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 Predictive models are crucial in near-infrared (NIR) spectroscopic analysis. 
Partial least square - artificial neural network (PLS-ANN) is a hybrid method 

that may improve the performance of prediction in NIR spectroscopic 
analysis. This study investigates the advantage of PLS-ANN over the well-
known linear and non-linear modelling approaches in spectroscopy analysis 
that are partial least square (PLS) and artificial neural network (ANN). The 
results show that ANN that coupled with first order SG derivatives achieved 
the best prediction with root mean square error of prediction (RMSEP) of 

0.3517 gd/L and coefficient of determination (  
 ) of 0.9849 followed by 

PLS-ANN with RMSEP of 0.4368 gd/L and   
  of 0.9787, and PLS with 

RMSEP of 0.4669 gd/L and   
  of 0.9727. This suggests that the spectrum 

information may unable to be totally represented by the first few latent 
variables of PLS and a nonlinear model is crucial to model these nonlinear 
information in NIR spectroscopic analysis. 
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1. INTRODUCTION  

Nowadays, near-infrared spectroscopy (NIRS) technology showed increasing number of 
applications in various fields such as medical, chemical, and food analysis [1-3]. Applications that based on 

NIRS are developed to overcome several factors in the conventional methods which are time-consuming, 

destructive, and cost-effective. The intensity of the reflection and transmission of the fundamental molecular 

vibrations of C–H, O–H, and N–H produces absorption bands make near-infrared (NIR) useful for analyzing 

in the biological system [4]. By using a working range of the electromagnetic spectrum (from about 780 nm 

to 2500 nm), NIRS produces a spectral data which limit the usage based on several factors such as baseline 

drift, interference resulting in a poor signal to noise ratio, improper wavelength selection, thermal noise, and 

calibration issues [5]. However, these problems of nonlinearity in spectral data can be solved by using an 

appropriate predictive modelling and data preprocessing methods. 

Hybridization or combination of two predictive modellings is frequently used in spectroscopic 

analysis to improve the performance of the modelling. The main purpose of these techniques used is to 

improve weakness that occurs within single models such as nonlinearity, redundant spectral band, and 
wavelength selection problems. Evolving of predictive modelling technique was a better solution to improve 

the accuracy of performance compared than recreating new modelling [6]. Furthermore, hybrid models were 

used to reduce the risk of failure by using the single model by combining several models to obtain more 

accurate results [7]. However, the hybrid models are not an easy process to be developed and need a deep 

knowledge to manipulate the models and avoid the wrong parameter to be selected. 
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For instance, artificial neural network (ANN) combined with multiple linear regression (MLR) has 

been developed to overcome the linear modelling deficiency of the traditional artificial neural networks [7]. 

The proposed models showed a good result in classification for both synthetic and real-life benchmark data 

sets and the model consistently outperforms with other predictive models such as multilayer perceptron, 

linear discriminant analysis, quadratic discriminant analysis, K-nearest neighbour, and support vector 

machines. However, MLR modelling is not a powerful linear model and can be replaced with another better 

linear model such as PLS. Genetic algorithm (GA) coupled with PLS showed the capability of retrieving 

components of interest from spectral data [8]. Furthermore, GA combined with ANN shows a reliable 
method in classifying an egg’s freshness [9]. In addition, ANN hybrid with GA was established to predict 

travel agency air ticket sales revenue [10]. By using genetic operators such as reproduction, mutation and, 

selection, GA creates a new generation of the population which is better than the generation before. 

However, with a large number of spectral data, GA method for selection of variable spectral data could lead 

to a risk of overfitting. PLS combined with back propagation neural network (BPNN) showed effectiveness 

in overcoming the problems of redundant and nonlinear in spectral data [11]. Number of latent variables 

(LVs) generated from PLS was used as the input of BPNN to estimate the abundance of minerals on the lunar 

surface. Furthermore, PLS combined with BPNN achieved the best performance compared with PLS and 

GA-PLS. However, optimization of a number of LVs and hidden neurons used in this research is not briefly 

described. 

Next, the quality of different models of PLS, ANN, and PLS-ANN to predict consumer interest 

rating of ready to drink green tea beverages were investigated [9]. PLS-ANN showed a better quality 
compared to PLS in coefficient of determination and mean square error value. However, the number of 

variable in the research which is 8 factors is very small to be compared with a variable in NIRS analysis. 

Whereas, the working range of NIRS is from 780 nm to 2500 nm have 390 to 1250 variables with a 2 nm 

interval. A combination of PLS and ANN also was applied in management and chemical analysis showed 

satisfy result [11, 12]. Even though the limitation of of PLS has been rectified using the PLS-ANN, there is 

no comparison among PLS, ANN, and PLS-ANN. Therefore, this study compares three types of predictive 

modelling i.e. linear model (PLS), nonlinear model (ANN), and a hybrid model (PLS-ANN) in predicting 

hemoglobin concentration using near-infrared spectral data. We also investigated the optimal number of LVs 

and hidden neurons to achieve optimal prediction of performance. 

 

 

2. MATERIAL AND METHODS 

2.1.  Samples and References 

The origin spectral dataset was adopted from IDRC shootout 2010 provided by Karl Norris. The 

Blood samples were analyzed with a NIRSystems 6500 spectrometer from 1990 to 1992. All spectral data for 

calibration and testing have 700 variables, were measured with a range of wavelengths that span the infrared 

spectrum from 1100 to 2498 nm wavelength with a 2 nm interval. The dataset contains 231 sets of calibration 

and 194 testing data sets to measure predictive accuracy of the modelling. Table 1 shows the summary of 

descriptive characteristics of the calibration and testing references data. The characteristics of calibration and 

testing data indicate that extrapolation samples were used for modelling. Therefore, an appropriate modelling 

technique needs to be implemented to predict the out of range data from the testing process. IDRC shootout 

2010 has used the same extrapolation data in the tournament [13]. 
 

 

Table 1. Descriptive statistics of the blood hemoglobin 
Data n Min (g/dL) Max (g/dL) Mean (g/dL) Median (g/dL) Std 

Calibration 231 10.30 17.30 13.78 13.70 1.66 

Testing 194 6.50 18.20 12.20 12.25 2.83 

Total 425 6.50 18.20 13.06 13.40 2.40 

 
 

2.2.  Data Preprocessing 

Savitzky-golay (SG) preprocessing method was used as a pretreatment process to remove unwanted 

signals such as signal to noise ratio, baseline shift effect, and slope affected from spectral data. By using a 

specific odd number of frame length, a single set of SG coefficient with the same number of frame length can 

be applied to all subsets’ data to evaluate new smoothed or derivatives signal of central point data of each 

subset. Moreover, an optimal number of frame length should be optimized to achieve an optimum of 

prediction performance [13, 14]. Raw spectral data of hemoglobin was treated with a different type of SG 
preprocessing such as smoothing, first order, and second order sg derivatives [15]. SG coefficient can be 

applied to each subset data to obtain new treated data by using Equation (1). 
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where   and   is measured number frame length and total number of variables. Although,    is the set of sg 

coefficient. While,      and    is a related set of data before and observed value after the treatment process. 

 

2.3.  Partial Least Square 

General concept idea behind of PLS modelling is to decompose both the design matrix predictor X 

and matrix of response Y as Equations (2) and (3) 

 

      (2) 
 

      (3) 
 

where   is an     matrix of predictors,   is an     matrix of response.  and   is     matrix that are 

projections of   score and   score respectively.   and   are      and      orthogonal loading matrices 

respectively. The algorithm will yield the PLS regression estimates   and    after estimating the factor and 

loading matrices  ,  ,   and   for the linear regression as Equations (4) 

 

        (4) 

 

where   and    is PLS regression coefficient. In this research, the coefficients of PLS regression were 

generated by using the MATLAB matrix routines function. Latent variable (LVs) can be extracted from PLS 

algorithm after the model was complete. The NIPALS algorithm is the default algorithm applied in PLS [16]. 

The LVs from NIPALS algorithm were further fed to ANN as the input to predict blood hemoglobin 

concentrations. 

 

2.4.  Artificial Neural Network 

ANN as one of the nonlinear methods proved their superiority over linear method for making a 

calibration model [17]. In this research, multi-layer perceptron (MLP) trained with backpropagation 

algorithm was used as the ANN configuration [18, 19]. MLP has an input layer of source nodes, hidden layer 

of neurons, and an output layer of outcome network. Each neuron in hidden layer will receive input 

parameters of latent variables (LVs) from PLS model. Here, we have measured 1 to 50 number of LVs from 

PLS model and 1 to 10 number of hidden neurons in order to obtain optimal performance of predictions. 

Outputs of each  th neuron    in hidden layer were established by multiplying the corresponding weights 

with input parameters before passed through a transfer function to get the desired output. The process of 

transfering information between the input layer and hidden layers is as in Equation (5). 
 

      ∑       
        

 
     (5) 

 

where    is the hidden layer transfer function,       
  is the weight of the  th node in the hidden layer 

connected with the  th node in the input layer. While    is the bias between hidden layer and input layer. In 

this study, we use tan-sigmoid transfer functions for hidden layer and linear transfer function for output layer 

to receive sums of weighed and bias input. To optimize the random initial weights, the network was trained 

1000 times to achieve global prediction performance [20]. Levenberg Marquardt (LM) backpropagation 

algorithm was selected as training algorithm in this study [21]. The training process will stop when either the 

maximum number of epochs is reached, the goal performance is achieved, the performance of gradient is 

below minimum gradient value, the momentum update is exceeded, or the failure validation is more than the 
maximum amount. 

 

2.5.  Performance Validation 

Training and testing performance of prediction were evaluated using root mean squared error of 

calibration (RMSEC) and root mean squared error of prediction (RMSEP), respectively. RMSEC and 

RMSEP are computed using Equation (6). 
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where   is the total number of samples, while  ̂  and    denote the predicted blood hemoglobin and reference 

blood hemoglobin, respectively. To interpret proportion of the variance in the predicted data from the 

reference value and to describe the relationship between blood hemoglobin and near-infrared spectrum, the 

coefficient of determination (  ) was used as Equation (7). 
 

  
       

     
∑     ̂  

 

∑     ̅  
 (7) 

 

where  ̅ is mean of reference data,  ̂  and    denote the unseen predicted and reference blood Hb, 
respectively. 

 

 

3. RESULTS AND DISCUSSION  

3.1. Latent Variable 

Figure 1 shows the value of RMSEP of PLS and PLS-ANN when a different number of latent 

variables (LVs) were applied with a different type of SG preprocessing. PLS-ANN without SG preprocessing 

tends to reach minimum 0.4368 gd/L of RMSEP when 23 number of the LVs was used. After that, the 

network becomes overfit when increasing more than 23 number of LVs. Meanwhile, PLS without SG 

preprocessing shows the further low performance prediction with 0.5307 gd/L of RMSEP when 14 number of 

LVs were used. However, there are not many different values of RMSEP for PLS and PLS-ANN when the 

number of LVs used is between 11 and 16. The effects of SG preprocessing can be seen when smoothing SG 
preprocessing coupled with PLS-ANN has improved its prediction performance with 0.4208 gd/L of RMSEP 

when 26 number of LVs used. In addition, smoothing SG coupled with PLS shows improvement with 0.5114 

gd/L of RMSEP when 17 number of LVs used. However, the model became overfit when more than 17 

number of LVs were used. Meanwhile, first order SG derivatives coupled with PLS-ANN shows an 

improvement of prediction when achieves 0.4089 gd/L of RMSEP when 27 number of LVs were used. An 

improvement also occurs when first order SG derivatives coupled with PLS tends to achieve 0.5024 gd/L of 

RMSEP when 11 number of LVs were used. PLS coupled with second order SG derivative shows increasing 

of prediction when 0.4669 gd/L of RMSEP when 14 number of LVs were used. However, PLS-ANN coupled 

with second order SG derivative shows decreasing of prediction when 0.4295 gd/L of RMSEP when 19 

number of LVs were used.  

 

  

(a) (b) 

  

(c) (d) 
 

Figure 1. The root mean square error of prediction of artificial neural network (ANN) and partial least square 

– artificial neural network (PLS-ANN) versus the change of a number of hidden neurons with different 

Savitzky-golay (SG) preprocessing: (a) without SG preprocessing, (b) smoothing SG, (c) first order SG 

derivative, and (d) second order SG derivative 
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From the results, we can summarize that PLS coupled with or without SG preprocessing tends to 

achieve optimal prediction of performance when 11 to 17 number of LVs were used. While PLS-ANN 

coupled with or without SG preprocessing tends to achieve optimal prediction of performance with a high 

number of a LVs when 19 to 26 number of LVs were used. This indicated that the number of LVs used in 

PLS-ANN need to be optimized to achieve optimal prediction of performance. These results also indicated 

that PLS-ANN outperforms PLS performance of prediction. 

We also observed that with increasing number of LVs, PLS-ANN tends to maintain the value of 

RMSEP compared to PLS. For instance, PLS-ANN without preprocessing overfitted when 23 number of LVs 

were used. However, the overfit percentage of PLS-ANN without preprocessing (increasing 49.9% from 

0.4368 to 0.6547 gd/L of RMSEP) is lowest compared to PLS without preprocessing (increasing 57.7% from 
0.5307 to 0.8369 gd/L of RMSEP). In addition, the overfit percentage of PLS-ANN with smoothing SG 

(increasing 21.7% from 0.4208 to 0.5122 gd/L of RMSEP) is lowest compared to PLS with first order SG 

(increasing 67.9% from 0.5114 to 0.8588 gd/L of RMSEP). Furthermore, the overfit percentage of PLS-ANN 

with first order SG derivatives (increasing 33.9% from 0.4089 to 0.5477 gd/L of RMSEP) is lowest 

compared to PLS with first order SG derivatives (increasing 69.2% from 0.5024 to 0.85 gd/L of RMSEP). 

Then, the overfit percentage of PLS-ANN with second order SG derivatives (increasing 27.4% from 0.4295 

to 0.5473 gd/L of RMSEP) is lowest compared to PLS with second order SG derivatives (increasing 77% 

from 0.4669 to 0.8263 gd/L of RMSEP). These findings indicated that PLS-ANN has the minimum potential 

to be overfitted compared to PLS. Moreover, PLS-ANN managed to obtain a better result compared to PLS. 

This shows that feedforward backpropagation of ANN has had a good impact on improving prediction on 

PLS model. These findings agree with previous research that PLS-ANN results in a better performance than 
that of PLS [10, 21]. 

 

3.2. Hidden Neurons 

Figure 2 shows the RMSEP of PLS and PLS-ANN when different number of hidden neurons was 

applied with different type of SG preprocessing. PLS-ANN without SG preprocessing tends to achieve 

optimum performance of prediction with 0.4368 gd/L of RMSEP when 5 number of hidden neurons were 

used. After that, the network is overfitting when more than 5 number of hidden neurons were used. 

Meanwhile, ANN without SG preprocessing is able to achieve optimum performance of prediction with 

0.4607 gd/L of RMSEP when 3 number of hidden neurons were used. Smoothing SG coupled with ANN and 

smoothing SG coupled with PLS-ANN tends to achieve optimal prediction performance when 2 number of 

hidden were used with 0.4208 gd/L and 0.4499 gd/L of RMSEP respectively. However, the network is 

overfitted when more than 2 number of hidden neurons were used. First order SG derivatives coupled with 
ANN show a better result with optimum performance of prediction with 0.4089 gd/L of RMSEP when 5 

number of hidden neurons was used compared with first order SG derivatives coupled with PLS-ANN. 

Second order SG derivatives coupled with PLS-ANN tend to achieve optimal prediction 

performance 0.4295 gd/L of RMSEP when 2 number of hidden neurons were used. After that, the network is 

overfitted when more than 2 number of hidden neurons were used. Meanwhile, second order SG derivatives 

coupled with ANN achieve the lower performance of prediction with 0.4571 gd/L of RMSEP when 3 hidden 

neurons were used compared to second order SG derivatives coupled with PLS-ANN.  

Despite with different SG preprocessing, PLS-ANN could obtain a better performance of prediction 

compared to ANN except first order SG derivatives preprocessing. However, first order SG derivatives 

coupled with ANN can be considered as the best model with the high performance of prediction 0.4089 gd/L 

of RMSEP when 5 number of hidden neurons were used. This finding indicates that the number of LVs was 
used as input of ANN is not enough to represent important information the whole spectral data itself. 

Therefore, ANN with directly receiving input from spectral data after treated tends to achieve a better 

performance of prediction compared to PLS-ANN with LVs as the inputs of ANN. 
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Figure 2. The root mean square error of prediction of artificial neural network (ANN) and partial least square 

– artificial neural network  (PLS-ANN) versus the change of a number of hidden neurons with different 

Savitzky-golay (SG) preprocessing: (a) without SG preprocessing, (b) smoothing SG, (c) first order SG 

derivative, and (d) second order SG derivative 

 

 

3.3. Prediction Performance 

Table 2 shows the accuracy of the PLS, ANN, and PLS-ANN with different SG preprocessing 

methods using fixed number of frame length that is smoothing=77 nm, first order SG derivatives=27 nm, and 

second order SG derivatives=79 nm with the optimal number latent variables (LVs). Best prediction of 
performance was achieved by ANN coupled that with first order SG derivatives with RMSEP of 0.3517 gd/L 

and   
  of 0.9849, followed by PLS-ANN that coupled with first order SG derivative with RMSEP of 0.4089 

gd/L and   
  of 0.9792, and then PLS that coupled second order SG derivative with RMSEP of 0.4669 gd/L 

and   
  of 0.9727. This unusual result whereas conventional model tends to give a better result compared 

hybrid model is a normal finding in multivariate calibration analysis. For instance, auto regressive integrated 

moving average and ANN (ARIMA_ANN) are marginally showed better performance then hybrid 

ANN_ARIMA in Indian stock trend forecasting research [22]. Moreover, ANN showed a slightly higher 

performance in term of    and lower RMSE compared to PLS-ANN in consumer liking scores of ready-to-
drink green tea beverages predictions [9]. Furthermore, the criteria of datasets with extrapolation samples 

may influenced the prediction performance of different predictive modelling. However, PLS-ANN that 
coupled with smoothing, first order, second order SG derivative and without SG preprocessing showed 

satisfied result by dominating top best five of RMSEP that were 0.4208, 0.4089, 0.4295, and 0.4368 gd/L, 

respectively. Although ANN outperformed PLS-ANN, PLS-ANN is simpler than ANN with three hidden 

neurons compared to the former that needed five hidden neurons to achieve the optimal performance.  

The result also indicated that the PLS model was found to have the lowest prediction performance 

while ANN and PLS-ANN hybrid models were found to have comparable qualities based on the values of   
  

and RMSEP. This result suggested that the linear PLS model cannot generalize nonlinearity of spectral data 

and these findings are in line with the results of the previous study [9]. While the characteristics of ANN 

modelling that can adapt and generalize data sets having non-linear relationships makes ANN achieve a 

better result in this research. In addition, PLS that coupled with second order SG derivative achieved the 

optimal accuracy compared to that coupled with smoothing and first order SG derivatives is in line with 
previous study [14]. Moreover, ANN that coupled with the first order SG derivative with a proper 

optimization was able to achieve a better predictive accuracy in predicting the blood hemoglobin using near-

infrared spectral data with RMSEP of 0.3517 gd/L and of 0.9849, compared with the previous works [13]. 
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Table 2. The accuracy of the PLS, ANN, and PLS-ANN with different SG preprocessing methods using the 

optimal tunable parameters of frame length, LVs, and hidden neurons 

 

 

4. CONCLUSION  
This study shows that the hybrid model (i.e. PLS-ANN) that combined linear model (i.e. PLS) and 

nonlinear model (i.e. ANN) achieved satisfying results in predicting the blood Hemoglobin using near-

infrared spectral data. ANN that coupled with first order SG derivatives achieved the best prediction with 

RMSEP of 0.3517 gd/L and   
  of 0.9849, followed by PLS-ANN that coupled with first order SG derivative 

with RMSEP of 0.4368 gd/L and   
  of 0.9787, and PLS coupled second order SG derivative with RMSEP of 

0.4669 gd/L and   
  of 0.9727. This suggests that the related spectrum information may be excluded in the 

first few latent variables of PLS. Nevertheless, findings indicated that PLS-ANN was able to minimize the 

overfitting problem compared to PLS with fewer input variables. Furthermore, the structure of PLS-ANN is 

simpler than ANN, in which, the former needed three hidden neurons compared with the latter needed five 
hidden neurons in achieving their optimal prediction performance. Thus, a nonlinear model is crucial to 

model these nonlinear information in NIR spectroscopic analysis and more researches are required in 

understanding the potential of hybrid models in in NIR spectroscopic analysis.  
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