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ABSTRACT

A fuzzy Volterra-Fredholm integro-differential equation (FVFIDE) in a parametric case is
converted to its related crisp case. We use homotopy analysis method to find the approxi-
mate solution of this system and hence obtain an approximation for the fuzzy solution of
the FVFIDE. This paper discusses existence and uniqueness results and convergence of the
proposed method.
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1. INTRODUCTION
In recent years, the topics of fuzzy integral equations which attracted increasing interest, in particular in

relation to fuzzy control, have been rapidly developed. The concept of fuzzy numbers and arithmetic operations firstly
introduced by Zadeh [1], and then by Dubois and Prade. Also, in [2] have introduced the concept of integration of
fuzzy functions. The fuzzy mapping function was introduced by Cheng and Zadeh [1]. Moreover, Dubois and Prade
[3] presented an elementary fuzzy calculus based on the extension principle. The fuzzy integro-differential equations
are a natural way to model uncertainty of dynamical systems. Kaleva [4] chose to define the integral of the fuzzy
function, using the Lebesgue-type concept for integration. Recently, Hence various other methods for solving them
such as using homotopy perturbation method [5], expansion method [6], Laplace transformation method [7], homotopy
analysis method [8], differential transform method [9], fixed point theorems [10], variational iteration method [11].
Also, some mathematicians have studied fuzzy integral and integro-differential equation by numerical techniques [12]-
[21] [23, 26]. As we know the fuzzy integral and integro-differential equations are one of the important parts of the
fuzzy analysis theory that play a main role in the numerical analysis.

In this work, we will examine HAM to approximate the solution of the fuzzy Volterra-Fredholm integro-
differential equation of the second kind. The structure of this paper is organized as follows: In Section 2, we state
some known notations and definitions and also some theorems which are used throughout this paper. In Section 3,
the fuzzy Volterra-Fredholm integro-differential equation of the second kind is briefly presented. In Section 4, we
convert a fuzzy Volterra-Fredholm integro-differential equation of the second kind to the system of Volterra-Fredholm
integro-differential equation of the second kind in a crisp case and approximate with HAM. In Section 5, the existence
and uniqueness results and convergence of the proposed method is proved. In Section 6, the analytical example is
presented illustrate the accuracy of this method. Finally, we will give a report on our paper and a brief conclusion in
Section 7.
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2. PRELIMINARIES
The concept of fuzzy numbers is generalized of classical real numbers and we can say that a fuzzy number

is a fuzzy subset of the real line which has some additional properties. The concept of fuzzy number is vital for fuzzy
analysis, fuzzy integral equations and fuzzy differential equations, and a very helpful tool in different applications of
fuzzy sets. Basic definition of fuzzy numbers is given in [1, 2, 3, 27].

Definition 2..1 [2] Let us denote by RF the class of fuzzy subsets of the real axis u : R −→ I = [0, 1], satisfying the
following properties:

• u is upper semi-continuous function,

• u is fuzzy convex,i.e, u(λx+ (1− λ)y) ≥ min{u(x), u(y)} for all x, y ∈ R, λ ∈ [0, 1],

• u is normal, i.e, ∃x0 ∈ R for which u(x0) = 1,

• supu = {x ∈ R|u(x) > 0} is the support of the u, and its closure cl(supu) is compact.

Let E be the set of all fuzzy numbers on RF . The (α− cut) α-level set of a fuzzy number u ∈ E, 0 ≤ α ≤ 1, denoted
by [u]α, is defined as

[u]α =

{
{x ∈ R : u(x) ≥ α}, 0 < α ≤ 1,
cl(supu), α = 0.

where cl(supu = x ∈ R|u(x) > 0) denotes the closure of the support of u. It is clear that the α-level set of a fuzzy
number is a closed and bounded interval [u(α), u(α)], where u(α) denotes the left-hand end point of [u]α, and u(α)
denotes the right-hand end point of [u]α. Since each u ∈ R can be regarded as a fuzzy number ũ defined by:

ũ(t) =

{
1, t = u
0, t 6= u.

An equivalent parametric definition is also given in [1] as:

Definition 2..2 [2] A fuzzy number ũ in parametric form is a pair (u, u) of functions u(α), u(α), 0 ≤ α ≤ 1, which
satisfy the following requirements:

• u(α) is a bounded non-decreasing left continuous function in (0, 1], and right continuous at 0,

• u(α) is a bounded non-increasing left continuous function in (0, 1], and right continuous at 0,

• u(α) ≤ u(α), 0 ≤ α ≤ 1.

A crisp number α is simply represented by u(α) = u(α) = α, 0 ≤ α ≤ 1. We recall that for a < b < c which
a, b, c ∈ R, the triangular fuzzy number u = (a, b, c) determined by a, b, c are given such that u(α) = a + (b − a)α
and u(α) = c− (c− b)α are the end points of the α-level sets, for all α ∈ [0, 1].

The Hausdorff distance between fuzzy numbers given by

D : RF × RF → R+ ∪ {0}.

D(u, υ) = sup
α∈[0,1]

max{|u(α)− υ(α)|, |u(α)− υ(α)|}

wehre u = (u(α), u(α)), υ = (υ(α), υ(α)) ⊂ R is utilized in [1]. Then, it is easy to see that d is a metric in E and
has the following properties:

• D(u+ ρ, υ + ρ) = D(u, υ), ∀u, υ, ρ ∈ E,

• D(ku, kυ) = |k|D(u, υ), ∀k ∈ R;u, υ ∈ E,

• D(ω + υ, ρ+ e) ≤ D(ω, ρ) + d(υ, e), ∀ω, υ, ρ, e ∈ E,

• (D,E) is a complete metric space.
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Definition 2..3 The function f : [a, b] −→ RF is called a Lipschitz function if there exists a real constant L ≥ 0 such
that, for all x, t ∈ [a, b]

D(f(x), f(t)) ≤ L|x− t|.

We refer to L as the Lipschitz constant of the function f.

Remark 2..1 Let u(α) = (u(α), u(α)), be a fuzzy number, we take

uc(α) =
u(α) + u(α)

2
, ud(α) =

u(α)− u(α)

2
.

It is clear that ud(α) ≥ 0 and u(α) = uc(α)− ud(α) and u(α) = uc(α) + ud(α), also a fuzzy number u ∈ E is said
symmetric if uc(α) is independent of α for all 0 ≤ α ≤ 1.

Definition 2..4 Let f : R→ E be a fuzzy valued function. If for arbitrary fixed t0 ∈ R and ∀ε > 0,∃δ > 0 such that
|t− t0| < δ =⇒ |f(t)− f(t0)| < ε, f is said to be continuous.

Theorem 2..2 Let f(x) be a fuzzy-valued function on [a,∞) and it is represented by (f(x, α), f(x, α)). For any fixed
t ∈ [0, 1] assume f(x, α) and f(x, α) are Riemann-integrable on [a, b] for every b ≥ a, and assume there are two

positive M(α) and M(α) such that
∫ b
a

∣∣f(x, α)
∣∣ dx ≤ M(α) and

∫ b
a

∣∣f(x, α)
∣∣ dx ≤ M(α) for every b ≥ a. Then

f(x) is improper fuzzy Riemann-integrable on [a,∞) and the improper fuzzy Riemann-integral is a fuzzy number.
Furthermore, we have: ∫ ∞

a

f(x)dx =
(∫ ∞

a

f(x, α)dx,

∫ ∞
a

f(x, α)dx
)

Proposition 2..3 [25]. If each of f(x) and g(x) is fuzzy-valued function and fuzzy Riemman integrable on Ω = [a,∞)
then f(x) + g(x) is fuzzy Riemman integrable on Ω. Moreover, we have:∫

Ω

(f(x) + g(x))dx =

∫
Ω

f(x)dx+

∫
Ω

g(x)dx

Definition 2..5 [25] The integral of a fuzzy function was define by using the Riemann integral concept. Let f : [a, b]→
E, for each partition P = t0, t1, ..., tn of [a, b] and for arbitrary ξi ∈ [ti−1, ti], 1 ≤ i ≤ n , suppose

Rp =

n∑
i=1

f(ξi)(ti − ti−1)

∆ := max |ti − ti−1|, 1 ≤ i ≤ n.

The definite integral of f(t) over [a, b] is ∫ b

a

f(t)dt = lim
∆→0

Rp.

Provided that this limit exists in the metric d. If the fuzzy function f(t) is continuous in the metric d, its definite integral
exists, and also ∫ b

a

f(t, r)dt =

∫ b

a

f(t, r)dt,

∫ b

a

f(t, r)dt =

∫ b

a

f(t, r)dt.

More details about the properties of the fuzzy integral are given in [2, 26, 25].

Theorem 2..4 [28] (Banach contraction principle). Let (X, d) be a complete metric space, then each contraction
mapping T : X −→ X has a unique fixed point x of T in X i.e. T x = x.

Theorem 2..5 [24] (Schauder’s fixed point theorem). Let X be a Banach space and let A a convex, closed subset of
X . If T : A −→ A be the map such that the set {Tu : u ∈ A} is relatively compact in X (or T is continuous and
completely continouous). Then T has at least one fixed point u∗ ∈ A : Tu∗ = u∗.
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3. FUZZY VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATION
In this section we consider the fuzzy Volterra-Fredholm integro-differential equation

ũ′(x) = f̃(x) + λ

∫ x

a

k1(x, t)F1(ũ(t))dt+ µ

∫ β

a

k2(x, t)F2(ũ(t))dt, (1)

with initial condition

ũ0(0) = ũ(0), (2)

where λ, µ ∈ R, f(x), k1, k2 and F1(ũ(t)) are analytical functions k1, k2 : C([0, β]2) −→ R+, that have suitable
derivatives on an interval 0 ≤ t ≤ x ≤ β and ũ(x) is unknown function. The solution is expressed in the form:

ũ(x) =

∞∑
i=0

ũi(x). (3)

Let
ũ(x, t) = (u(x, t), u(x, t)), f̃(x, t) = (f(x, t), f(x, t)).

and
ũ′(x, t) = (u′(x, t), u′(x, t)), f̃ ′(x, t) = (f ′(x, t), f

′
(x, t)).

Therefore, the related fuzzy integro-differential equation (1) can be written as follows

u′(x, t) = f(x, t) + λ

∫ x

a

k1(x, s)F1(u(s, t))ds+ µ

∫ β

a

k2(x, s)F2(u(s, t))ds (4)

u′(x, t) = f(x, t) + λ

∫ x

a

k1(x, s)F1(u(s, t))ds+ µ

∫ β

a

k2(x, s)F2(u(s, t))ds (5)

Similar to Remark 2.1, let

uc(x, t) =
u(x, t) + u(x, t)

2
, ud(x, t) =

u(x, t)− u(x, t)

2
. (6)

and

f c(x, t) =
f(x, t) + f(x, t)

2
, fd(x, t) =

f(x, t)− f(x, t)

2
. (7)

then (4) and (5) can be written as

u′c(x, t) = f c(x, t) + λ

∫ x

a

k1(x, s)F1(uc(s, t))ds+ µ

∫ β

a

k2(x, s)F2(uc(s, t))ds (8)

u′d(x, t) = fd(x, t) + λ

∫ x

a

k1(x, s)F1(ud(s, t))ds+ µ

∫ β

a

k2(x, s)F2(ud(s, t))ds (9)

and

uc(0, t) =
u(0, t) + u(0, t)

2
, ud(0, t) =

u(0, t)− u(0, t)

2
. (10)

4. HOMOTOPY ANALYSIS METHOD (HAM)
In this section, we shall describe the solution approaches based on HAM for fuzzy Volterra-Fredholm integro-

differential equations. For this, we consider the first equation of (8) namely we apply HAM for finding uc(x, t), and
second equation approach is similar to the first one [22]. Consider

u′c(x, t) = f c(x, t) + λ

∫ x

a

k1(x, s)F1(uc(s, t))ds+ µ

∫ β

a

k2(x, s)F2(uc(s, t))ds, (11)
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with initial condition uc(0, t). We first construct the zero-order deformation equation

(1− q)Ψ[ϕ(x, t; q)− uc0(x, t)] = q~N [ϕ(x, t; q)], (12)

subject to the initial condition

ϕ(0, t; q) = uc0(x, t) = uc(0, t), (13)

where q ∈ [0, 1] is the embedding parameter and ~ 6= 0 is an auxiliary parameter and

Ψ[ϕ(x, t; q)] =
∂[ϕ(x, t; q)]

∂x
, (14)

with the property
Ψ[C] = 0, (15)

where C is integral constant. Also from (11), we can define

N [ϕ(x, t; q)] =
∂[ϕ(x, t; q)]

∂x
− f c(x, t)− λ

∫ x

a

k1(x, s)F1(ϕ(s, t; q))ds

−µ
∫ β

a

k2(x, s)F2(ϕ(s, t; q))ds, (16)

When parameter of q increases from 0 to 1, then homotopy solution ϕ(x, t; q) varies from uc0(x, t) to solution uc(t, r)
of the original equation (11). Using the parameter q, ϕ(x, t; q) can be expanded in Taylor series as follows

ϕ(x, t; q) = uc0(x, t) +

∞∑
m=0

ucm(x, t)qm,

where

ucm(x, t) =
1

m!

∂m[ϕ(x, t; q)]

∂mq
|q=0.

Assuming that auxiliary parameter ~ is properly selected so that the above series is convergent when q = 1, then the
solution uc(x, t) can be given by

uc(x, t) = uc0(x, t) +

∞∑
m=0

ucm(x, t).

Differentiating (12) and initial condition (13) m-times with respect to q, then setting q = 0, and finally dividing them
by m!, we gain the mth-order deformation equation

Ψ[ucm(x, t)− χmucm−1(x, t)] = ~<m
−−−−→
(ucm−1), (17)

subject to the following initial conditions,
ucm(0, t) = 0, (18)

where

<m
−−−−→
(ucm−1) =

1

(m− 1)!

∂m−1N [ϕ(x, t; q)]

∂m−1q
|q=0 (19)

=
∂ucm−1(x, t)

∂x
− (1− χm)f c(x, t)

−λ
∫ x

a

k1(x, s)F1(ucm−1(s, t))ds− µ
∫ β

a

k2(x, s)F2(ucm−1(s, t))ds,

and

χm =

{
0 m ≤ 1,

1 m > 1.

Note that the high-order deformation Eq.(17) is governing the linear operator L, and the term <m(
−−−→
ucm−1) can

be expressed simply by Eq.(19) for any nonlinear operator N. Similarly, we can apply HAM for finding ud(x, t).
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5. MAIN RESULTS
A function ũ is a solution of the initial value problem (1)–(2) if and only if it is continuous and satisfies the

integral equation

ũ(x) = ũ0 +

∫ x

a

f̃(t)dt+

∫ x

a

∫ t

a

λk1(t, s)F1(ũ(s))dsdt+

∫ x

a

∫ β

a

µk2(t, s)F2(ũ(s))dsdt,

By changing the order of the integration, we have

ũ(x) = ũ0 +

∫ x

a

f̃(t)dt+

∫ x

a

∫ x

s

λk1(t, s)F1(ũ(s))dtds+

∫ x

a

∫ β

a

µk2(t, s)F2(ũ(s))dsdt,

ũ(x) = ũ0 +

∫ x

a

f̃(t)dt+

∫ x

a

∫ x

s

λk1(t, s)F1(ũ(s))dtds+

∫ β

a

∫ x

a

µk2(t, s)F2(ũ(s))dtds,

Since the function k1 and k1 are with no sign changes by assumption, we have∫ x

s

λk1(t, s)F1(ũ(s))dt =

∫ x

s

λk1(t, s)dt · F1(ũ(s))∫ x

a

µk2(t, s)F2(ũ(s))dt =

∫ x

a

µk2(t, s)dt · F2(ũ(s))

thus

ũ(x) = g̃(x) + λ

∫ x

a

K1(x, s)F1(ũ(s))ds+ µ

∫ β

a

K2(x, s)F2(ũ(s))ds, (20)

where

g̃(x) = ũ0 +

∫ x

a

f̃(t)dt, K1(x, s) =

∫ x

s

k1(t, s)dt, K2(x, s) =

∫ x

a

k2(t, s)dt.

Lemma 5..1 Let k1(t, s) be continuous in (t, s) and Lipschitz with respect to s. ThenK1(x, s) is Lipschitz with respect
to s.

Proof. Let 0 ≤ s1 ≤ s2 ≤ x. Then

|K1(x, s1)−K1(x, s2)| = |
∫ x

s1

k1(t, s1)dt−
∫ x

s2

k1(t, s2)dt|

= |
∫ s2

s1

k1(t, s1)dt+

∫ x

s2

k1(t, s1)dt−
∫ x

s2

k1(t, s2)dt|

≤
∫ s2

s1

|k1(t, s1)|dt+

∫ x

s2

|k1(t, s1)− k1(t, s2)|dt

≤ M |s1 − s2|+ L|s1 − s2|(x− s2)

≤ (M + L(β − a))|s1 − s2|,

where M = max
(x,s)∈G

|k1(x, s)|, G := {(x, t)|x ∈ J, t ∈ [a, x]} ⊂ J × J, and L is the Lipschitz constant of k1 and thus

K1 satisfies in Lipschitz condition. Similarly, we can proof the procedure of K2(x, s) is Lipschitz with respect to s.
Before starting and proving the main results, we introduce the following hypotheses:

(A1) There exist two constants M1,M2 > 0 such that, for any u1, u2 ∈ C(J,R)

Dε(u
c
1, u

c
2) := sup

x∈J
e−εM1xD(uc1(s), uc2(s)), ε ≥ 1,

as a metric on X .

(A2) There exist two functions K1,K2 ∈ C(D,R+), the set of all positive function continuous on D = {(x, t) ∈
R× R : 0 ≤ t ≤ x ≤ 1} such that M1 = max

x,s∈G
|λK1(x, t)| <∞, M2 = max

x,s∈G
|µK2(x, t)| <∞,
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(A3) The function g : J → R is continuous.

Theorem 5..1 Assume that (A1), (A2) and (A3) hold. If(
eεM1x − eεM1a

ε
+
eεM2β − eεM2a

ε

)
< 1.

Then the initial value problem (1)-(2) has a unique solution.

Proof. Let the operator A : X −→ X. To do this, it is evident that (Auc)(x) ∈ RF for all x ∈ J and thus
Auc : J −→ RF be defined by

(Auc)(x) = gc(x) + λ

∫ x

a

K1(x, s)F1(uc(s))ds+ µ

∫ β

a

K2(x, s)F2(uc(s))ds,

D(Auc1(x), Auc2(x)) = D(gc(x) + λ

∫ x

a

K1(x, s)F1(uc1(s))ds+ µ

∫ β

a

K2(x, s)F2(uc1(s))ds, gc(x)

+λ

∫ x

a

K1(x, s)F1(uc2(s))ds+ µ

∫ β

a

K2(x, s)F2(uc2(s))ds),

= D(λ

∫ x

a

K1(x, s)F1(uc1(s))ds+ µ

∫ β

a

K2(x, s)F2(uc1(s))ds, λ

∫ x

a

K1(x, s)F1(uc2(s))ds

+µ

∫ β

a

K2(x, s)F2(uc2(s))ds)

≤
∫ x

a

D(λK1(x, s)F1(uc1(s)), λK1(x, s)F1(uc2(s)))ds

+

∫ β

a

D(µK2(x, s)F2(uc1(s)), µK2(x, s)F2(uc2(s)))ds

≤
∫ x

a

M1D(uc1(s), uc2(s))ds+

∫ β

a

M2D(uc1(s), uc2(s))ds

=

∫ x

a

M1e
εM1se−εM1sD(uc1(s), uc2(s))ds+

∫ β

a

M2e
εM2se−εM2sD(uc1(s), uc2(s))ds

≤
∫ x

a

M1e
εM1sDε(u

c
1, u

c
2)ds+

∫ β

a

M2e
εM2sDε(u

c
1, u

c
2)ds

≤ eεM1x − eεM1a

ε
Dε(u

c
1, u

c
2) +

eM2β − eεM2a

ε
Dε(u

c
1, u

c
2)

=

(
eεM1x − eεM1a

ε
+
eεM2β − eεM2a

ε

)
Dε(u

c
1, u

c
2).

Since
(
eεM1x−eεM1a

ε + eεM2β−eεM2a

ε

)
< 1, the operator A is a contraction mapping. By the Banach fixed point

theorem we conclude that the initial value problem (1)-(2) has a unique solution. Similarly, we can proof the procedure
of ud(x, t). Now, we will discuss the convergence of HAM for Eq.(1) in the fuzzy case which divides into two crisp
integro-differential equations as Eqs.(8)-(9).

Theorem 5..2 Let the series
∑∞
m=0 u

c
m(x, t) converge to uc(x, t), where ucm(x, t) is produced by the m-order defor-

mation (17), and besides
∑∞
m=0 u

c
m(x, t) converges, then uc(x, t) is the exact solution of Volterra-Fredholm integro-

differential equation (8) when using HAM.

Proof. We assume
∑∞
m=0 u

c
m(x, t) converge uniformly to uc(x, t) then

lim
m→∞

ucm(x, t) = 0, ∀0 ≤ x ≤ β, 0 ≤ t ≤ 1.
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We can write,

n∑
m=1

Ψ[ucm(x, t)− χmucm−1(x, t)] = Ψuc1(x, t) + (Ψuc2(x, t)−Ψuc1(x, t))

+(Ψuc3(x, t)−Ψuc2(x, t)) + . . .

+(Ψucn(x, t)−Ψucn−1(x, t))

= Ψucn(x, t). (21)

Hence, from Eq.(21)
lim
n→∞

ucn(x) = 0. (22)

So, using Eq.(22), we have

∞∑
m=1

Ψ[ucm(x, t)− χmucm−1(x, t)] =

∞∑
m=1

[ucm(x, t)− χmΨucm−1(x, t)] = 0.

Therefore from Eq.(22), we can obtain that

∞∑
m=1

Ψ[ucm(x, t)− χmucm−1(x, t)] = ~
∞∑
m=1

<m−1(
−−−−→
ucm−1(x, t)) = 0.

Since ~ 6= 0 and we have
∞∑
m=1

<m−1(
−−−−→
ucm−1(x, t)) = 0. (23)

By substituting <m−1(
−−−−→
ucm−1) into the relation (23) and simplifying it, we have

<m−1(
−−−−→
ucm−1(x, t)) =

∞∑
m=1

[
∂ucm−1(x, t)

∂x
− λ

∫ x

a

k1(x, s)F1(ucm−1(s, t))ds

−µ
∫ β

a

k2(x, s)F2(ucm−1(s, t))ds− (1− χm)f c(x, t)],

= (

∞∑
m=1

∂ucm−1(x, t)

∂x
− λ

∫ x

a

k1(x, s)[

∞∑
m=1

F1(ucm−1(s, t))]ds

−µ
∫ β

a

k2(x, s)[

∞∑
m=1

F2(ucm−1(s, t))]ds−
∞∑
m=1

(1− χm)f c(x, t),

=
∂uc(x, t)

∂x
− λ

∫ x

a

k1(x, s)F1(uc(s, t))ds

−µ
∫ β

a

k2(x, t)F2(uc(s, t))ds− f c(x, t). (24)

From Eq.(23) and Eq.(24), we have

∂uc(x, t)

∂x
= f c(x, t) + λ

∫ x

a

k1(x, s)F1(uc(s, t))ds+ µ

∫ β

a

k2(x, s)F2(uc(s, t))ds,

therefore, uc(x, t) must be the exact solution of Eq.(8). Similarly, we can proof the procedure of ud(x, t). Then,
u(x, t) must be the exact solution of Eq.(1), and the proof is complete.

6. ILLUSTRATIVE EXAMPLE
In this section, we present the analytical technique based on HAM to solve fuzzy Volterra-Fredholm integro-

differential equation.
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Example 1.

Let us consider fuzzy Volterra-Fredholm integro-differential equation:

∂ũ(x, t)

∂x
+ ũ(x, t) = f̃(x, t) + λ

∫ x

0

xs2ũ(s, t)ds+ µ

∫ 1

0

xsũ(s, t)ds, (25)

where
ũ(x, t) = (u(x, t), u(x, t)), f̃(x, t) = (f(x, t), f(x, t))

f(x, t) = t

(
2x

3
+ 1

)
, f(x, t) =

2tx

3
− 4x− t+ 8, λ = 0, µ = 1.

with initial conditions
u(0, t) = 0, u(0, t) = 8.

Exact solution of this fuzzy Volterra-Fredholm integro-differential equation is given by

ũ(x, t) = (xt, 8− xt).
From Eq.(7), we have

f c(x, t) =
f(x, t) + f(x, t)

2
= 4− 2x, fd(x, t) =

f(x, t)− f(x, t)

2
= 4− t− 2x− 2tx

3
.

The exact solution of related crisp equations are as follows

uc(x, t) =
u(x, t) + u(x, t)

2
= 4, ud(x, t) =

u(x, t)− u(x, t)

2
= 4− tx.

From Eqs.(16) and(25) can be written

N [ϕ(x, t; q)] =
∂[ϕ(x, t; q)]

∂x
+ ϕ(x, t; q)− 4 + 2x−

∫ 1

0

k2(x, s)F2(ϕ(s, t; q))ds,

Now, using mth-order deformation equation and initial conditions, we recursively obtain

uc0(x, t) = uc(0, t) =
u(0, t) + u(0, t)

2
= 4

uc1(x, t) = 0,

uc2(x, t) = 0,

.

.

.

Thus the approximate HAM solution

Y cm(x, t) =

m∑
n=0

ucn(x, t) = 4

The approximate solution same as exact solution. Similarly, to approximate ud(t, r),

N [ϕ(x, t; q)] =
∂[ϕ(x, t; q)]

∂x
+ ϕ(x, t; q)− 4 + t+ 2x+

2tx

3
−
∫ 1

0

k2(x, s)F2(ϕ(s, t; q))ds,

Now, using mth-order deformation equation and initial conditions, we recursively obtain

ud0(x, t) = ud(0, t) =
u(0, t)− u(0, t)

2
= 4,

ud1(x, t) =
~
3
xt(3 + x),

ud2(x, t) =
~
72
xt(~(72 + 45x+ 8x2) + 72 + 24x),

.

.

.
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Thus the approximate HAM solution when ~ = −1

Y dm(x, t) =

m∑
n=0

udn(x, t) = ud0(x, t) + ud1(x, t) + · · ·+ udm(x, t) ≈ 4− tx.

Note that, we can control the convergence region of HAM series solution by the auxiliary parameter ~.

7. CONCLUSION
Homotopy analysis method has been performed to find approximate analytical solutions for fuzzy Volterra-

Fredholm integro-differential equations. The reliability of the method and reduction in the size of the computational
work give this method a wider applicability. The method is very powerful and efficient in finding analytical as well
as numerical solutions for wide classes of linear and nonlinear fuzzy integro-differential equations. Obtained results
show that we can control the convergence region of HAM series solution by the auxiliary parameter ~. The illustrative
example and convergence theorem show the efficiency and accuracy of the HAM.
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