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 Deep Neural Network training algorithms consumes long training time, 

especially when the number of hidden layers and nodes is large. Matrix 

multiplication is the key operation carried out at every node of each layer for 

several hundreds of thousands of times during the training of Deep Neural 
Network. Blocking is a well-proven optimization technique to improve the 

performance of matrix multiplication. Blocked Matrix multiplication 

algorithms can easily be parallelized to accelerate the performance further. 

This paper proposes a novel approach of implementing Parallel Blocked 

Matrix multiplication algorithms to reduce the long training time. The 
proposed approach was implemented using a parallel programming model 

OpenMP with collapse() clause for the multiplication of input and weight 

matrices of Backpropagation and Boltzmann Machine Algorithms for 

training Deep Neural Network and tested on multi-core processor system. 

Experimental results showed that the proposed approach achieved 
approximately two times speedup than classic algorithms. 

Keywords: 

Backpropagation and 

Boltzmann Machine algorithms,  

Deep Neural Network,  

Multi-core processor system, 

OpenMP,  

Parallel Blocked Matrix 

multiplication. 
Copyright © 2018 Institute of Advanced Engineering and Science.  

All rights reserved. 

Corresponding Author: 

D.T.V. Dharmajee Rao,  

Aditya Institute of Technology and Management,  

Tekkali-532201, Srikakulam, Andhra Pradesh, India. 

Email: dtvdrao@gmail.com 

 

 

1. INTRODUCTION 

In recent years, Deep Neural Networks (DNN) has been used in wide range of research areas related 

to data classification, clustering and pattern recognition [1]. State-of-the-art performances have been 

achieved with DNN techniques on various applications, such as traffic sign classification [2], feature 

extraction [3] and face recognition [4] to name just a few. DNN is a multilayer feed -forward neural network 

that consists of an input layer, an output layer and more number of hidden layers with different number of 

neurons in each layer. These multiple hidden layers and more number of neurons in each layer add more 

computational complexity to the network which results in slow rate of learning capacity [5]. Moreover with 

the growth in size of datasets, it has become hard to train DNNs that require higher computing power [6]. 

To reduce the training time (convergence time), the idea is not based on changing the existing 

algorithms such as Backpropagation Algorithm (BPA) and Boltzmann Machine Algorithm (BMA) or to 

develop new algorithms for training DNN. It is  based on using some optimization techniques like Blocking 

and parallelization of algorithms on multi-core systems. Blocking is a popular and well-proven optimization 

technique to improve the performance of matrix multiplication [7]. An overview of common optimization 

techniques for matrix multiplication on multi-core processor for optimized performance is discussed in [8].  

This paper aims to select the optimal block size suitable for computer system environment and 

configuration where all experiments are carried out. The same paper proposes to modify BPA and BMA by 

using Parallel Blocked Matrix multiplication. These proposed techniques and algorithms speed up the 

training of DNN on multi-core CPU architectures. 
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Remainder of this paper is organized as follows. Section 2 presents proposed novel approach of 

Parallel Blocked Matrix multiplication. Section 3 presents implementation of Backpropagation Algorithm 

and Boltzmann Machine Algorithm using proposed method. Performance of proposed technique is shown 

through results in section 4, and finally the conclusions and future work are summarized in section 5. 

 

 

2. PROPOSED METHOD 

The total execution of matrix multiplication consists of two parts: The memory access latency of 

two input matrices elements to be multiplied and the processing time of product of two matrices. Blocking is 

a technique that really reduces the memory access latency. Blocking brings a sort of divide -and-conquer 

technique and this allows one to parallelize the product of two matrices more  effectively on multi-core 

processer system. 

 

2.1. Blocking 

Matrix multiplication is a compute intensive algorithm. Blocking is an optimization technique which 

boosts the performance of matrix multiplication, especially for large matrices [9]. The idea beh ind the 

blocking is to organize the matrix data in the form of chunks called blocks. With the use of cache memory it 

is obvious that the memory access time to all parts of the matrix would not be the same. If a required block is 

present in the cache it is possible to retrieve the data without much delay. This is called cache hit. Contrarily, 

if the required block is not in the cache it has to be loaded from the main memory. This increases the latency, 

and is called cache miss. 

1. Cache hit ratio = Percentage of memory accesses hit in the cache. 

2. Cache miss ratio = Percentage of memory accesses miss in the cache. 

3. Average memory access time = Cache hit ratio × Time to access Cache + Cache miss ratio × Time 

to access memory.  

Instead of operating entire rows and columns of matrix, blocked algorithm operates on sub-matrices 

or blocks, so that data loaded into the cache memory are reused. This algorithm even increases the number of 

operations, but significantly reduces the average memory access time by minimizing the number of cache 

misses [10]. The two input and one output matrices are divided into blocks. The size of each block is bs × bs. 

The block C11 of output matrix is computed as a product of A 11 block of matrix A and B11 block of matrix B 

as shown in (1). In a similar manner, all other blocks of output matrix C are computed. The Blocked Matrix 

multiplication is depicted in Figure 1. The Pseudo code for Blocked Matrix multiplication to reduce cache 

misses versus sequential matrix multiplication for matrices of size n × n is shown in Figure 2. 

 

C11=A11× B11+A12×B21+ ---- +A1n × Bn1       (1) 
 
 

 
 

Figure 1. Blocked Matrix multiplication 

 

 

 
 

Figure 2. Pseudo code for matrix multiplication (Sequential vs Blocked) 



      ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 11, No. 3, September 2018 : 954 – 961 

956 

2.2. Parallelization Using OpenMP 

Greater speedup is achieved if parallelization is used for matrix multiplication [11]. The Blocked 

Matrix multiplication algorithm can be parallelized using OpenMP because it does not have data dependency. 

OpenMP (Open Multiprocessing) is an open-source library for shared memory parallelization on multi-core 

processor architecture. Since most processors are now at least dual core, it is usually of advantage to 

parallelize the matrix product computations. This ensures that the large number of iterations is d istributed 

among multiple cores, parallel and concurrent threads to increase performance. There are two more loops 

namely the ii loop, and jj loop that split the matrix multiplication into a simple bs × bs matrix which is 

multiplied the traditional way. Instead of just the outer one by #pragma omp parallel for, more than one outer 

most “for” loops can be parallelized and distributed among multiple cores by using OpenMP collapse() 

clause to increases the amount of work. The Figure 3 describes pseudo code for Parallel Blocked Matrix 

multiplication using OpenMP with collapse() clause versus Sequential Matrix multiplication. 

 

 

 
 

Figure 3. Pseudo code for matrix multiplication (Blocked vs Parallel Blocked with collapse()) 

 

 

3. RESEARCH METHOD 

Multilayer feed-forward Deep Neural Networks are found to be characterized with the major 

drawback such as slow rate of learning capacity and simple problems may take hundreds of thousands of 

iterations to converge. Many researches focused on improving the speed of convergence. The traditional way 

of Backpropagation Algorithm (BPA) and Boltzmann Machine Algorithm (BMA) for training DNN is 

revisited and observed that the sum of product of weight and input matrices is computed for several hundreds 

of thousands of times during the training of DNN [12]. Here the input matrix gets multiplied by weight 

matrix by using sequential matrix multiplication algorithm. By implementing a novel approach of replacing 

this sequential matrix multiplication algorithm by Parallel Blocked Matrix multiplication algorithm, one can 

speed up the convergence time of BPA and BMA training process. 

 

3.1. Parallel Blocked Backpropagation Algorithm (PBBPA) 

The development of fast and efficient learning algorithms of DNNs has been a subject of interest in 

the recent years. As a result, several new algorithms have been proposed with various optimization 

techniques for the faster convergence of BPA [13]. A mult ilayer feed-forward Deep Neural Network (DNN) 

consists of an input layer, six hidden layers and an output layer used for experimentation is shown in  

Figure 4. 

 

 
 

Figure 4. A multilayer feed-forward Deep Neural Network 
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In order to reduce long convergence time, the Backpropagation Algorithm with classic matrix 

multiplication gets modified by using Parallel Blocked Matrix Multiplication as listed in Algorithm 1. The 

resultant algorithm is now onwards called Parallel Blocked Backpropagation Algorithm (PBBPA).  The 

PBBPA can be used instead of BPA to speed up the convergence time of DNN training process. The PBBPA 

has same steps of BPA but Parallel Blocked Matrix Multiplication is used instead of traditional matrix 

multiplication to compute the product of input matrix and weight matrix. 

 
 
Algorithm 1: Parallel Blocked implementation of BPA 

 

1. Initialize all weights and biases in network  

2. While terminating condition is not satisfied { 

3. For each training sample Xi  in D  { 

4. For each Input layer unit j  { 

5. ;jj IO   

6. For each hidden or output layer unit j  { 

7.  
i jiijj OwockedParallelBlI ;)(   

8. 
jIj

e
O





1

1  ; } 

9. For each unit j in the output layer 

10. );)(1( jjjj OTOOEj   

11. For each unit j  in the hidden layers, from the last to first hidden layer 

12. 
k kjkjj WEockedParallelBlOOEj );()1(  

13. For each weight jiW in network { 

14. ;)1( jjji OEW   

15. ;W  +  W= W jijiji   } 

16. For each bias 
j in the network. { 

17. ;)1(j jE   

18. ;jjj    } 

19. }} 

 

 

3.2. Parallel Blocked Boltzmann Machine Algorithm (PBBMA) 

A Restricted Boltzmann Machine (RBM) is structurally a shallow neural network with just two 

layers that are the visible layer (input layer) and hidden layer as shown in Figure 5. In RBM networks, 

neurons in each layer have no connections between them and are connected to all other neurons in other layer 

and connections between neurons are bidirectional and symmetric. RBMs have received a lot of a ttention in 

the recent years after being proposed as building blocks of multilayer learning architectures called Deep 

Boltzmann Machines (DBM) as shown in Figure 6. 

 

 

 
 

  

Figure 5. Restricted Boltzmann Machine (RBM) Figure 6. DBM: A stack of RBMs 
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Training a DBM is a computationally expensive task that involves several RBMs and requires a 

considerable amount of time [14]. As usual, Boltzmann Machine Algorithm with standard sequential matrix 

multiplication gets replaced by Parallel Blocked Matrix Multiplication as listed in Algorithm 2. Now 

modified BMA is called Parallel Blocked Boltzmann Machine Algorithm (PBBMA). The PBBMA can be 

used instead of BMA to speed up the training of DNN. The PBBMA has same steps of BMA but the classic 

matrix multiplication is replaced by Parallel Blocked Matrix Multiplication to compute the product of input 

matrix and weight matrix.  

 

 

Algorithm 2: Parallel Blocked implementation of BMA 

1. Take the training dataset, set the states of the visible units to the training data. 

2. Positive phase : Reconstruct hidden units using positive statistics ( jE ) is given by  

))*((
1

1
)/1(

VwockedParallelBlwj j
hiddenhbje

VhP



  

3. Negative phase: Reconstruct visible units using negative statistics ( jE ) is given by 

))*((
1

1
)/1(

HwockedParallelBlwj j
visiblevbje

HvP



  

4. Update Phase )())(( jj
old
ijij EnegativeEpositiveww     

Repeat with all training vectors until required threshold gets satisfied. 

 

 

 

4. RESULTS AND DISCUSSION 

The performance comparison of our interest is convergence time consumption of DNN training 

process. All the algorithms were implemented using C++ and then tested on multi-core processor system, the 

information about execution time was collected. In order to compare the performance, testing was performed 

on a personal desktop(HP Compaq 8200 Elite SFF Intel Core I7-2600 CPU@3.40 GHz, 4 Cores, 8 Threads, 

64 Bit, 8 MB Cache, 4 GB RAM) running Ubuntu operating system (GNU/ Linux 4.4.0-57 generic#78-

Ubuntu SMP) with software version g++ (Ubuntu 5.4.0-6 ubuntu~16.04.4) 5.4.0. The same environment has 

been used for all experiments that were carried out for this paper. All the implemented algorithms were rerun 

for five times and the average execution time was calculated. 

 

4.1. Optimal Block Size 

Another thing that one should take care when using blocking is to fit the blocks which are being 

multiplied into the cache line comfortably so that the cache misses are minimized. So it is also important to 

select the optimal block size [15]. The block size (bs) is chosen so that the bs × bs submatrix or block of A 

and B matrices can fit in the cache. In this experiment, the execution time is calculated for the matrix 

multiplication of matrices of size 1024 × 1024 by varying the block size from 4 to 512 in step of power of 2. 

It is practically found that optimal block size (bs) is 16 for the above mentioned environment as shown in 

Figure 7. 

 

 

 
 

Figure 7. Execution time of Parallel Blocked Matrix multiplication  
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4.2. Performance Comparison of PBBPA and BPA 

The classification of odd and even numbers was chosen for the performance analysis of 

Backpropagation training algorithm as it is simple problem to implement. The training pattern (binary form 

of given number) size is a power of 2 and equal to the number of units in the input layer. Number of units is 

equal in input and all hidden layers except output layer. One output unit is used to represent two classes 

where the value 1 represents odd class, and the value zero represents even  class. The training patterns are 

generated using random function. The weights in the networks are initialized to small random numbers 

ranging from -1.0 to 1.0. The biases are similarly initialized to small random numbers. Considered the Deep 

Neural Network with six hidden layers in addition to input and output layers, the observations are obtained 

by training the network for 30,000 iterations. The logistic or sigmoid function is used as activation function.  

Table 1 demonstrates that proposed Parallel Blocked implementation (PBBPA) shows significant 

improvement in decreasing Deep Neural Network training time compared to direct implementation (BPA).  

From the Figure 8, it is completely clear that the training time further reduced as the size of training pattern is 

increasing.  

 

 

Table 1. Training time comparison of BPA and PBBPA 

Pattern Size 
Elapsed time(Secs) 

BPA PBBPA Speedup 
16 4.61 15.35 0.30 

32 36.04 37.47 0.96 
48 122.07 99.20 1.23 
64 338.29 152.81 2.21 

80 573.99 342.74 1.67 
96 979.43 548.99 1.78 

112 1523.43 853.87 1.78 
128 2454.65 1166.90 2.10 

144 3290.57 1737.87 1.89 
160 2742.20 1350.74 2.03 

 

 

 
 

Figure 8. Performance of PBBPA vs BPA 

 

 

4.3. Performance Comparison of PBBMA and BMA 

A stack of six RBM layers are arranged for the composition of a DBM to generate the original 

binary pattern for a given incorrect pattern as input. The observations are obtained by training the network for 

30,000 iterations in both forward and backward directions for each layer. Table 2 demonstrates that proposed 

Parallel Blocked implementation (PBBMA) shows significant improvement in decreasing Deep Neural 

Network training time compared to direct implementation (BMA). From the Figure 9 it is completely clear 

that the training time further reduced as the size of training pattern is increasing.  
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Table 2. Training time comparison of BMA and PBBMA 

Pattern Size 
Elapsed time(Secs) 

BMA PBBMA Speedup 

16 4.61 15.35 0.30 
32 36.04 37.47 0.96 
48 122.07 99.20 1.23 

64 338.29 152.81 2.21 
80 573.99 342.74 1.67 
96 979.43 548.99 1.78 

112 1523.43 853.87 1.78 

128 2454.65 1166.90 2.10 
144 3290.57 1737.87 1.89 
160 4640.19 2353.60 1.97 

 

 

 
 

Figure 9. Performance of PBBMA vs BMA 

 

 

5. CONCLUSIONS AND FUTURE WORK 

In this paper, optimal block size of matrix has been chosen experimentally for Parallel Blocked 

Matrix multiplication to improve the performance of matrix multiplication which is a key operation and used 

for several times during the training of Deep Neural Network algorithms. Then it has been proposed to use 

Parallel Blocked Matrix multiplication with optimal block size to modify Backpropagation Algorithm (BPA) 

and Boltzmann Machine Algorithm (BMA). It was experimentally verified that the proposed methods 

(PBBPA and PBBMA) perform the training of Deep Neural Networks approximately two times faster than 

the existing classic algorithms. 

For the future work, these Deep Neural Network algorithms will be implemented using parallel 

programming model CUDA and tested on many-core GPU systems. 
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