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 A robust dimension reduction method in Principal Component Analysis 

(PCA) was used to rectify the issue of unbalanced clusters in rainfall patterns 

due to the skewed nature of rainfall data. A robust measure in PCA using 

Tukey’s biweight correlation to downweigh observations was introduced and 

the optimum breakdown point to extract the number of components in PCA 

using this approach is proposed. A set of simulated data matrix that 

mimicked the real data set was used to determine an appropriate breakdown 

point for robust PCA and compare the performance of the both approaches. 

The simulated data indicated a breakdown point of 70% cumulative 

percentage of variance gave a good balance in extracting the number of 

components. The results showed a more significant and substantial 

improvement with the robust PCA than the PCA based Pearson correlation in 

terms of the average number of clusters obtained and its cluster quality. 
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1. INTRODUCTION  

The identification of spatial torrential rainfall pattern is an essential task for hydrologist or 

climatologist to classify hydrologic events in order to simplify hydrologic convolution. For such purposes, 

measurements of rainfall amount for time series records observed at several rain gauge stations had a long 

record of data are examined. Thus, identifying rainfall patterns can be difficult in such high dimensional data 

set as it may contain high degree of irrelevant and redundant information which may significantly degrade 

the performance of further analysis.  

Clustering techniques preceded by principal component analysis (PCA) are often combined to 

identify key spatial patterns in the data by reducing the number of variables for clustering cases [1]-[3].  

A typical approach in PCA requires the use of configuration points of entities between the rows and column 

of the data based on Pearson correlation matrix. Pearson correlation is commonly used in the derivation of  

T-mode correlation to measure similarity between the daily rainfall especially in countries that experience 

four seasons [4]-[6]. Pearson correlation matrix is calculated by finding the covariance of variables and 

dividing it by the square root of the product of the variances. However, a PCA based Pearson correlation 

matrix may not be suitable for all types of rainfall data, particularly in the tropical region. More precisely,  

the data are inherently skewed, usually to the right, as such data only take positive values and tend to be 

skewed towards higher values. In severely skewed distributions, Pearson correlation gradually loses its 

advantages especially for high dimensional data or large correlation matrix [7].Thus, applying PCA based 
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Pearson correlation on rainfall data especially in Peninsular Malaysia could affect cluster partitions and 

generate extremely unbalanced clusters in a high dimensional space. 

To overcome the issues above, Tukey's biweight correlation matrix is introduced for the analysis of 

spatial distribution torrential rainfall patterns, as an alternative of the Pearson correlation matrix. PCA based 

Tukey’s biweight correlation shows differentiating patterns on the number of clusters produced at different 

cumulative percentage of variation used. In climatology studies particularly in identifying rainfall patterns,  

it is more reasonable to obtain more than two cluster partitions to explain the various types of rainfall 

patterns.  

Tukey's biweight correlation is based on Tukey's biweight function that relies on M-estimators used 

in robust correlation estimates. This approach is more resistant for outlying values as it examines each 

observation and down-weights those that lie far from the center of the data. Another important part in 

Tukey’s biweight correlation is a breakdown point. According to the study, the breakdown point is used in 

measuring their resistance in outlying data values [8]. However, in PCA based Tukey’s biweight correlation, 

the breakdown point is used to determine the best number of components to extract. 

In order to assess the performance of the PCA based Tukey’s biweight correlation, we illustrate the 

proposed and classical method on several sets of simulated data matrices that mimic the real data.  

These simulated data matrices follow the distribution of the original torrential rainfall data in Peninsular 

Malaysia. The purpose of using simulation is to determine an appropriate breakdown 9 point and to evaluate 

the performance of the both methods in the analysis of identifying spatial cluster torrential rainfall patterns in 

Peninsular Malaysia.  

 

 

2. RESEARCH METHOD  

In this study, the focus is on the occurrence of extreme rainfall event described as torrential rainfall. 

It was therefore necessary to choose some criteria that would lead to the establishment of a threshold, in 

order to allow for a clear distinction between what constitutes a day of torrential rainfall in the Peninsular 

Malaysia region and what does not. The range of threshold for torrential rainfall data in Peninsular Malaysia 

is 60 mm/day. This threshold is chosen based on the categorization of rainfall intensity by Jabatan Pengairan 

dan Saliran (JPS). By filtering days with rainfall more than 60 mm for at least 2% of overall stations, 250 

days and 15 rainfall stations were obtained which in turn were suffice enough to represent the main  

torrential centers. 

Figure 1 shows the matrix of daily torrential rainfall data after filtering from raw data based on the 

threshold that set to the data. The rainfall day in the first column refers to the rainfall observation and the 

rainfall station in the first row refers to the variable. Rainfall is often expressed in millimeters per day 

(mm/day) which represents the total depth of rainwater (mm), in 24 hours. From Figure 2 and Table 1,  

it appeared that the locations where these torrential rainfall occur and were largely located at two regions 

specifically the Northern and Eastern region. 
 

 

 
 

Figure 1. An example of a snapshot of the daily torrential rainfall data consisting of daily amount of rainfall 

data recorded at several locations 
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Figure 2. Rainfall stations that represent the main torrential centers in Peninsular Malaysia 

 

 

Table 1. List of the Rainfall Stations According the Monsoon Occurred 
Region Station Code 

Northeast PintuA.Bagan,AirItam N1 

 
Selama N2 

 
KlinikBkt. Bendera N3 

East KlinikBidan ,JambuBongkok E7 

 
Sek. Keb. Kemasek E5 

 
Sek. Keb. Kg. Jabi E11 

 
Kg. Merang ,Setiu E10 

 
Endau E1 

 
Rumah Pam Pahang Tua,Pekan E2 

 
Kuantan E3 

 
JPS Kemaman E4 

 
Sek.Men. Sultan Omar, Dungun E6 

 
Kg. Menerong E8 

 
Stor JPS Kuala Trengganu E9 

 
Kota Bharu E12 

 

 

3. METHODOLOGY 

3.1.  Principal Component Analysis based Pearson Correlation 

PCA is designed to reduce the number of variables of interest into a smaller set of components while 

retaining most of the significant information [9], [10]. This is achieved by converting a set of observations of 

possibly correlated variables into a set of linearly uncorrelated variables called principal components.  

The first principal component accounts for as much of the variation in the original data.  

Then each succeeding component accounts for as much of the remaining variation subject to being 

uncorrelated with the previous component. 

Covariance or correlation matrix derived from the data matrix plays an important role in PCA to 

calculate its eigenvalues and eigenvectors to obtain the associated components that account for most of the 

variations in the data [11]. For the purpose of this study, correlation matrix is used. It is generally 

recommended taking at least 70% of cumulative percentage of total variation as a benchmark to cut off the 

eigenvalues in a large data set for extracting the number of components [12]. The reduced matrix is the 

component matrix of eigenvector ―loadings‖ which defines the new variables consisting of linear 

transformation of the original variables that maximizes the variance in the new axes.  

The steps involved in PCA algorithm are as follows: 

Step 1 : Obtain the input matrix. 

Step 2 : Calculate its correlation matrix. 

Step 3 : Calculate the eigenvectors and eigenvalues of the correlation matrix. 

Step 4 : Select the most important principal components based on cumulative percentage of total variation. 

Step 5 : Derive the new data set 

Step 6 : Calculate Calinski and Harabasz index in new data set to determine the best number of cluster 

Step 7 : Apply k-means method to new data set 
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3.2. Principal Component Analysis based Tukey’s Biweight Correlation  

PCA based Tukey’s biweight correlation is proposed to overcome the problem that address in 

Section 1. Before proceeding, the original data matrix is standardized by a robust location and scale estimator 

to avoid any masking or swamping effect [13]. The reduced data set is then applied to K-Means cluster 

analysis to obtain cluster partitions. K means method requires specifying the number of clusters before the 

algorithm is applied. To overcome this problem, Calinski and Harabasz Index [14] is used as a measure to 

determine the optimal number of cluster partition for the input data. This is indicated by the maximum value 

of the index. 

The steps involved in the proposed algorithm are as follows [15]: 

Step 1 : Obtain the input matrix. 

Step 2 : Standardize the observation with median and mean absolute deviation (MAD), i.e. 

 

   
  

     ̅

      (|          (   )|)
  

 

such that refer to elements in the input matrix. 

Step 3 : Set the breakdown point for the Tukey's biweight correlation at 0.4  

Step 4 : Calculate the Tukey's biweight correlation matrix. 

Step 5 : Calculate the eigenvectors and eigenvalues of the correlation matrix. 

Step 6 : Select the most important principal components based on cumulative percentage of total variation. 

Step 7 : Derive the new data set 

Step 8 : Calculate Calinski and Harabasz index in new data set to determine the best number of cluster 

Step 9 : Apply k-means method to new data set 

 

3.3. Data model of rainfall for the simulation procedure 
Data sets are generated based on probability distributions that mimic a multivariate torrential rainfall 

data. The distributions of tropical rainfall data are generally skewed to the right and thus distributions that 

exhibit this characteristic can be used to model the torrential rainfall. Three distributions are chosen which 

are gamma, Log-Normal and Generalized Pareto distribution (GPD) are tested on multivariate rainfall data. 

These distributions are commonly used as potential candidates for the data generating mechanism of rainfall 

data [16], [17]. Estimation of the parameters for each of the above sampled probability distributions are based 

on the summary statistics from the original torrential rainfall data in Peninsular Malaysia. These parameters 

are based on the mean and standard deviation from the data set of 250 torrential rainfall days and 15 rainfall 

stations of the original torrential rainfall data for the 33 year period in Peninsular as described in  

Section 2. The shape parameter for this study is ξ=0.2 where it performs well for       and very good 

for       [18]. 

 Out of the three probability distributions which were sampled, GPD appears to fit the data set based 

on several assessments by distribution graphs (i.e QQ plot and probability different graph) and goodness of 

fit tests using Chi-square and Anderson Darling test. This distribution is remarkably good at significance 

level        if           , thus providing some evidence that the null hypothesis is true (i.e the GPD 

provides the correct statistical model for rainfall data).  

Simulations were carried out on sample GPD distributions characterized by three parameters 

location μ=104.8, scale σ=54.7 and shape ξ=0.2, obtained from the original torrential rainfall data of 33 year 

period in Peninsular Malaysia to construct an n x p matrix with         and        to represent 250 

torrential rainfall days and 15 rainfall stations respectively as described in Section 2. In order to vary the 

simulation tested, two different settings are used. Firstly, the scale (i.e. standard deviation) are varied below 

and above standard deviation of the original torrential rainfall data to assess the effect of preserving most of 

the variations in the data. All generated data clearly contains values of around 60 which reflect the 60mm/day 

threshold of torrential rainfall. Secondly, several range of breakdown points between 0.2 to 0.8 are tested to 

evaluate the influence selection of the significance number of components to extract in PCA.  

Each set of generated data are then employed to the two approaches, PCA based Pearson correlation 

and robust PCA based Tukey’s biweight correlation as described in Section 3.1 and Section 3.2. From these 

two approaches, their findings will be compared according to cluster partition and generate  

extremely unbalanced clusters rainfall patterns. In addition for robust PCA based Tukey’s biweight 

correlation, the choice of appropriate breakdown point is discussed due to determine in extracting number of 

component in PCA. 
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4. RESULTS AND DISCUSSION 

The performance of robust PCA based on Tukeys’ biweight correlation are compared against PCA 

approaches using the simulated data described in Section 3. Table 2 shows the average number of 

components obtained using robust PCA based Tukey’s biweight correlation from 20 simulated data.  

It visualizes that the choice of breakdown point would influence the extracting number of components in this 

approach. From Table 2, a higher breakdown point (r=0.8) will lead to flagging fewer significance 

components to extract. A breakdown points of r=0.4 gives a good balance in extracting number of 

components where it retains sufficient components where only 12 components have been retained.  

In hydrological data, extracting too many components is not favorable as it may reflect variations of low 

frequency or spatial scale that are not important [19]. Hence, the choice of breakdown point is very important 

in PCA based Tukey’s biweight correlation. 

The entries in Table 3 show the average number of components and clusters obtained from PCA 

based Pearson correlation and PCA based Tukey’s biweight correlation at an increasing cumulative 

percentage of variation from 60% to 80%. Each of these average numbers of components and clusters (round 

up to two decimal places) are obtained from the 20 simulated data as explained in Section 3. Note that the 

variation between the simulated data at each level of cumulative percentage of variations, components and 

clusters is small (0.44 to 0.94).  

 

 

Table 2. The Average Number of Components Based on 70% Cumulative Percentage of Variance in Several 

Values of Breakdown Point 
Breakdown Point,  Number of Components 

0.2 9 
0.4 12 
0.6 6 
0.8 3 

 

 

Table 3. Average Number of Components and Clusters Obtained based on Pearson and Tukey’s Biweight 

Correlation from 20 Simulated Data 
 

Cum.% 
Number of 
components 

Number of 
cluster, K 

Tukey's biweight Pearson Tukey's biweight Pearson 

 Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. 
60 2.25 0.44 45.40 0.82 9.50 0.69 2.40 0.60 

65 5.55 0.76 54.05 0.89 5.10 0.85 2.40 0.50 

70 11.55 0.94 61.50 0.83 8.40 0.88 2.35 0.49 
75 19.80 0.89 71.55 0.89 11.50 0.94 2.25 0.55 

80 28.75 0.92 82.50 0.69 2.40 0.50 2.35 0.59 

 

 

It is observed from Table 3 that there is a difference in the average number of components and the 

number of clusters obtained from these two correlation measures in PCA at each level of cumulative 

percentage of variations. It appears that PCA based Tukey's biweight correlation requires less number of 

components to extract in order to achieve at least 70% of cumulative percentage of variation compared to 

PCA based Pearson correlation. For instance, 28.75 ≈ 29 components are retained with robust PCA based 

Tukey’s as compared to 82.50 ≈ 83 with PCA based Pearson’s at 80% cumulative percentage of variation. 

Inclusion of too many principal components inflates the importance of outlier, thus the results become poorly 

in identifying rainfall patterns.  

In terms of cluster partitions, Table 3 also shows that in contrast to PCA based Pearson’s, PCA 

based Tukey's biweight correlation is more sensitive to the number of clusters according to the number of 

components retained. The number of clusters as a result of PCA based Pearson correlation, appear to stabilize 

at only two clusters regardless of the cumulative percentage of variation used. In hydrological studies 

particularly in identifying rainfall patterns, it is more reasonable to obtain more than two cluster partitions to 

explain the various types of rainfall patterns. Thus, two clusters clearly is inappropriate as it masks the true 

structure of the data. 

In order to examine the cluster solutions, the clustering output at 70% cumulative percentage of 

variation on PCA based Tukey’s biweight correlation (8.40 ≈ 8 clusters) and PCA based Pearson correlation 

(2.35 ≈2 clusters) are chosen respectively. Therefore, from the results that we discuss above, it can be 

concluded that PCA based Tukey’s biweight correlation prove that it is an efficient robust method when 

dealing with hydrological data especially in rainfall data where it shows a substantial improvement in the 
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cluster partition with PCA based Tukey’s biweight correlation than PCA based Pearson’s to avoid inaccurate 

unbalanced clusters in rainfall data 

 

 

5. CONCLUSION 

The robust PCA based Tukey’s biweight correlation has been shown as a promising contender to the 

existing PCA based Pearson correlation. Specifically, robust PCA based Tukey’s biweight correlation 

showed a substantial improvement in the cluster partition as compared to PCA based Pearson correlation and 

it has been proven by the simulation results. The simulated data indicates a breakdown point of 70% 

cumulative percentage of variance to give a good balance in extracting the number of components to avoid 

variations of low frequency or insignificant spatial scale in the clusters. 
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