𝑥3 − 𝑟)2 − 0.0625 ≤ 0 𝐿 = 0 

𝑈 = 10 

𝒇𝟏𝟑 𝑓(�⃗�) = 𝑒𝑥1𝑥2𝑥3𝑥4𝑥5 ℎ1(�⃗�) = 𝑥1
2 + 𝑥2

2 + 𝑥3
2 + 𝑥4

2 + 𝑥5
2 − 10 = 0 

ℎ2(�⃗�) = 𝑥2𝑥3 − 5𝑥4𝑥5 = 0 

ℎ3(�⃗�) = 𝑥1
3 + 𝑥2

3 + 1 = 0 

𝐿 = -2.3 

𝑈 = 2.3 

 

 

4. RESULTS AND DISCUSSION 

Table 3 and 4 presents the evaluation results with population size (𝑛) = 10, 25, 50 and 100.  

The algorithm obtains the optimal solution for 𝑓1, 𝑓2, 𝑓4, 𝑓6, 𝑓8, 𝑓9, 𝑓11 and 𝑓12. The standard deviation of all 

obtained solutions for 𝑓4, 𝑓6, 𝑓8 and 𝑔12 approaches zero. This means that in all runs, the algorithm 

consistently obtains optimal solutions for these problems. Table 1 shows that all of these problems 

(𝑓4, 𝑓6, 𝑓8 and 𝑓12) are low dimensional (𝑠 ≤ 5) and have no equality constraints. 

 

 

Table 3. The Results Obtained by the Proposed Algorithm for 𝑓1 − 𝑓7  
 Problem 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 

Optimal Solution -15 -0.8036 -1.0005 -30666 5126.5 -6961.8 24.3062 

O
b

ta
in

ed
 S

o
lu

ti
o

n
 

n
 =

 1
0

 Best -15 -0.8036 -1.0002 -30666 5126.8 -6961.8 24.3558 

Mean -12.9843 -0.6849 -1.0002 -30666 5264.9 -6961.8 25.4199 

Worst -10.1094 -0.5702 -1.0002 -30666 5693.3 -6961.8 27.4359 

Std 1.4923 0.0685 2E-06 4E-06 209.63 4.5E-11 0.7485 

n
 =

 2
5

 Best -15 -0.7881 -1.0002 -30666 5134.0 -6961.8 24.3188 

Mean -14.0844 -0.7319 -0.9835 -30666 5239.4 -6961.8 24.7202 

Worst -11.8281 -0.6057 -0.8326 -30666 5790.5 -6961.8 26.0405 

Std 0.9483 0.0452 0.0530 7E-10 198.89 2.3E-12 0.3933 

n
 =

 5
0

 Best -15 -0.8036 -1.0003 -30666 5128.6 -6961.8 24.3156 

Mean -14.4737 -0.7645 -0.9538 -30666 5253.1 -6961.8 24.6504 

Worst -11.2812 -0.5744 -0.7191 -30666 5673.6 -6961.8 25.077 

Std 1.0533 0.0497 0.1006 1E-11 164.81 0 0.2545 

n
 =

 1
0

0
 Best -15 -0.8036 -1.0002 -30666 5126.7 -6961.8 24.3084 

Mean -15 -0.7897 -0.9521 -30666 5327.2 -6961.8 24.4549 

Worst -15 -0.7692 -0.8074 -30666 5714.9 -6961.8 24.8242 

Std 7.25E-16 0.009 0.0611 6E-12 224.09 0 0.1303 

Std = Standard Deviation 

 

 

Table 4. The Results Obtained by the Proposed Algorithm for 𝑓8 − 𝑓13 
Problem  𝑓8 𝑓9 𝑓10 𝑓11 𝑓12 𝑓13 

Optimal Solution -0.0958 680.6301 7049.2 0.7499 -1 0.0539 

O
b

ta
in

ed
 S

o
lu

ti
o

n
 

n
 =

 1
0

 Best -0.0958 680.6333 7095.9 0.7499 -1 0.1789 

Mean -0.0958 680.6518 7897.8 0.7499 -1 1.0785 

Worst -0.0958 680.6736 10911 0.7499 -1 4.9511 

Std 4.01E-18 1.03E-02 868.6 9.3E-8 0 1.5194 

n
 =

 2
5

 Best -0.0958 680.6324 7049.5 0.7499 -1 0.0865 

Mean -0.0958 680.6360 7468.2 0.7499 -1 1.0323 

Worst -0.0958 680.6423 8076.3 0.7499 -1 5.0551 

Std 4.91E-18 2.80E-03 298.6 6.5E-8 0 1.4771 

n
 =

 5
0

 Best -0.0958 680.6305 7114.1 0.7499 -1 0.0730 

Mean -0.0958 680.6319 7298.3 0.7502 -1 1.6426 

Worst -0.0958 680.6339 7547.2 0.7529 -1 11.0996 

Std 8.96E-18 1.00E-03 118.2 9.6E-4 0 2.3141 

n
 =

 1
0

0
 Best -0.0958 680.6301 7081.5 0.7499 -1 0.6148 

Mean -0.0958 680.6307 7239.8 0.7500 -1 0.9625 

Worst -0.0958 680.6321 7469 0.7505 -1 3.1843 

Std 8.96E-18 4.59E-04 111.7 2.0E-4 0 0.7877 

 

 

For 𝑓1 which is a high dimensional problem (𝑠 = 13), the obtained errors is quite high when the 

population size (𝑛) = 10, 25 and 50, but when the population size (𝑛) = 100, the errors approaches zero.  

The algorithm successfully obtains the optimal result in each run when the population size (𝑛) = 100, 
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although the number of dimension and inequality constraint in 𝑓1 is higher than 𝑓7, 𝑓9 and 𝑓10. Table 1 shows 

that the difference of 𝑓1 and 𝑓7, 𝑓9, 𝑓10 except the dimensionality is the type of inequality constraints in the 

problem. 𝑓1 has only linear constraints, unlike 𝑓7, 𝑓9 and 𝑓10 which have nonlinear constraints. The algorithm 

tends to have difficulty in solving the optimization problems with equality constraint(s) (𝑓3, 𝑓5 and 𝑓13), 

except 𝑓11. In 𝑓11, the proposed algorithm consistently approaches the optimal solution when 𝑛 = 10 and 25. 

Table 1 shows that the difference of 𝑓11 and the others is it is low dimensional and has only one equality 

constraint. Moreover, the algorithm tends to find difficulty in solving the high dimensional optimization 

problems with nonlinear inequality constraints only (𝑓2, 𝑓7, 𝑓9 and 𝑓10). 

When the proposed algorithm is evaluated on 𝑓2, 𝑓7, 𝑓9 and 𝑓10 with a big population size, e.g. 𝑛 = 

2000, and the same termination criterion, the obtained solutions are much better and the standard deviations 

are much smaller even though the computational time limit is same, e.g. 600 seconds (Table 5). When the 

time limit is longer, i.e. 1200 seconds, Table 5 shows that LaF does not obtain better solutions, except on 𝑓2. 
Thus, in solving the optimization problems with high dimensional optimization problems with nonlinear 

inequality constraints only, LaF requires a big population size (𝑛 ≥ 2000). 

 

 

Table 5. The Results Obtained by the Proposed Algorithm for High Dimensional Optimization Problems with 

inequality constraints only (𝑓2, 𝑓7, 𝑓9 and 𝑓10) when 𝑛 = 2,000 
Time Limit 600s 1200s 

Problem 𝑓2 𝑓7 𝑓9 𝑓10 𝑓2 𝑓7 𝑓9 𝑓10 

Best -0.8035 24.3114 680.6303 7.14E+03 -0.8036 24.3085 680.6303 7.09E+03 

Mean -0.8035 24.3168 680.6305 7.19E+03 -0.8036 24.3199 680.6305 7.17E+03 

Worst -0.8034 24.3349 680.6308 7.24E+03 -0.8036 24.3597 680.6311 7.29E+03 

Std 2.8E-05 0.0067 1.88E-04 33.7939 5.5E-06 0.0154 2.34E-04 69.3378 

 

 

Table 6 presents the comparison of solutions obtained by the proposed algorithm and other 

metaheuristics, i.e. Harmony Search with two stage penalty function (HS) [13], Firefly Algorithm with 

combination of static penalty and feasibility rules (FA) [14], Cohort Intelligence (CI) with static penalty 

(SCI) and dynamic penalty (DCI) [16], Differential Search with static penalty (SDS) and dynamic penalty 

(DDS) [17] and Musical Composition Method (MCM) [18]. The proposed algorithm obtains the smallest 

values of best, mean, worst and standard deviation values in this comparison on 𝑓1, 𝑓3, 𝑓4, 𝑓6, 𝑓9 and 𝑓12.  

It means that LaF is better and more consistent or stable than the other metaheuristics in solving these 

problems. In the other problems (𝑓2, 𝑓5, 𝑓7, 𝑓10 and 𝑓13), except 𝑓8 and 𝑓11, LaF is still not competitive 

compared to the other metaheuristics, since it has difficulties in solving high dimensional optimization 

problem with non-linear constraints and any problem which has more than one equality constraint. In 𝑓8 and 

𝑓11, LaF obtains the known optimal solutions, but SDS on 𝑓8, FA and MCM on 𝑓11 apparently obtain better 

solutions than the optimal solutions that have been known so far. However, in overall, LaF is more 

competitive than the other metaheuristics. 

 

 

5. CONCLUSION 

Based on the result and analysis, it is concluded that Leaders and Followers (LaF) algorithm can be 

implemented to solve constrained non-linear optimization problems. With small population size, i.e. 𝑛 ≤10, 

LaF consistently and successfully find the optimal solution of low dimensional (𝑠 ≤ 5) optimization 

problems with inequality constraints only and the low dimensional (𝑠 ≤ 2) problem with only one equality 

constraint. With population size, i.e. 𝑛 ≥100, LaF can optimally solve any high dimensional constrained non-

linear optimization problem that has high number of linear inequality constraints and no non-linear 

constraint. LaF has difficulty in solving high dimensional optimization problem with non-linear constraints 

and any problem which has more than one equality constraint.  

In the comparison with other metaheuristics, LaF has better performance in overall benchmark 

problems. It should also be noted that the constraint-handling method used in the proposed algorithm is only 

the classical static penalty function and the LaF algorithm used in this study is the original one. It means that 

there is a big possibility to use some better constraint-handling method or to modify the original LaF 

algorithm in order to obtain much better performance in the further studies. 
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Table 6. Comparison of Solutions Obtained by the Proposed Algorithm and other Metaheuristics 

 

LaF HS [13] FA [14] SCI [16] DCI [16] SDS [17] DDS [17] MCM [18] 

𝑓1 

Best -15 -14.999 NA -14.997 -15 -15 -15 -15 

Mean -15 -14.959 NA NA -14.9 -14.8 -12.3 NA 

Worst -15 -14.893 NA NA -13 -6 -13 NA 

Std 7.25E-16 0.0229 NA 0.1982 4.5E-01 2.5567 0.0181 0.1473 

𝑓2 

Best -0.8036 -0.7255 NA -0.8036 -0.8036 -0.8036 -0.8035 -0.8036 

Mean -0.7897 -0.7009 NA NA -0.7864 -0.7920 -0.7880 NA 

Worst -0.7692 -0.6543 NA NA -0.7395 -0.7729 -0.7743 NA 

Std 0.009 0.0397 NA 0.0361 0.02 0.0009 0.0007 0.0253 

𝑓3 

Best -1.0002 -1.0000 NA -1.0013 -0.9999 NA NA -0.9997 

Mean -1.0002 -0.988 NA NA -0.9839 NA NA NA 

Worst -1.0002 -0.951 NA NA -0.7395 NA NA NA 

Std 2.00E-06 0.0137 NA 0.0011 5.0E-02 NA NA 0.0008 

𝑓4 

Best -30666 -30665 -30665 -30666 -30665 -30666 -30666 -30666 

Mean -30666 -30582 -30665 NA -30665 -30662 -30666 NA 

Worst -30666 -30405 -30664 NA -30665 -30599 -30666 NA 

Std 6.00E-12 24.2567 0.4755 0.045 4.9E-03 1.4968 0.1204 16.175 

𝑓5 

Best 5128.6 5112.3 NA 5119.1 4232.6 5131.3 5131.3 5121.2 

Mean 5253.1 5115.2 NA NA 4896.6 5557.3 5745.1 NA 

Worst 5673.6 5125.3 NA NA 5612.5 6112.2 6112.2 NA 

Std 164.81 1.25 NA 40.42 3.9E+02 43.56 40.64 42.19 

𝑓6 

Best -6961.8 -6961.6 -6960.5 -6961.8 -6961.8 -6961.8 -6961.8 -6961.8 

Mean -6961.8 -6961.3 -6956.6 NA -6961.8 5.9E+13 1.8E+6 NA 

Worst -6961.8 -6960.9 -6953.5 NA -6961.8 2.4E+15 3.6E+7 NA 

Std 0 0.2443 2.1928 1.5E-05 0 1.1E+14 8.1E+6 3.8E-07 

𝑓7 

Best 24.3084 24.552 24.3805 24.3044 24.3281 24.3302 24.315 24.3506 

Mean 24.4549 27.612 24.4705 NA 24.4677 24.341 24.7153 NA 

Worst 24.8242 31.231 24.6024 NA 24.987 25.5169 25.5336 NA 

Std 0.1303 1.6545 0.0597 0.2216 0.18 0.0382 0.0306 0.2135 

𝑓8 

Best -0.0958 -0.0958 -0.0958 -0.0958 -0.0958 -0.0959 -0.0958 -0.0958 

Mean -0.0958 -0.0807 -0.0958 NA -0.0958 -0.0959 -0.0958 NA 

Worst -0.0958 -0.0761 -0.0958 NA -0.0958 -0.0959 -0.0958 NA 

Std 4.01E-18 0.0136 2.88E-06 -1.1E-12 2.1E−12 0 0 6.2E-08 

𝑓9 

Best 680.6301 680.656 680.8463 680.6726 684.1806 680.63 680.63 680.6738 

Mean 680.6307 680.742 681.0415 NA 684.1996 680.7093 680.7132 NA 

Worst 680.6321 680.779 681.2603 NA 684.2519 680.9682 681.1324 NA 

Std 4.59E-04 0.0725 0.15336 0.2598 1.66E-02 0.0082 0.0011 0.2882 

𝑓10 

Best 7081.5 7082.6 NA 7051.8 8648.2 7058.19 7056.76 7051.9 

Mean 7239.8 7110.2 NA NA 9286.5 7297.595 7350.35 NA 

Worst 7469 7110.3 NA NA 11745.2 7621.005 7846.79 NA 

Std 111.7 2.0854 NA 11.5586 8.6E+02 16.581 20.042 15.3881 

𝑓11 

Best 0.7499 0.749 0.7490 0.7497 0.7501 -0.7499 -0.7499 0.7489 

Mean 0.7499 0.749 0.7490 NA 0.7798 -0.8457 -0.7731 NA 

Worst 0.7499 0.749 0.7490 NA 0.8801 -1 -1 NA 

Std 6.50E-08 3.0E-06 3.42E-06 0.0013 3.5E-02 0.0116 0.006 0.0011 

𝑓12 

Best -1 -0.9909 -0.99995 -1 -1 -1 -1 -1 

Mean -1 -0.9525 -0.99995 NA -1 -1 -1 NA 

Worst -1 -0.8913 -0.99995 NA -1 -1 -1 NA 

Std 0 0.0888 7.78E-07 1.6E-12 1.4E−09 0 0 0.0025 

𝑓13 

Best 0.1789 0.0571 NA NA NA NA NA NA 

Mean 1.0785 0.0595 NA NA NA NA NA NA 

Worst 4.9511 0.0703 NA NA NA NA NA NA 

Std 1.5194 0.0726 NA NA NA NA NA NA 

NA = Not Available 

Std = Standard Deviation 
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